Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evolution of Tetrahymena ribozyme mutants with increased structural stability

Abstract

Determining how large RNA molecules stabilize their tertiary structures is critical for understanding how they perform their biological functions. Here we use in vitro selection to identify active variants of the Tetrahymena ribozyme with increased stability. The mutant pool converged to a single family that shared nine mutations; an RNArepresenting the consensus sequence was structurally more stable by 10.5 °C and catalytically active at elevated temperatures. Remarkably, of the nine altered sites, most are already known to be involved in tertiary interactions, and the stabilizing mutations primarily improve the packing interactions in the molecular interior. The wild type ribozyme and the selected mutants provide pairs of mesophilic and thermophilic homologs for studying the origin of their thermal stability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In vitro selection for stability and activity.
Figure 2: Selection progression.
Figure 3: Location of the consensus mutations.
Figure 4: TGGE comparing R14C with the wild type ribozyme (WT).
Figure 5: UV melting of the wild type ribozyme and the consensus mutants.
Figure 6: Selected mutants retain enzymatic activity at high temperature.

Similar content being viewed by others

References

  1. Vieille, C. & Zeikus, G.J. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev. 65, 1–43 (2001).

    Article  CAS  Google Scholar 

  2. Petsko, G.A. Structural basis of thermostability in hyperthermophilic proteins, or “there's more than one way to skin a cat”. Methods Enzymol. 334, 469–478 (2001).

    Article  CAS  Google Scholar 

  3. Jaenicke, R. & Bohm, G. Thermostability of proteins from Thermotoga maritima. Methods Enzymol. 334, 438–469 (2001).

    Article  CAS  Google Scholar 

  4. Doudna, J.A. & Cech, T.R. The chemical repertoire of natural ribozymes. Nature 418, 222–228 (2002).

    Article  CAS  Google Scholar 

  5. Burkard, M.E., Turner, D.H. & Tinoco, I. Jr in RNA World (eds Gesteland, R., Cech, T.R. & Atkins, J.) 233–264 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor; 1999).

    Google Scholar 

  6. Conn, G.L. & Draper, D.E. RNA structure. Curr. Opin. Struct. Biol. 8, 278–285 (1998).

    Article  CAS  Google Scholar 

  7. Watanabe, K., Oshima, T., Iijima, K., Yamaizumi, Z. & Nishimura, S. Purification and thermal stability of several amino acid-specific tRNAs from an extreme thermophile, Thermus thermophilus HB8. J. Biochem. 87, 1–13 (1980).

    Article  CAS  Google Scholar 

  8. Kowalak, J.A., Dalluge, J.J., McCloskey, J.A. & Stetter, K.O. The role of posttranscriptional modification in stabilization of transfer RNA from hyperthermophiles. Biochemistry 33, 7869–7876 (1994).

    Article  CAS  Google Scholar 

  9. Galtier, N. & Lobry, J.R. Relationships between genomic G+C content, RNA secondary structures, and optimal growth temperature in prokaryotes. J. Mol. Evol. 44, 632–636 (1997).

    Article  CAS  Google Scholar 

  10. Brown, J.W., Haas, E.S. & Pace, N.R. Characterization of ribonuclease P RNAs from thermophilic bacteria. Nucleic Acids Res. 21, 671–679 (1993).

    Article  CAS  Google Scholar 

  11. Fang, X.W. et al. The thermodynamic origin of the stability of a thermophilic ribozyme. Proc. Natl. Acad. Sci. USA 98, 4355–4360 (2001).

    Article  CAS  Google Scholar 

  12. Reinhold-Hurek, B. & Shub, D.A. Self-splicing introns in tRNA genes of widely divergent bacteria. Nature 357, 173–176 (1992).

    Article  CAS  Google Scholar 

  13. Tanner, M. & Cech, T. Activity and thermostability of the small self-splicing group I intron in the pre-tRNA(Ile) of the purple bacterium Azoarcus. RNA 2, 74–83 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Juneau, K. & Cech, T.R. In vitro selection of RNAs with increased tertiary structure stability. RNA 5, 1119–1129 (1999).

    Article  CAS  Google Scholar 

  15. Juneau, K., Podell, E., Harrington, D.J. & Cech, T.R. Structural basis of the enhanced stability of a mutant ribozyme domain and a detailed view of RNA–solvent interactions. Structure 9, 221–231 (2001).

    Article  CAS  Google Scholar 

  16. Cate, J.H. et al. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 273, 1678–1685 (1996).

    Article  CAS  Google Scholar 

  17. Cech, T.R. The chemistry of self-splicing RNA and RNA enzymes. Science 236, 1532–1539 (1987).

    Article  CAS  Google Scholar 

  18. Cech, T.R. Self-splicing of group I introns. Annu. Rev. Biochem. 59, 543–568 (1990).

    Article  CAS  Google Scholar 

  19. Golden, B.L., Gooding, A.R., Podell, E.R. & Cech, T.R. A preorganized active site in the crystal structure of the Tetrahymena ribozyme. Science 282, 259–264 (1998).

    Article  CAS  Google Scholar 

  20. Szewczak, A.A., Podell, E.R., Bevilacqua, P.C. & Cech, T.R. Thermodynamic stability of the P4-P6 domain RNA tertiary structure measured by temperature gradient gel electrophoresis. Biochemistry 37, 11162–11170 (1998).

    Article  CAS  Google Scholar 

  21. Fromant, M., Blanquet, S. & Plateau, P. Direct random mutagenesis of gene-sized DNA fragments using polymerase chain reaction. Anal. Biochem. 224, 347–353 (1995).

    Article  CAS  Google Scholar 

  22. Beaudry, A.A. & Joyce, G.F. Directed evolution of an RNA enzyme. Science 257, 635–641 (1992).

    Article  CAS  Google Scholar 

  23. Laing, L.G., Gluick, T.C. & Draper, D.E. Stabilization of RNA structure by Mg ions. Specific and non-specific effects. J. Mol. Biol. 237, 577–587 (1994).

    Article  CAS  Google Scholar 

  24. Banerjee, A.R., Jaeger, J.A. & Turner, D.H. Thermal unfolding of a group I ribozyme: the low-temperature transition is primarily disruption of tertiary structure. Biochemistry 32, 153–163 (1993).

    Article  CAS  Google Scholar 

  25. Cannone, J.J. et al. The Comparative RNA Web (CRW) Site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 3, 2 (2002).

    Article  Google Scholar 

  26. Heuer, T.S., Chandry, P.S., Belfort, M., Celander, D.W. & Cech, T.R. Folding of group I introns from bacteriophage T4 involves internalization of the catalytic core. Proc. Natl. Acad. Sci. USA 88, 11105–11109 (1991).

    Article  CAS  Google Scholar 

  27. Couture, S. et al. Mutational analysis of conserved nucleotides in a self-splicing group I intron. J. Mol. Biol. 215, 345–358 (1990).

    Article  CAS  Google Scholar 

  28. Strobel, S.A. & Shetty, K. Defining the chemical groups essential for Tetrahymena group I intron function by nucleotide analog interference mapping. Proc. Natl. Acad. Sci. USA 94, 2903–2908 (1997).

    Article  CAS  Google Scholar 

  29. Ortoleva-Donnelly, L., Szewczak, A.A., Gutell, R.R. & Strobel, S.A. The chemical basis of adenosine conservation throughout the Tetrahymena ribozyme. RNA 4, 498–519 (1998).

    Article  CAS  Google Scholar 

  30. Michel, F. & Westhof, E. Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J. Mol. Biol. 216, 585–610 (1990).

    Article  CAS  Google Scholar 

  31. Lehnert, V., Jaeger, L., Michel, F. & Westhof, E. New loop-loop tertiary interactions in self-splicing introns of subgroup IC and ID: a complete 3D model of the Tetrahymena thermophila ribozyme. Chem. Biol. 3, 993–1009 (1996).

    Article  CAS  Google Scholar 

  32. Michel, F., Ellington, A.D., Couture, S. & Szostak, J.W. Phylogenetic and genetic evidence for base-triples in the catalytic domain of group I introns. Nature 347, 578–580 (1990).

    Article  CAS  Google Scholar 

  33. Szewczak, A.A. et al. An important base triple anchors the substrate helix recognition surface within the Tetrahymena ribozyme active site. Proc. Natl. Acad. Sci. USA 96, 11183–11188 (1999).

    Article  CAS  Google Scholar 

  34. Murphy, F.L. & Cech, T.R. An independently folding domain of RNA tertiary structure within the Tetrahymena ribozyme. Biochemistry 32, 5291–5300 (1993).

    Article  CAS  Google Scholar 

  35. Doherty, E.A. & Doudna, J.A. The P4-P6 domain directs higher order folding of the Tetrahymena ribozyme core. Biochemistry 36, 3159–3169 (1997).

    Article  CAS  Google Scholar 

  36. Zarrinkar, P.P. & Williamson, J.R. Kinetic intermediates in RNA folding. Science 265, 918–924 (1994).

    Article  CAS  Google Scholar 

  37. Sclavi, B., Sullivan, M., Chance, M.R., Brenowitz, M. & Woodson, S.A. RNA folding at millisecond intervals by synchrotron hydroxyl radical footprinting. Science 279, 1940–1943 (1998).

    Article  CAS  Google Scholar 

  38. Cunningham, L., Kittikamron, K. & Lu, Y. Preparative-scale purification of RNA using an efficient method which combines gel electrophoresis and column chromatography. Nucleic Acids Res. 24, 3647–3648 (1996).

    Article  CAS  Google Scholar 

  39. Guo, F. & Cech, T.R. In vivo selection of better self-splicing introns in Escherichia coli: the role of the P1 extension helix of the Tetrahymena intron. RNA 8, 647–658 (2002).

    Article  CAS  Google Scholar 

  40. Savitzky, A. & Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627–1639 (1964).

    Article  CAS  Google Scholar 

  41. Mei, R. & Herschlag, D. Mechanistic investigations of a ribozyme derived from the Tetrahymena group I intron: insights into catalysis and the second step of self-splicing. Biochemistry 35, 5796–5809 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to H. Brummel and K. Kossen for help with the UV melting experiments. We thank A. Gooding for providing T7 RNA polymerase and E. Podell and K. Goodrich for oligonucleotide synthesis. We also thank A. Zaug, A. Berglund, E. Podell, P. Baumann and G. Joyce for insightful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas R. Cech.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, F., Cech, T. Evolution of Tetrahymena ribozyme mutants with increased structural stability. Nat Struct Mol Biol 9, 855–861 (2002). https://doi.org/10.1038/nsb850

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb850

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing