Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bioorthogonal masked acylating agents for proximity-dependent RNA labelling

Abstract

RNA localization is highly regulated, with subcellular organization driving context-dependent cell physiology. Although proximity-based labelling technologies that use highly reactive radicals or carbenes provide a powerful method for unbiased mapping of protein organization within a cell, methods for unbiased RNA mapping are scarce and comparably less robust. Here we develop α-alkoxy thioenol and chloroenol esters that function as potent acylating agents upon controlled ester unmasking. We pair these probes with subcellular-localized expression of a bioorthogonal esterase to establish a platform for spatial analysis of RNA: bioorthogonal acylating agents for proximity labelling and sequencing (BAP-seq). We demonstrate that, by selectively unmasking the enol probe in a locale of interest, we can map RNA distribution in membrane-bound and membrane-less organelles. The controlled-release acylating agent chemistry and corresponding BAP-seq method expand the scope of proximity labelling technologies and provide a powerful approach to interrogate the cellular organization of RNAs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual framework for a biomolecular labelling strategy using masked acylation agents.
Fig. 2: Synthetic design and validation of masked acylating probes.
Fig. 3: Comparison of nuclear proximity labelling in live cells across all the AC and TE probes.
Fig. 4: AC-2 labelling is restricted to the vicinity of BS2 expression across multiple compartments.
Fig. 5: AC probes label RNA in vitro and in cells.
Fig. 6: BS2-dependent proximity labelling of RNA using AC-2 paired with quantitative sequencing provides an unbiased spatial transcriptomic map.

Similar content being viewed by others

Data availability

All BAP-seq data are available in the Sequence Read Archive through accession number GSE229451. All the raw images used for Supplementary Figs. 1130 and Figs. 3 and 4 are provided with Mendeley Data (https://doi.org/10.17632/kzpvsdjrgy.1)67. All other data generated or analysed in this study are available within the main text and Supplementary Information. Links to vector maps are included in Supplementary Fig. 33. Source data are provided with this paper.

References

  1. Keskin, O., Tuncbag, N. & Gursoy, A. Predicting protein–protein interactions from the molecular to the proteome level. Chem. Rev. 116, 4884–4909 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Hentze, M. W., Castello, A., Schwarzl, T. & Preiss, T. A brave new world of RNA-binding proteins. Nat. Rev. Mol. Cell Biol. 19, 327–341 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Engreitz, J. M., Ollikainen, N. & Guttman, M. Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression. Nat. Rev. Mol. Cell Biol. 17, 756–770 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Rinn, J. & Guttman, M. RNA function. RNA and dynamic nuclear organization. Science 345, 1240–1241 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tiruchinapalli, D. M. et al. Activity-dependent trafficking and dynamic localization of zipcode binding protein 1 and beta-actin mRNA in dendrites and spines of hippocampal neurons. J. Neurosci. 23, 3251–3261 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Huttelmaier, S. et al. Spatial regulation of beta-actin translation by Src-dependent phosphorylation of ZBP1. Nature 438, 512–515 (2005).

    Article  PubMed  Google Scholar 

  7. Satori, C. P., Kostal, V. & Arriaga, E. A. Review on recent advances in the analysis of isolated organelles. Anal. Chim. Acta 753, 8–18 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Qin, W., Cho, K. F., Cavanagh, P. E. & Ting, A. Y. Deciphering molecular interactions by proximity labeling. Nat. Methods 18, 133–143 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Seath, C. P., Trowbridge, A. D., Muir, T. W. & MacMillan, D. W. C. Reactive intermediates for interactome mapping. Chem. Soc. Rev. 50, 2911–2926 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Rhee, H. W. et al. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339, 1328–1331 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lam, S. S. et al. Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat. Methods 12, 51–54 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Hung, V. et al. Proteomic mapping of the human mitochondrial intermembrane space in live cells via ratiometric APEX tagging. Mol Cell 55, 332–341 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Han, S. et al. Proximity biotinylation as a method for mapping proteins associated with mtDNA in living cells. Cell Chem. Biol. 24, 404–414 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hung, V. et al. Proteomic mapping of cytosol-facing outer mitochondrial and ER membranes in living human cells by proximity biotinylation. eLife 6, e24463 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Loh, K. H. et al. Proteomic analysis of unbounded cellular compartments: synaptic clefts. Cell 166, 1295–1307(2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rees, J. S., Li, X. W., Perrett, S., Lilley, K. S. & Jackson, A. P. Selective Proteomic Proximity Labeling Assay Using Tyramide (SPPLAT): a quantitative method for the proteomic analysis of localized membrane-bound protein clusters. Curr. Protoc. Protein Sci. 80, 19.27.1–19.27.18 (2015).

  17. Bar, D. Z. et al. Biotinylation by antibody recognition—a method for proximity labeling. Nat. Methods 15, 127–133 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. McCutcheon, D. C., Lee, G., Carlos, A., Montgomery, J. E. & Moellering, R. E. Photoproximity profiling of protein–protein interactions in cells. J. Am. Chem. Soc. 142, 146–153 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Geri, J. B. et al. Microenvironment mapping via Dexter energy transfer on immune cells. Science 367, 1091–1097 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Oakley, J. V. et al. Radius measurement via super-resolution microscopy enables the development of a variable radii proximity labeling platform. Proc. Natl Acad. Sci. 119, e2203027119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Choi-Rhee, E., Schulman, H. & Cronan, J. E. Promiscuous protein biotinylation by Escherichia coli biotin protein ligase. Protein Sci. 13, 3043–3050 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Roux, K. J., Kim, D. I., Raida, M. & Burke, B. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol. 196, 801–810 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Branon, T. C. et al. Efficient proximity labeling in living cells and organisms with TurboID. Nat. Biotechnol. 36, 880–887 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kaewsapsak, P., Shechner, D. M., Mallard, W., Rinn, J. L. & Ting, A. Y. Live-cell mapping of organelle-associated RNAs via proximity biotinylation combined with protein–RNA crosslinking. eLife 6, e29224 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fazal, F. M. et al. Atlas of subcellular RNA localization revealed by APEX-Seq. Cell 178, 473–490 e426 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Padron, A., Iwasaki, S. & Ingolia, N. T. Proximity RNA labeling by APEX-Seq reveals the organization of translation initiation complexes and repressive RNA granules. Mol. Cell 75, 875–887 e875 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhou, Y. et al. Expanding APEX2 substrates for proximity-dependent labeling of nucleic acids and proteins in living cells. Angew. Chem. Int. Ed. Engl. 58, 11763–11767 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Wang, P. et al. Mapping spatial transcriptome with light-activated proximity-dependent RNA labeling. Nat. Chem. Biol. 15, 1110–1119 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Engel, K. L. et al. Analysis of subcellular transcriptomes by RNA proximity labeling with Halo-seq. Nucleic Acids Res. 50, e24 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. McGinnis, J. L., Dunkle, J. A., Cate, J. H. & Weeks, K. M. The mechanisms of RNA SHAPE chemistry. J. Am. Chem. Soc. 134, 6617–6624 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee, B. et al. Comparison of SHAPE reagents for mapping RNA structures inside living cells. RNA 23, 169–174 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xiao, L., Fang, L., Chatterjee, S. & Kool, E. T. Diverse reagent scaffolds provide differential selectivity of 2′-OH acylation in RNA. J. Am. Chem. Soc. 145, 143–151 (2023).

    Article  CAS  PubMed  Google Scholar 

  33. Sun, W. et al. Genetically encoded chemical crosslinking of RNA in vivo. Nat. Chem. 15, 21–32 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. Spitale, R. C. et al. Structural imprints in vivo decode RNA regulatory mechanisms. Nature 519, 486–490 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xiao, L., Jun, Y. W. & Kool, E. T. DNA tiling enables precise acylation-based labeling and control of mRNA. Angew. Chem. Int. Ed. Engl. 60, 26798–26805 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xiao, L., Habibian, M. & Kool, E. T. Site-selective RNA functionalization via DNA-induced structure. J. Am. Chem. Soc. 142, 16357–16363 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fang, L., Xiao, L., Jun, Y. W., Onishi, Y. & Kool, E. T. Reversible 2′-OH acylation enhances RNA stability. Nat. Chem. 15, 1296–1305 (2023).

    Article  CAS  PubMed  Google Scholar 

  38. Tian, L. et al. Selective esterase–ester pair for targeting small molecules with cellular specificity. Proc. Natl Acad. Sci. USA 109, 4756–4761 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jones, K. A. et al. Development of a split esterase for protein–protein interaction-dependent small-molecule activation. ACS Cent. Sci. 5, 1768–1776 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Franzini, R. M. & Kool, E. T. 7-Azidomethoxy-coumarins as profluorophores for templated nucleic acid detection. ChemBioChem 9, 2981–2988 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zheng, Y. Y., Zheng, W. R., Zhu, D. F. & Chang, H. F. Theoretical modeling of pKa’s of thiol compounds in aqueous solution. New J. Chem. 43, 5239–5254 (2019).

    Article  CAS  Google Scholar 

  42. Beddoes, R. L. et al. An example of a tin-pummerer rearrangement. Tetrahedron Lett. 33, 417–420 (1992).

    Article  CAS  Google Scholar 

  43. Yin, J., Bai, Y., Mao, M. & Zhu, G. Silver-catalyzed regio- and stereoselective addition of carboxylic acids to ynol ethers. J. Org. Chem. 79, 9179–9185 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Stang, P. J. Ynol esters and alkynyl(phenyl)iodonium chemistry. Russ. Chem. Bull. 42, 12–23 (1993).

    Article  Google Scholar 

  45. Gray, V. J. & Wilden, J. D. The chemistry of ynol and thioynol ethers. Org. Biomol. Chem. 14, 9695–9711 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Lal, B., Pramanik, B. N., Manhas, M. S. & Bose, A. K. Diphenylphosphoryl azide a novel reagent for the stereospecific synthesis of azides from alcohols. Tetrahedron Lett. 18, 1977–1980 (1977).

    Article  Google Scholar 

  47. Bracher, P. J., Snyder, P. W., Bohall, B. R. & Whitesides, G. M. The relative rates of thiol-thioester exchange and hydrolysis for alkyl and aryl thioalkanoates in water. Orig. Life Evol. Biosph. 41, 399–412 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Dawson, P. E., Muir, T. W., Clark-Lewis, I. & Kent, S. B. Synthesis of proteins by native chemical ligation. Science 266, 776–779 (1994).

    Article  CAS  PubMed  Google Scholar 

  49. Bejot, R. et al. Stereoselective transformations of trihalomethylcarbinols induced by chromous chloride. Angew. Chem. Int. Ed. Engl. 44, 2008–2011 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Zhao, Y. et al. Nuclear-encoded lncRNA MALAT1 epigenetically controls metabolic reprogramming in HCC cells through the mitophagy pathway. Mol. Ther. Nucleic Acids 23, 264–276 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Mohammad, G. & Kowluru, R. A. Nuclear genome-encoded long noncoding RNAs and mitochondrial damage in diabetic retinopathy. Cells 10, 3271 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Reyes-Gutierrez, P., Ritland Politz, J. C. & Pederson, T. A mRNA and cognate microRNAs localize in the nucleolus. Nucleus 5, 636–642 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wang, H. et al. Long noncoding RNA miR503HG, a prognostic indicator, inhibits tumor metastasis by regulating the HNRNPA2B1/NF-kappaB pathway in hepatocellular carcinoma. Theranostics 8, 2814–2829 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sone, M. et al. The mRNA-like noncoding RNA Gomafu constitutes a novel nuclear domain in a subset of neurons. J. Cell Sci. 120, 2498–2506 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Yu, B. & Shan, G. Functions of long noncoding RNAs in the nucleus. Nucleus 7, 155–166 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. van Dijk, M. et al. Mutations within the LINC-HELLP non-coding RNA differentially bind ribosomal and RNA splicing complexes and negatively affect trophoblast differentiation. Hum. Mol. Genet. 24, 5475–5485 (2015).

    Article  PubMed  Google Scholar 

  57. Du, J. et al. LncRNA OSTM1-AS1 acts as an oncogenic factor in Wilms’ tumor by regulating the miR-514a-3p/MELK axis. Anticancer Drugs 33, 720–730 (2022).

    Article  PubMed  Google Scholar 

  58. Long, M. J. C., Huang, K.-T. & Aye, Y. The not so identical twins: (dis)similarities between reactive electrophile and oxidant sensing and signaling. Chem. Soc. Rev. 50, 12269–12291 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Tsue A. F., et al. Oligonucleotide-directed proximity-interactome mapping (O-MAP): a unified method for discovering RNA-interacting proteins, transcripts and genomic loci in situ. Preprint at bioRxiv https://doi.org/10.1101/2023.01.19.524825 (2023).

  60. Fang, L. et al. Pervasive transcriptome interactions of protein-targeted drugs. Nat. Chem. 15, 1374–1383 (2023).

    Article  CAS  PubMed  Google Scholar 

  61. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).

  63. Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res 4, 1521 (2015).

    Article  PubMed  Google Scholar 

  64. Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 15, R29 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ritchie, M. E. et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Fei, J. et al. RNA biochemistry. Determination of in vivo target search kinetics of regulatory noncoding RNA. Science 347, 1371–1374 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dickinson, B. Raw images from “Bioorthogonal masked acylating agents for proximity-dependent RNA labeling”. Mendeley Data https://doi.org/10.17632/kzpvsdjrgy.1 (2023).

Download references

Acknowledgements

This work was supported by the National Institute of General Medical Sciences (GM119840), The National Institute of Mental Health (MH122142) and the National Human Genome Research Institute (RM1 HG008935) of the National Institutes of Health, as well as The G. Harold and Leila Y. Mathers Charitable Foundation. S.-A.A. was supported by the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health (F30 DK125088). We thank A. Radakovic from J.W. Szostak’s laboratory for supplying synthetic RNA oligos and C. He for helpful discussions. We thank E. Wu and the University of Chicago CRI Bioinformatics Core for assistance with data acquisition and analysis. We also thank the University of Chicago Integrated Light Microscopy Core (RRID: SCR_019197) and the Chicago Immunoengineering Innovation Center at the Pritzker School of Molecular Engineering for training and support with confocal microscopy and Next-seq sequencing facilities, respectively. We thank S. Ahmadiantehrani for assistance with preparing this paper.

Author information

Authors and Affiliations

Authors

Contributions

S.P., T.Q., K.K. and B.C.D. conceived the project. S.P. and T.Q. synthesized all compounds and performed experiments. S.-A.A. assisted with experiments and data analysis. S.P., T.Q. and B.C.D. wrote the paper with input from all authors.

Corresponding author

Correspondence to Bryan C. Dickinson.

Ethics declarations

Competing interests

B.C.D. is a founder and holds equity in Tornado Bio, Inc. The other authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Yimon Aye, Ryan Flynn and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Measurement of the kinetics of mCP-coumarin unmasked by 5 nM of BS2 esterase.

a, Schematic of synthesis of mCP-coumarin and the unmasking reaction by BS2. b, Linear range of mCP ester unmasking measured with different concentrations of mCP-coumarin incubation. Y-axis represents the normalized concentration of coumarin generated from mCP unmasking. Error bars represent the standard deviation of the mean, n = 3 independent in vitro reactions. c, Michaelis-Menten plot showing the rate of mCP unmasking as a function of the substrate (mCP-coumarin) concentration. Error bars represent the standard deviation of the mean n = 3 independent in vitro reactions, and the curve represents the best fit. d, Kinetic parameters obtained by Michaelis-Menten plot of BS2 unmasking mCP-coumarin. All plots and curve fit were made using GraphPad Prism. Error bars represent the standard deviation, n = 3 independent in vitro reactions.

Source data

Extended Data Fig. 2 Optimization of catalyst conditions for regioselective carboxylic acid addition to synthesize α-alkoxy thioenol esters.

Silver-based catalysts yielded more than 90% of the undesired 1,2-addition product (entry 1). The screening of various metal catalysts revealed the iridium catalyst could provide desired 1,1-addition product (entries 2–8), especially the [Ir(OMe)(COD)]2. Further screening of several ligands suggested the ligand has minimal effects on yield (entries 9–16).

Extended Data Fig. 3 Confocal microscopy images showing BS2 dependent proximity labelling by AC-2 probe in the nucleus.

BS2 with NLS and V5 tag was transiently expressed in HEK293T cells, and the expression was visualized with V5 antibody; labelling activity was visualized after click reaction with azide-Alexa488. DAPI is a nuclear marker. The scale bar on Brightfield images is 10 µm.

Extended Data Fig. 4 Confocal microscopy images showing BS2 dependent proximity labelling by AC-2 probe in the cytosol.

BS2 with nuclear export signal (NES) and V5 tag was transiently expressed in HEK293T cells, and the expression was visualized with V5 antibody; labelling activity was visualized after click reaction with azide-Alexa488. DAPI is a nuclear marker. The scale bar on Brightfield images is 10 µm.

Extended Data Fig. 5 Confocal microscopy images showing BS2 dependent proximity labelling by AC-2 probe in the ERM.

BS2 with outer ER membrane localization via ER transmembrane anchor facing the cytosol was transiently expressed in HEK293T cells, and the expression was visualized with V5 antibody; labelling activity was visualized after click reaction with azide-Alexa488. DAPI is a nuclear marker. The scale bar on Brightfield images is 10 µm.

Extended Data Fig. 6 Confocal microscopy images showing BS2 dependent proximity labelling by AC-2 probe in the mitochondria.

BS2 with MTS-matrix (Mitochondria Targeting Signal) and V5 tag was transiently expressed in HEK293T cells, and the expression was visualized with V5 antibody; labelling activity was visualized after click reaction with azide-Alexa488. DAPI is a nuclear marker. The scale bar on Brightfield images is 10 µm.

Extended Data Fig. 7 Confocal microscopy images showing BS2 dependent proximity labelling by AC-2 probe in the nucleolus.

BS2 with nucleolar localization via three tandem nucleolar targeting sequences from NF-κB-inducing kinase (NIK) and V5 tag was transiently expressed in HEK293T cells, and the expression was visualized with V5 antibody; labelling activity was visualized after click reaction with azide-Alexa488. DAPI is a nuclear marker. The scale bar on Brightfield images is 10 µm.

Extended Data Fig. 8 Confocal microscopy images showing BS2 dependent proximity labelling by AC-2 probe in the nuclear pore.

BS2 fused with SENP2 protein and V5 tag was transiently expressed in HEK293T cells, and the expression was visualized with V5 antibody; labelling activity was visualized after click reaction with azide-Alexa488. DAPI is a nuclear marker. The scale bar on Brightfield images is 10 µm.

Extended Data Fig. 9 Enrichment of BS2 proximal RNA post AC-2 labelling.

a, Bioanalyzer quantification of enriched RNAs post AC-2 labelling. 25 µg of input RNA was taken for each sample for the enrichment, and the experiment was performed with 2 biological replicates. b, Principal component analysis (PCA) analysis of gene expression values for different samples of BAP-seq, n = 2-3 biological replicates. c, Comparison of sequencing counts post differentially expressed gene (DEG) analysis for Mt-genes across different compartments, n = 2 biological replicates. d, Comparison of intronic reads across different samples Numbers are presented as a percentage of total reads that includes exons and intergenic regions. Error bars represent the standard deviation of mean, n = 2 biological replicates. P-value was determined by two-tailed unpaired t-tests with Welch’s correction. ** represents p-value < 0.01 (p = 0.0099) and *** represents p-value < 0.001 (p = 0.0006).

Source data

Extended Data Table 1 List of different RNA proximity labelling technologies and their labelling conditions

Supplementary information

Supplementary Information

Supplementary Figs. 1–34, synthesis methods and characterization, detailed BAP-seq protocol and information-only references.

Reporting Summary

Supplementary Data 1

BAP-seq CPM reads of all samples.

Source data

Source Data Fig. 2

LC trace used for Fig. 2b,f. Both Excel workbooks are provided in the same folder.

Source Data Fig. 3

The data points used for the bar graph in Fig. 3b. The raw images used for Fig. 3a,c are provided with Mendeley. The DOI is mentioned in the ‘Data availability’ section.

Source Data Fig. 4

The raw images used are provided with Mendeley.

Source Data Fig. 5

Unprocessed gels and blots used in Fig. 5a,b.

Source Data Fig. 5

Cy2-fluorescence image for Fig. 5a.

Source Data Fig. 5

Streptavidin chemiluminiscence blot for Fig. 5b.

Source Data Fig. 5

Methylene blue staining for Fig. 5b.

Source Data Fig. 6

DEG tables used for plots in Fig. 6b–d.

Source Data Extended Data Fig. 1

Data used for the plots in the figure.

Source Data Extended Data Fig. 9

Data used for plots in the figure.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pani, S., Qiu, T., Kentala, K. et al. Bioorthogonal masked acylating agents for proximity-dependent RNA labelling. Nat. Chem. (2024). https://doi.org/10.1038/s41557-024-01493-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41557-024-01493-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing