Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The crystal structure of a complex of p11 with the annexin II N-terminal peptide.

Abstract

The aggregation and membrane fusion properties of annexin II are modulated by the association with a regulatory light chain called p11. p11 is a member of the S100 EF-hand protein family, which is unique in having lost its calcium-binding properties.We report the first structure of a complex between p11 and its cognate peptide, the N-terminus of annexin II, as well as that of p11 alone. The basic unit for p11 is a tight, non-covalent dimer. In the complex, each annexin II peptide forms hydrophobic interactions with both p11 monomers, thus providing a structural basis for high affinity interactions between an S100 protein and its target sequence. Finally, p11 forms a disulfide-linked tetramer in both types of crystals thus suggesting a model for an oxidized form of other S100 proteins that have been found in the extracellular milieu.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, The complex of p11 (blue and yellow) and the annexin II N-terminal peptide (green).
Figure 2: Superposition of the second EF hand loop of calbindin D9k (green) and p11 (yellow).
Figure 3: Electron density (2Fo - Fc map, contoured at 1.5σ) of the region of interaction between the peptide and p11.
Figure 4: A close-up of the interface between the peptide (green) and helices HIV, L3 (yellow) and HI (blue) of p11.
Figure 5: Electron density (2Fo - Fc map, contoured at 1.5σ) corresponding to the disulfide bridge observed in the p11 structure.
Figure 6: Identical views of the p11 tetramer found in both crystal structures.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Kligman, D. & Hilt, D.C. The S100 protein family. Trends Biochem. Sci. 13, 437–443 (1988).

    Article  CAS  Google Scholar 

  2. Schäfer, B.W. & Heizmann, C.W. The S100 family of EF-hand calcium-binding proteins: functions and pathology. Trends Biochem. Sci. 21, 134–140 (1996).

    Article  Google Scholar 

  3. Kligman, D. & Marshak, D.R. Purification and characterization of a neurite extension factor from bovine brain. Proc. Natl. Acad. Sci. USA 82, 7136–7139 (1985).

    Article  CAS  Google Scholar 

  4. Barger, S.W., Wolchok, S.R. & Van Eldik, L.J. Disulfide -linked S100β dimers and signal transduction. Biochim. Biophys. Acta 1160, 105– 112 (1992).

    Article  CAS  Google Scholar 

  5. Potts, B.C.M. et al. The structure of calcyclin reveals a novel homodimeric fold for S100 Ca2+-binding proteins. Nature Struct. Biol. 2, 790–796 (1995).

    Article  CAS  Google Scholar 

  6. Sastry, M. et al. The three-dimensional structure of Ca2+-bound calcyclin: implications for Ca2+-signal transduction by S100 proteins. Structure 6, 223– 231 (1998).

    Article  CAS  Google Scholar 

  7. Drohat, A.C. et al. Solution structure of rat apo-S100(ββ) as determined by NMR spectroscopy. Biochemistry 35, 11577–11588 (1996).

    Article  CAS  Google Scholar 

  8. Kilby, P.M., Van Eldik, L.J. & Roberts, G.C. The solution structure of the bovine S100B protein dimer in the calcium-free state. Structure 4, 1041–1052 (1996).

    Article  CAS  Google Scholar 

  9. Svensson, L.A., Thulin, E. & Forsen, S. Proline cis-trans isomers in calbindin D9k observed by X-ray crystallography. J. Mol. Biol. 223, 601–606 (1992).

    Article  CAS  Google Scholar 

  10. Szebenyi, D.M.E. & Moffat, K. The refined structure of vitamin D-dependent calcium-binding protein from bovine intestine. J. Biol. Chem. 261, 8761–8777 (1986).

    CAS  PubMed  Google Scholar 

  11. Kördel, J., Skelton, N.J., Akke, M. & Chazin, W.J. High-resolution solution structure of calcium-loaded calbindin D9k. J. Mol. Biol. 231, 711–734 (1993).

    Article  Google Scholar 

  12. Matsumara, H., Shiba, T., Inoue, T., Harada, S. & Kai, Y. A novel mode of target recognition suggested by the 2.0 Å structure of holo S100B from bovine brain. Structure 6, 233–241 (1998).

    Article  Google Scholar 

  13. Gerke, V. & Weber, K. The regulatory chain of the p36-Kd substrate complex of viral tyrosine-specific protein kinases is related in sequence to the S-100 protein of glial cells. EMBO J. 4, 2917–2920 (1985).

    Article  CAS  Google Scholar 

  14. Waisman, D.M. Annexin II tetramer: structure and function. Mol. Cell. Biochem. 149/150, 301–322 (1995).

    Article  Google Scholar 

  15. Gerke, V. & Moss, S. Annexins and membrane dynamics. Biochim. Biophys. Acta 1357, 129–154 (1997).

    Article  CAS  Google Scholar 

  16. Gerke, V. & Weber, K. Identity of p36K phosphorylated upon Rous sarcoma virus transformation with a protein purified from the brush border; calcium-dependent binding to non-erythroid spectrin and F-actin. EMBO J. 3, 227–233 (1984).

    Article  CAS  Google Scholar 

  17. Tokumitsu, H., Mizutani, A., Minami, H., Kobayashi, R. & Hidaka, H. A calcyclin-associated protein is a newly identifies member of the Ca2+/ phospholipid-binding proteins, annexin family. J. Biol. Chem. 267, 8919– 8924 (1992).

    CAS  PubMed  Google Scholar 

  18. Mailliard, W.S., Haigler, H.T. & Schlaepfer, D.D. Calcium-dependent binding of S100C to the N-terminal domain of annexin I. J. Biol. Chem. 271, 719–725 (1996).

    Article  CAS  Google Scholar 

  19. Seemann, J., Weber, K., Osborn, M., Pardon, R.G. & Gerke, V. The association of annexin I with early endosomes is regulated by Ca2+ and requires an intact N-terminal domain. Mol. Biol. Cell 7, 1359– 1374 (1996).

    Article  CAS  Google Scholar 

  20. Johnsson, N. & Weber, K. Alkylation of cysteine 82 of p11 abolishes the complex formation with the tyrosine-protein kinase substrate p36 (annexin 2, calpactin 2, lipocortin 2). J. Biol. Chem. 265, 14464–14468 (1990).

    CAS  PubMed  Google Scholar 

  21. Wu, T., Angus, C.W., Yao, X.-L., Logun, C. & Shelhamer, J.H. p11, a unique member of the S100 family of calcium-binding proteins, interacts with and inhibits the activity of the 85-kDa cytosolic phospholipase A2. J. Biol. Chem. 272, 17145–17153 (1997).

    Article  CAS  Google Scholar 

  22. Powell, M.A. & Glenney, J.R. Regulation of calpactin I phospholipid binding by calpactin I light-chain binding and phosphorylation by p60v-src. Biochem. J. 247, 321–328 (1987).

    Article  CAS  Google Scholar 

  23. Johnsson, N., Marriott, G. & Weber, K. p36, the major cytoplasmic substrate of src tyrosine protein kinase, binds to its p11 regulatory subunit via a short amino-terminal amphiphatic helix. EMBO J. 7, 2435– 3442 (1988).

    Article  CAS  Google Scholar 

  24. Becker, T., Weber, K. & Johnsson, N. Protein-protein recognition via short amphiphilic helices; a mutational analysis of the binding site of annexin II for p11. EMBO J. 9, 4207–4213 (1990).

    Article  CAS  Google Scholar 

  25. Kube, E., Becker, T., Weber, K. & Gerke, V. Protein-protein interaction studied by site-directed mutagenesis. J. Biol. Chem. 267, 14175–14182 (1992).

    CAS  PubMed  Google Scholar 

  26. Matthews, B.W. Solvent content of protein crystals. J. Mol. Biol 33, 491–497 (1968).

    Article  CAS  Google Scholar 

  27. Gerke, V. & Weber, K. Calcium-dependent conformational changes in the 36-kDa subunit of intestinal protein I related to the cellular 36-kDa target of Rous sarcoma virus tyrosine kinase. J. Biol. Chem. 160, 1688–1695 (1985).

    Google Scholar 

  28. Skelton, N.J., Kördel, J., Akke, M., Forsén, S. & Chazin, W.J. Signal transduction versus buffering activity in Ca2+-binding proteins. Nature Struct. Biol. 1, 239–245 (1994).

    Article  CAS  Google Scholar 

  29. CCP4. Collaborative Computational Project Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

  30. Moncrief, N.D., Kretsinger, R.H. & Goodman, M. Evolution of EF-hand calcium-modulated proteins. I. Relationships based on amino acid sequences. J. Mol. Evol. 30, 522–562 (1990).

    Article  CAS  Google Scholar 

  31. Nakayama, S. & Kretsinger, R.H. Evolution of the EF-hand family of proteins. Annu. Rev. Biophys. Biomol. Struct. 23, 473–507 (1994).

    Article  CAS  Google Scholar 

  32. Cherfils, J., Duquerroy, S. & Janin, J. Protein-protein recognition analyzed by docking simulation. Proteins 11, 271–280 (1991).

    Article  CAS  Google Scholar 

  33. Seemann, J., Weber, K. & Gerke, V. Structural requirements for annexin I-S100C complex-formation. Biochem. J. 319, 123–129 (1996).

    Article  CAS  Google Scholar 

  34. Kang, H.-M., Kassam, G., Jarvis, S.E., Fitzpatrick, S.L. & Waisman, D.M. Characterization of human recombinant annexin II tetramer purified from bacteria: role of N-terminal acetylation. Biochemistry 36, 2041–2050 (1997).

    Article  CAS  Google Scholar 

  35. Linse, S., Thulin, E. & Sellers, P. Disulfide bonds in homo-and heterodimers of EF-hand subdomains of calbindin D9k: stability, calcium binding and NMR studies. Prot. Sci. 2, 985– 1000 (1993).

    Article  CAS  Google Scholar 

  36. Mely, Y. & Gérard, D. Structural and ion-binding properties of an S100β protein mixed disulfide : comparison with the reappraised native S100β protein properties. Arch. Biochem. Biophys. 279, 174–182 (1990).

    Article  CAS  Google Scholar 

  37. Kube, E., Weber, K. & Gerke, V. Primary structure of human, chicken and Xenopus laevis p11, a cellular ligand of Src-kinase substrate, annexin II. Gene 102, 255–259 (1991).

    Article  CAS  Google Scholar 

  38. Haberland, J., Becker, J. & Gerke, V. The acidic C-terminal domain of rna1p is required for the binding of RanGTP and for RanGAP activity. J. Biol. Chem. 272, 24717–24726 (1997).

    Article  CAS  Google Scholar 

  39. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. In Macromolecular crystallography Part A Vol. 276 (eds Carter Jr, C.W. & Sweet, R.M.) 307– 326 (Academic Press, New York; 1997).

    Book  Google Scholar 

  40. de la Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for the multiple isomorphous replacement and mutiwavelength anomalous diffraction methods. in Macromolecular Crystallography Part A Vol. 276 (eds Carter Jr, C.W. & Sweet, R.M.) 472– 494 (Academic Press, New York; 1997).

    Book  Google Scholar 

  41. Abrahams, J.P. & Leslie, A.G.W. Methods used in the structure determination of bovine mitochondrial F1-ATPase. Acta Crystallogr. D 52, 30–42 (1996).

    Article  CAS  Google Scholar 

  42. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  43. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of a protein structure. J. Appl. Crystallogr. 26, 283– 291 (1993).

    Article  CAS  Google Scholar 

  44. Osborn, M., Johnson, J., Wehland, J. & Weber, K. The submembraneous location of p11 and its interaction with the p36 substrate of pp60srcin situ. Exp. Cell. Res. 175, 81–96 (1988).

    Article  CAS  Google Scholar 

  45. Evans, S.V. SETOR: hardware lighted three-dimensional solid model representations of macromolecules. J. Mol. Graph. 11, 134– 138 (1993).

    Article  CAS  Google Scholar 

  46. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  47. Merritt, E.A. & Murphy, M.E.P. Raster3D version 2.0 - a program for photorealistic molecular graphics. Acta Crystallogr. D 50, 869–873 (1994).

    Article  CAS  Google Scholar 

  48. Brünger, A.T. The free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472– 474 (1992).

    Article  Google Scholar 

Download references

Acknowledgements

The staff of LURE is acknowledged for running the synchrotron facility. We would like to thank G.A. Bentley for the opportunity to collect X-ray data in his laboratory. Financial support was provided by the CNRS, INSERM and the EC program BIOTECH n° BIO4CT960083.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Lewit-Bentley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Réty, S., Sopkova, J., Renouard, M. et al. The crystal structure of a complex of p11 with the annexin II N-terminal peptide.. Nat Struct Mol Biol 6, 89–95 (1999). https://doi.org/10.1038/4965

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/4965

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing