Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for the transcriptional regulation of membrane lipid homeostasis

Abstract

DesT is a transcriptional repressor that regulates the genes that control the unsaturated:saturated fatty acid ratio available for membrane lipid synthesis. DesT bound to unsaturated acyl-CoA has a high affinity for its cognate palindromic DNA-binding site, whereas DesT bound to saturated acyl-CoA does not bind this site. Structural analyses of the DesT–oleoyl-CoA–DNA and DesT–palmitoyl-CoA complexes reveal that acyl chain shape directly influences the packing of hydrophobic core residues within the DesT ligand-binding domain. These changes are propagated to the paired DNA-binding domains via conformational changes to modulate DNA binding. These structural interpretations are supported by the in vitro and in vivo characterization of site-directed mutants. The regulation of DesT by the unsaturated:saturated ratio of acyl chains rather than the concentration of a single ligand is a paradigm for understanding transcriptional regulation of membrane lipid homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural overview of the DesT complexes.
Figure 2: Comparison between the relaxed (R) and tense (T) states of DesT and the allosteric switching mechanism.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Zhang, Y.-M. & Rock, C.O. Membrane lipid homeostasis in bacteria. Nat. Rev. Microbiol. 6, 222–233 (2008).

    Article  Google Scholar 

  2. Cronan, J.E. Jr. & Gelmann, E.P. Physical properties of membrane lipids: biological relevance and regulation. Bacteriol. Rev. 39, 232–256 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang, Y.-M., Marrakchi, H. & Rock, C.O. The FabR (YijC) transcription factor regulates unsaturated fatty acid biosynthesis in Escherichia coli. J. Biol. Chem. 277, 15558–15565 (2002).

    Article  CAS  Google Scholar 

  4. Zhu, K., Zhang, Y.M. & Rock, C.O. Transcriptional regulation of membrane lipid homeostasis in Escherichia coli. J. Biol. Chem. 284, 34880–34888 (2009).

    Article  CAS  Google Scholar 

  5. Zhu, K. et al. Two aerobic pathways for the formation of unsaturated fatty acids in Pseudomonas aeruginosa. Mol. Microbiol. 60, 260–273 (2006).

    Article  CAS  Google Scholar 

  6. Subramanian, C., Zhang, Y.-M. & Rock, C.O. DesT coordinates the expression of anaerobic and aerobic pathways for unsaturated fatty acid biosynthesis in Pseudomonas aeruginosa. J. Bacteriol. 192, 280–285 (2010).

    Article  CAS  Google Scholar 

  7. Zhang, Y.-M., Zhu, K., Frank, M.W. & Rock, C.O. A Pseudomonas aeruginosa transcription factor that senses fatty acid structure. Mol. Microbiol. 66, 622–632 (2007).

    Article  CAS  Google Scholar 

  8. Orth, P. et al. Structural basis of gene regulation by the tetracycline inducible Tet repressor-operator system. Nat. Struct. Biol. 7, 215–219 (2000).

    Article  CAS  Google Scholar 

  9. Hinrichs, W. et al. Structure of the Tet repressor-tetracycline complex and regulation of antibiotic resistance. Science 264, 418–420 (1994).

    Article  CAS  Google Scholar 

  10. Schumacher, M.A. et al. Structural mechanisms of QacR induction and multidrug recognition. Science 294, 2158–2163 (2001).

    Article  CAS  Google Scholar 

  11. Frénois, F. et al. Structure of EthR in a ligand bound conformation reveals therapeutic perspectives against tuberculosis. Mol. Cell 16, 301–307 (2004).

    Article  Google Scholar 

  12. Dover, L.G. et al. Crystal structure of the TetR/CamR family repressor Mycobacterium tuberculosis EthR implicated in ethionamide resistance. J. Mol. Biol. 340, 1095–1105 (2004).

    Article  CAS  Google Scholar 

  13. Ramos, J.L. et al. The TetR family of transcriptional repressors. Microbiol. Mol. Biol. Rev. 69, 326–356 (2005).

    Article  CAS  Google Scholar 

  14. Aleksandrov, A., Schuldt, L., Hinrichs, W. & Simonson, T. Tet repressor induction by tetracycline: a molecular dynamics, continuum electrostatics, and crystallographic study. J. Mol. Biol. 378, 898–912 (2008).

    Article  Google Scholar 

  15. Gu, R. et al. Crystal structure of the transcriptional regulator CmeR from Campylobacter jejuni. J. Mol. Biol. 372, 583–593 (2007).

    Article  CAS  Google Scholar 

  16. Li, M. et al. Crystal structure of the transcriptional regulator AcrR from Escherichia coli. J. Mol. Biol. 374, 591–603 (2007).

    Article  CAS  Google Scholar 

  17. Orth, P. et al. Conformational changes of the Tet repressor induced by tetracycline trapping. J. Mol. Biol. 279, 439–447 (1998).

    Article  CAS  Google Scholar 

  18. Jerga, A. & Rock, C.O. Acyl-acyl carrier protein regulates transcription of fatty acid biosynthetic genes via the FabT repressor in Streptococcus pneumoniae. J. Biol. Chem. 284, 15364–15368 (2009).

    Article  CAS  Google Scholar 

  19. Niesen, F.H., Berglund, H. & Vedadi, M. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat. Protoc. 2, 2212–2221 (2007).

    Article  CAS  Google Scholar 

  20. West, S.E. et al. Construction of improved Escherichia-Pseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in Pseudomonas aeruginosa. Gene 148, 81–86 (1994).

    Article  CAS  Google Scholar 

  21. Choi, K.H., Kumar, A. & Schweizer, H.P. A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer between chromosomes and plasmid transformation. J. Microbiol. Methods 64, 391–397 (2006).

    Article  CAS  Google Scholar 

  22. Lakowicz, J.R. Principles of Fluorescence Spectroscopy (Springer, Singapore, 2008).

  23. Grosse-Kunstleve, R.W. & Adams, P.D. Substructure search procedures for macromolecular structures. Acta Crystallogr. D Biol. Crystallogr. 59, 1966–1973 (2003).

    Article  CAS  Google Scholar 

  24. Terwilliger, T.C. Automated main-chain model building by template matching and iterative fragment extension. Acta Crystallogr. D Biol. Crystallogr. 59, 38–44 (2003).

    Article  Google Scholar 

  25. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  26. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  27. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  28. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  29. DeLano, W.L. The PyMOL Molecular Graphics System (DeLano Scientific, Palo Alto, California, USA, 2002).

  30. Dundas, J. et al. CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res. 34, W116–W118 (2006).

    Article  CAS  Google Scholar 

  31. Ho, B.K. & Gruswitz, F. HOLLOW: generating accurate representations of channel and interior surfaces in molecular structures. BMC Struct. Biol. 8, 49 (2008).

    Article  Google Scholar 

  32. Laskowski, R.A., McArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the quality of protein structures. J. Appl. Crystallogr. 26, 282–291 (1993).

    Article  Google Scholar 

  33. Lu, X.J. & Olson, W.K. 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res. 31, 5108–5121 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Frank for his technical assistance and the St. Jude Protein Production Facility for the expression and purification of DesT and its SeMet-labeled derivative. This work was supported by US National Institutes of Health grant GM34496 (C.O.R.), Cancer Center Support Grant CA21765 and the American Lebanese Syrian Associated Charities. Data were collected at Southeast Regional Collaborative Access Team (SER-CAT) 22-ID and 22-BM beamlines at the Advanced Photon Source, Argonne National Laboratory. Supporting institutions may be found at http://www.ser-cat.org/members.html. Use of the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38.

Author information

Authors and Affiliations

Authors

Contributions

D.J.M. and S.W.W. designed and executed the crystallography experiments; Y.-M.Z., C.S. and C.O.R. designed and executed the biochemical and genetic experiments; all authors participated in writing the manuscript.

Corresponding author

Correspondence to Stephen W White.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Table 1 and Supplementary Results (PDF 2285 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, D., Zhang, YM., Subramanian, C. et al. Structural basis for the transcriptional regulation of membrane lipid homeostasis. Nat Struct Mol Biol 17, 971–975 (2010). https://doi.org/10.1038/nsmb.1847

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1847

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing