Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Stimulators and activators of soluble guanylate cyclase for urogenital disorders

Key Points

  • The nitric oxide (NO)–soluble guanylate cyclase (sGC)–cyclic GMP (cGMP) signalling pathway is present in the smooth muscle of the lower urinary tract (bladder and urethra), prostate, and corpus cavernosum

  • Impairment of NO–sGC–cGMP signalling in bladder, urethra, prostate, and corpus cavernosum smooth muscles can result in urogenital diseases such as overactive bladder, prostate hypercontractility, and erectile dysfunction

  • Stimulators (BAY 41–2272, BAY 41–8543, and BAY 60–4552) and activators (BAY 58–2667 and BAY 60–2770) of sGC can enhance cGMP levels by directly acting on sGC independently of NO

  • Both sGC stimulators and activators have a potent relaxation effect on bladder, ureter, urethra, prostate, and corpus cavernosum smooth muscle in nonpathological and pathological conditions

  • sGC activators are highly effective at restoring sGC expression and activity in disorders associated with increased oxidative stress involving urogenital smooth muscle. sGC activators are more efficacious than sGC stimulators

  • sGC stimulators and activators are promising molecules that enable urogenital smooth muscle relaxation in pathological conditions. However, clinical studies are required to corroborate the efficacy of these drugs

Abstract

Lower urinary tract symptoms (LUTS), comprising storage (such as urinary incontinence and urinary frequency), voiding, and postmicturition symptoms, are highly prevalent conditions that affect millions of people worldwide. LUTS have a profound effect on quality of life and are a considerable cost to health care systems. In men specifically, BPH commonly leads to LUTS. Clinical studies also show an association of LUTS with erectile dysfunction (ED). Nitric oxide (NO) has long been recognized as an important nonadrenergic, noncholinergic (NANC) transmitter in bladder, urethra, prostate, and corpus cavernosum smooth muscle. Data from clinical and basic research show that oxidation and degradation of soluble guanylate cyclase (sGC; also known as GCS) and reduced cyclic GMP (cGMP) levels are involved in the physiopathology of genitourinary diseases. The NO–sGC–cGMP signalling pathway has a role in disease pathophysiology of the bladder, urethra, prostate, and corpus cavernosum in animal models and humans. Advances in targeting sGC directly to enhance cGMP production independently of endogenous NO have been made using NO-independent stimulators and activators of sGC. These molecules are potential therapeutics in the treatment of LUTS and ED.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of nitric oxide in nonpathological and pathological conditions.
Figure 2: Role of reactive oxygen species in urogenital tract disorders.

Similar content being viewed by others

References

  1. Abrams, P. et al. The standardisation of terminology of lower urinary tract function: report from the Standardisation Sub-committee of the International Continence Society. Neurourol. Urodyn. 21, 167–178 (2002).

    Article  PubMed  Google Scholar 

  2. Andersson, K. E. & Wein, A. J. Pharmacology of the lower urinary tract: basis for current and future treatments of urinary incontinence. Pharmacol. Rev. 56, 581–631 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Murad, F., Mittal, C. K., Arnold, W. P., Katsuki, S. & Kimura, H. Guanylate cyclase: activation by azide, nitro compounds, nitric oxide, and hydroxyl radical and inhibition by hemoglobin and myoglobin. Adv. Cycl. Nucleotide Res. 9, 145–158 (1978).

    CAS  Google Scholar 

  4. Francis, S. H., Busch, J. L. & Corbin, J. D. cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol. Rev. 62, 525–563 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gold, M. E., Wood, K. S., Buga, G. M., Byrns, R. E. & Ignarro, L. J. L-Arginine causes whereas L-argininosuccinic acid inhibits endothelium-dependent vascular smooth muscle relaxation. Biochem. Biophys. Res. Commun. 161, 536–543 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Palmer, R. M., Ferrige, A. G. & Moncada, S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327, 524–526 (1987).

    Article  CAS  PubMed  Google Scholar 

  7. Forstermann, U. et al. Isoforms of nitric oxide synthase. Characterization and purification from different cell types. Biochem. Pharmacol. 42, 1849–1857 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Griscavage, J. M., Rogers, N. E., Sherman, M. P. & Ignarro, L. J. Inducible nitric oxide synthase from a rat alveolar macrophage cell line is inhibited by nitric oxide. J. Immunol. 151, 6329–6337 (1993).

    CAS  PubMed  Google Scholar 

  9. Derbyshire, E. R. & Marletta, M. A. Structure and regulation of soluble guanylate cyclase. Annu. Rev. Biochem. 81, 533–559 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Rapoport, R. M., Draznin, M. B. & Murad, F. Sodium nitroprusside-induced protein phosphorylation in intact rat aorta is mimicked by 8-bromo cyclic GMP. Proc. Natl Acad. Sci. USA 79, 6470–6474 (1982).

    Article  CAS  PubMed  Google Scholar 

  11. Persson, K., Alm, P., Johansson, K., Larsson, B. & Andersson, K. E. Nitric oxide synthase in pig lower urinary tract: immunohistochemistry, NADPH diaphorase histochemistry and functional effects. Br. J. Pharmacol. 110, 521–530 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kots, A. Y., Bian, K. & Murad, F. Nitric oxide and cyclic GMP signaling pathway as a focus for drug development. Curr. Med. Chem. 18, 3299–3305 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Mendes-Silverio, C. B. et al. Activation of haem-oxidized soluble guanylyl cyclase with BAY 60–2770 in human platelets lead to overstimulation of the cyclic GMP signaling pathway. PLoS ONE 7, e47223 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Conran, N. et al. Nitric oxide regulates human eosinophil adhesion mechanisms in vitro by changing integrin expression and activity on the eosinophil cell surface. Br. J. Pharmacol. 134, 632–638 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jenei, V. et al. Nitric oxide produced in response to engagement of β2 integrins on human neutrophils activates the monomeric GTPases Rap1 and Rap2 and promotes adhesion. J. Biol. Chem. 281, 35008–35020 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Thomazzi, S. M., Moreira, J., Marcondes, S., De Nucci, G. & Antunes, E. Role of cyclic GMP on inhibition by nitric oxide donors of human eosinophil chemotaxis in vitro. Br. J. Pharmacol. 141, 653–660 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhu, H. et al. Restoring soluble guanylyl cyclase expression and function blocks the aggressive course of glioma. Mol. Pharmacol. 80, 1076–1084 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Borst, P., de Wolf, C. & van de Wetering, K. Multidrug resistance-associated proteins 3, 4, and 5. Pflugers Arch. 453, 661–673 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Kanamasa, K. et al. Eccentric dosing of nitrates does not increase cardiac events in patients with healed myocardial infarction. Hypertens. Res. 27, 563–572 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Bian, K., Ke, Y., Kamisaki, Y. & Murad, F. Proteomic modification by nitric oxide. J. Pharmacol. Sci. 101, 271–279 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Evgenov, O. V. et al. NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential. Nat. Rev. Drug Discov. 5, 755–768 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schroder, A., Hedlund, P. & Andersson, K. E. Carbon monoxide relaxes the female pig urethra as effectively as nitric oxide in the presence of YC-1. J. Urol. 167, 1892–1896 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Mizusawa, H., Hedlund, P., Brioni, J. D., Sullivan, J. P. & Andersson, K. E. Nitric oxide independent activation of guanylate cyclase by YC-1 causes erectile responses in the rat. J. Urol. 167, 2276–2281 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Bau, F. R. et al. Evaluation of the relaxant effect of the nitric oxide-independent soluble guanylyl cyclase stimulator BAY 41–2272 in isolated detrusor smooth muscle. Eur. J. Pharmacol. 637, 171–177 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Mónica, F. Z. et al. Long-term nitric oxide deficiency causes muscarinic supersensitivity and reduces β3-adrenoceptor-mediated relaxation, causing rat detrusor overactivity. Br. J. Pharmacol. 153, 1659–1668 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fullhase, C. et al. Reduction of obstruction related bladder overactivity by the guanylyl cyclase modulators BAY 41–2272 and BAY 60–2770 alone or in combination with a phosphodiesterase type 5 inhibitor. Neurourol. Urodyn. 34, 787–793 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Toque, H. A., Antunes, E., Teixeira, C. E. & De Nucci, G. Increased cyclic guanosine monophosphate synthesis and calcium entry blockade account for the relaxant activity of the nitric oxide-independent soluble guanylyl cyclase stimulator BAY 41–2272 in the rabbit penile urethra. Urology 72, 711–715 (2008).

    Article  PubMed  Google Scholar 

  28. Alexandre, E. C. et al. Soluble guanylyl cyclase (sGC) degradation and impairment of nitric oxide-mediated responses in urethra from obese mice: reversal by the sGC activator BAY 60–2770. J. Pharmacol. Exp. Ther. 349, 2–9 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Calmasini, F. B. et al. Soluble guanylate cyclase modulators, BAY 41–2272 and BAY 60–2770, inhibit human and rabbit prostate contractility. Urology 94, 312.e9–312.e15 (2016).

    Article  Google Scholar 

  30. Miyaoka, R. et al. BAY 41–2272, a soluble guanylate cyclase stimulator, relaxes isolated human ureter in a standardized in vitro model. Urology 83, 256.e1–256.e7 (2014).

    Article  Google Scholar 

  31. Oudot, A. et al. Combination of BAY 60–4552 and vardenafil exerts proerectile facilitator effects in rats with cavernous nerve injury: a proof of concept study for the treatment of phosphodiesterase type 5 inhibitor failure. Eur. Urol. 60, 1020–1026 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Lasker, G. F. et al. Analysis of erectile responses to BAY 41–8543 and muscarinic receptor stimulation in the rat. J. Sex. Med. 10, 704–718 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Silva, F. H. et al. Oxidative stress associated with middle aging leads to sympathetic hyperactivity and downregulation of soluble guanylyl cyclase in corpus cavernosum. Am. J. Physiol. Heart Circ. Physiol. 307, H1393–1400 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Decaluwe, K. et al. Erectile dysfunction in heme-deficient nitric oxide-unresponsive soluble guanylate cyclase knock-in mice. J. Sex. Med. 14, 196–204 (2017).

    Article  PubMed  Google Scholar 

  35. Estancial, C. S., Rodrigues, R. L., De Nucci, G., Antunes, E. & Mónica, F. Z. Pharmacological characterisation of the relaxation induced by the soluble guanylate cyclase activator, BAY 60–2770 in rabbit corpus cavernosum. BJU Int. 116, 657–664 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Albersen, M., Linsen, L., Tinel, H., Sandner, P. & Van Renterghem, K. Synergistic effects of BAY 60–4552 and vardenafil on relaxation of corpus cavernosum tissue of patients with erectile dysfunction and clinical phosphodiesterase type 5 inhibitor failure. J. Sex. Med. 10, 1268–1277 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Wedel, B. et al. Mutation of His-105 in the β1 subunit yields a nitric oxide-insensitive form of soluble guanylyl cyclase. Proc. Natl Acad. Sci. USA 91, 2592–2596 (1994).

    Article  CAS  PubMed  Google Scholar 

  38. Stasch, J. P. et al. NO-independent regulatory site on soluble guanylate cyclase. Nature 410, 212–215 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Stasch, J. P. et al. Pharmacological actions of a novel NO-independent guanylyl cyclase stimulator, BAY 41-8543: in vitro studies. Br. J. Pharmacol. 135, 333–343 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stasch, J. P. et al. Targeting the heme-oxidized nitric oxide receptor for selective vasodilatation of diseased blood vessels. J. Clin. Invest. 116, 2552–2561 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schmidt, H. H. H. W., Schmidt, P. M. & Stasch, J. P. in Handbook of Experimental Pharmacology Vol. 191 (eds Schmidt, H. H. H. W., Hofmann, F. & Stasch, J. P.) 309–339 (Springer, 2009).

    Google Scholar 

  42. Thoonen, R. et al. Cardiovascular and pharmacological implications of haem-deficient NO-unresponsive soluble guanylate cyclase knock-in mice. Nat. Commun. 6, 8482 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ko, F. N., Wu, C. C., Kuo, S. C., Lee, F. Y. & Teng, C. M. YC-1, a novel activator of platelet guanylate cyclase. Blood 84, 4226–4233 (1994).

    CAS  PubMed  Google Scholar 

  44. Friebe, A., Schultz, G. & Koesling, D. Sensitizing soluble guanylyl cyclase to become a highly CO-sensitive enzyme. EMBO J. 15, 6863–6868 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stasch, J. P. & Hobbs, A. J. in Handbook of Experimental Pharmacology Vol. 191 (eds Schmidt, H. H. H. W., Hofmann, F. & Stasch, J. P.) 277–308 (Springer, 2009).

    Google Scholar 

  46. Wunder, F. et al. A cell-based cGMP assay useful for ultra-high-throughput screening and identification of modulators of the nitric oxide/cGMP pathway. Anal. Biochem. 339, 104–112 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Rothkegel, C. et al. Identification of residues crucially involved in soluble guanylate cyclase activation. FEBS Lett. 580, 4205–4213 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Andersson, K. E. & Persson, K. Nitric oxide synthase and nitric oxide-mediated effects in lower urinary tract smooth muscles. World J. Urol. 12, 274–280 (1994).

    CAS  PubMed  Google Scholar 

  49. Iversen, H. H., Ehren, I., Gustafsson, L. E., Adolfsson, J. & Wiklund, N. P. Modulation of smooth muscle activity by nitric oxide in the human upper urinary tract. Urol. Res. 23, 391–394 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Ehren, I., Adolfsson, J. & Wiklund, N. P. Nitric oxide synthase activity in the human urogenital tract. Urol. Res. 22, 287–290 (1994).

    Article  CAS  PubMed  Google Scholar 

  51. Rajfer, J., Aronson, W. J., Bush, P. A., Dorey, F. J. & Ignarro, L. J. Nitric oxide as a mediator of relaxation of the corpus cavernosum in response to nonadrenergic, noncholinergic neurotransmission. N. Engl. J. Med. 326, 90–94 (1992).

    Article  CAS  PubMed  Google Scholar 

  52. Chertin, B., Rolle, U., Solari, V., Cascio, S. & Puri, P. The role of nitric oxide in bladder urothelial injury after bladder outlet obstruction. BJU Int. 94, 392–399 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Gillespie, J. I., Markerink-van Ittersum, M. & de Vente, J. Expression of neuronal nitric oxide synthase (nNOS) and nitric-oxide-induced changes in cGMP in the urothelial layer of the guinea pig bladder. Cell Tissue Res. 321, 341–351 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Gonzalez-Soriano, J. et al. Nitric oxide synthase in the external urethral sphincter of the sheep: immunohistochemical and functional study. J. Urol. 169, 1901–1906 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Otunctemur, A. et al. The comparison of GLUT-4 and nNOS expression in diabetic and non-diabetic patients with BPH/LUTS. Int. Urol. Nephrol. 47, 899–904 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Burnett, A. L. et al. Urinary bladder-urethral sphincter dysfunction in mice with targeted disruption of neuronal nitric oxide synthase models idiopathic voiding disorders in humans. Nat. Med. 3, 571–574 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Mamas, M. A., Reynard, J. M. & Brading, A. F. Nitric oxide and the lower urinary tract: current concepts, future prospects. Urology 61, 1079–1085 (2003).

    Article  PubMed  Google Scholar 

  58. Burnett, A. L. et al. Characterization and localization of nitric oxide synthase in the human prostate. Urology 45, 435–439 (1995).

    Article  CAS  PubMed  Google Scholar 

  59. Bloch, W. et al. Evidence for the involvement of endothelial nitric oxide synthase from smooth muscle cells in the erectile function of the human corpus cavernosum. Urol. Res. 26, 129–135 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Ghalayini, I. F. Nitric oxide-cyclic GMP pathway with some emphasis on cavernosal contractility. Int. J. Impot Res. 16, 459–469 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Mumtaz, F. H., Khan, M. A., Thompson, C. S., Morgan, R. J. & Mikhailidis, D. P. Nitric oxide in the lower urinary tract: physiology and pathological implications. BJU Int. 85, 611–613 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Fathian-Sabet, B. et al. Localization of constitutive nitric oxide synthase isoforms and the nitric oxide target enzyme soluble guanylyl cyclase in the human bladder. J. Urol. 165, 1724–1729 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Calmasini, F. B. et al. Implication of Rho-kinase and soluble guanylyl cyclase enzymes in prostate smooth muscle dysfunction in middle-aged rats. Neurourol. Urodyn. 36, 589–596 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Behrends, S., Steenpass, A., Porst, H. & Scholz, H. Expression of nitric oxide-sensitive guanylyl cyclase subunits in human corpus cavernosum. Biochem. Pharmacol. 59, 713–717 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Klotz, T. et al. Soluble guanylate cyclase and cGMP-dependent protein kinase I expression in the human corpus cavernosum. Int. J. Impot. Res. 12, 157–164 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Silva, F. H. et al. Prolonged therapy with the soluble guanylyl cyclase activator BAY 60–2770 restores the erectile function in obese mice. J. Sex. Med. 11, 2661–2670 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Muller, D., Mukhopadhyay, A. K., Davidoff, M. S. & Middendorff, R. Cyclic GMP signaling in rat urinary bladder, prostate, and epididymis: tissue-specific changes with aging and in response to Leydig cell depletion. Reproduction 142, 333–343 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Leiria, L. O. et al. The soluble guanylyl cyclase activator BAY 60–2770 ameliorates overactive bladder in obese mice. J. Urol. 191, 539–547 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Andersson, K. E., Garcia Pascual, A., Persson, K., Forman, A. & Tottrup, A. Electrically-induced, nerve-mediated relaxation of rabbit urethra involves nitric oxide. J. Urol. 147, 253–259 (1992).

    Article  CAS  PubMed  Google Scholar 

  70. Garcia-Pascual, A., Costa, G., Garcia-Sacristan, A. & Andersson, K. E. Relaxation of sheep urethral muscle induced by electrical stimulation of nerves: involvement of nitric oxide. Acta Physiol. Scand. 141, 531–539 (1991).

    Article  CAS  PubMed  Google Scholar 

  71. Hashimoto, S., Kigoshi, S. & Muramatsu, I. Nitric oxide-dependent and -independent neurogenic relaxation of isolated dog urethra. Eur. J. Pharmacol. 231, 209–214 (1993).

    Article  CAS  PubMed  Google Scholar 

  72. Werkstrom, V. et al. Factors involved in the relaxation of female pig urethra evoked by electrical field stimulation. Br. J. Pharmacol. 116, 1599–1604 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Masuda, H. et al. Involvement of accumulated endogenous NOS inhibitors and decreased NOS activity in the impaired neurogenic relaxation of the rabbit proximal urethra with ischaemia. Br. J. Pharmacol. 133, 97–106 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Persson, K. et al. Functional characteristics of urinary tract smooth muscles in mice lacking cGMP protein kinase type I. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R1112–R1120 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Fraser, M. O. & Chancellor, M. B. Neural control of the urethra and development of pharmacotherapy for stress urinary incontinence. BJU Int. 91, 743–748 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. James, M. J., Birmingham, A. T. & Hill, S. J. Partial mediation by nitric oxide of the relaxation of human isolated detrusor strips in response to electrical field stimulation. Br. J. Clin. Pharmacol. 35, 366–372 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Masuda, H. et al. Localization and role of nitric oxide synthase and endogenous nitric oxide synthase inhibitors in the rabbit lower urinary tract. J. Urol. 167, 2235–2240 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Andersson, K. E. & Arner, A. Urinary bladder contraction and relaxation: physiology and pathophysiology. Physiol. Rev. 84, 935–986 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Hayek, O. R. et al. Castration induces acute vasoconstriction of blood vessels in the rat prostate concomitant with a reduction of prostatic nitric oxide synthase activity. J. Urol. 162, 1527–1531 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Takeda, M. & Lepor, H. Nitric oxide synthase in dog urethra: a histochemical and pharmacological analysis. Br. J. Pharmacol. 116, 2517–2523 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Aikawa, K., Yokota, T., Okamura, H. & Yamaguchi, O. Endogenous nitric oxide-mediated relaxation and nitrinergic innervation in the rabbit prostate: the changes with aging. Prostate 48, 40–46 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Najbar-Kaszkiel, A. T., Di Iulio, J. L., Li, C. G. & Rand, M. J. Characterisation of excitatory and inhibitory transmitter systems in prostate glands of rats, guinea pigs, rabbits and pigs. Eur. J. Pharmacol. 337, 251–258 (1997).

    Article  CAS  PubMed  Google Scholar 

  83. Takeda, M., Tang, R., Shapiro, E., Burnett, A. L. & Lepor, H. Effects of nitric oxide on human and canine prostates. Urology 45, 440–446 (1995).

    Article  CAS  PubMed  Google Scholar 

  84. Cirino, G., Fusco, F., Imbimbo, C. & Mirone, V. Pharmacology of erectile dysfunction in man. Pharmacol. Ther. 111, 400–423 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Rahnama'i, M. S., Uckert, S., Hohnen, R. & van Koeveringe, G. A. The role of phosphodiesterases in bladder pathophysiology. Nat. Rev. Urol. 10, 414–424 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Porst, H. et al. Efficacy and safety of tadalafil once daily in the treatment of men with lower urinary tract symptoms suggestive of benign prostatic hyperplasia: results of an international randomized, double-blind, placebo-controlled trial. Eur. Urol. 60, 1105–1113 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Maselli, G. et al. Tadalafil versus solifenacin for persistent storage symptoms after prostate surgery in patients with erectile dysfunction: a prospective randomized study. Int. J. Urol. 18, 515–520 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Gacci, M. et al. Latest evidence on the use of phosphodiesterase type 5 inhibitors for the treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia. Eur. Urol. 70, 124–133 (2016).

    Article  CAS  PubMed  Google Scholar 

  89. Blanker, M. H. et al. Voided volumes: normal values and relation to lower urinary tract symptoms in elderly men, a community-based study. Urology 57, 1093–1099 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Shiri, R. et al. Erectile dysfunction influences the subsequent incidence of lower urinary tract symptoms and bother. Int. J. Impot. Res. 19, 317–320 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Brookes, S. T., Link, C. L., Donovan, J. L. & McKinlay, J. B. Relationship between lower urinary tract symptoms and erectile dysfunction: results from the Boston Area Community Health Survey. J. Urol. 179, 250–255 (2008).

    Article  PubMed  Google Scholar 

  92. Vignozzi, L., Gacci, M. & Maggi, M. Lower urinary tract symptoms, benign prostatic hyperplasia and metabolic syndrome. Nat. Rev. Urol. 13, 108–119 (2016).

    Article  CAS  PubMed  Google Scholar 

  93. Parsons, J. K. et al. Obesity increases and physical activity decreases lower urinary tract symptom risk in older men: the Osteoporotic Fractures in Men study. Eur. Urol. 60, 1173–1180 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Penson, D. F., Munro, H. M., Signorello, L. B., Blot, W. J. & Fowke, J. H. Obesity, physical activity and lower urinary tract symptoms: results from the Southern Community Cohort Study. J. Urol. 186, 2316–2322 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Maserejian, N. N. et al. Treatment status and progression or regression of lower urinary tract symptoms in a general adult population sample. J. Urol. 191, 107–113 (2014).

    Article  PubMed  Google Scholar 

  96. Lee, R. K., Chung, D., Chughtai, B., Te, A. E. & Kaplan, S. A. Central obesity as measured by waist circumference is predictive of severity of lower urinary tract symptoms. BJU Int. 110, 540–545 (2012).

    Article  PubMed  Google Scholar 

  97. Daneshgari, F., Liu, G. & Hanna-Mitchell, A. T. Path of translational discovery of urological complications of obesity and diabetes. Am. J. Physiol. Renal Physiol. 312, F887–F896 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nandeesha, H., Koner, B. C., Dorairajan, L. N. & Sen, S. K. Hyperinsulinemia and dyslipidemia in non-diabetic benign prostatic hyperplasia. Clin. Chim. Acta 370, 89–93 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Vermeulen, A., Kaufman, J. M., Deslypere, J. P. & Thomas, G. Attenuated luteinizing hormone (LH) pulse amplitude but normal LH pulse frequency, and its relation to plasma androgens in hypogonadism of obese men. J. Clin. Endocrinol. Metab. 76, 1140–1146 (1993).

    CAS  PubMed  Google Scholar 

  100. Cohen, P. G. The role of estradiol in the maintenance of secondary hypogonadism in males in erectile dysfunction. Med. Hypotheses 50, 331–333 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. Zumoff, B., Miller, L. K. & Strain, G. W. Reversal of the hypogonadotropic hypogonadism of obese men by administration of the aromatase inhibitor testolactone. Metabolism 52, 1126–1128 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Podlasek, C. A. et al. Translational Perspective on the Role of Testosterone in Sexual Function and Dysfunction. J. Sex. Med. 13, 1183–1198 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Mirone, V. et al. European Association of Urology Position Statement on the Role of the Urologist in the Management of Male Hypogonadism and Testosterone Therapy. Eur. Urol. 72, 164–167 (2017).

    Article  PubMed  Google Scholar 

  104. Snyder, P. J. et al. Effects of Testosterone Treatment in Older Men. N. Engl. J. Med. 374, 611–624 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hackett, G. et al. Testosterone undecanoate improves sexual function in men with type 2 diabetes and severe hypogonadism: results from a 30-week randomized placebo-controlled study. BJU Int. 118, 804–813 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Torimoto, K. et al. Urethral dysfunction in diabetic rats. J. Urol. 171, 1959–1964 (2004).

    Article  PubMed  Google Scholar 

  107. Daneshgari, F. et al. Temporal differences in bladder dysfunction caused by diabetes, diuresis, and treated diabetes in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, R1728–1735 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Saito, M. et al. Pharmacological properties, functional alterations and gene expression of muscarinic receptors in young and old type 2 Goto-Kakizaki diabetic rat bladders. J. Urol. 180, 2701–2705 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Nobe, K., Yamazaki, T., Tsumita, N., Hashimoto, T. & Honda, K. Glucose-dependent enhancement of diabetic bladder contraction is associated with a rho kinase-regulated protein kinase C pathway. J. Pharmacol. Exp. Ther. 328, 940–950 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Turner, W. H. & Brading, A. F. Smooth muscle of the bladder in the normal and the diseased state: pathophysiology, diagnosis and treatment. Pharmacol. Ther. 75, 77–110 (1997).

    Article  CAS  PubMed  Google Scholar 

  111. Leiria, L. O. et al. Functional, morphological and molecular characterization of bladder dysfunction in streptozotocin-induced diabetic mice: evidence of a role for L-type voltage-operated Ca2+ channels. Br. J. Pharmacol. 163, 1276–1288 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lee, W. C., Chien, C. T., Yu, H. J. & Lee, S. W. Bladder dysfunction in rats with metabolic syndrome induced by long-term fructose feeding. J. Urol. 179, 2470–2476 (2008).

    Article  PubMed  Google Scholar 

  113. Toque, H. A. et al. High-fat diet associated with obesity induces impairment of mouse corpus cavernosum responses. BJU Int. 107, 1628–1634 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Nunes, K. P., Teixeira, C. E., Priviero, F. B., Toque, H. A. & Webb, R. C. Beneficial effect of the soluble guanylyl cyclase stimulator BAY 41–2272 on impaired penile erection in db/db−/− type II diabetic and obese mice. J. Pharmacol. Exp. Ther. 353, 330–339 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. Zhou, Z. et al. Regulation of soluble guanylyl cyclase redox state by hydrogen sulfide. Pharmacol. Res. 111, 556–562 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Leiria, L. O. et al. Insulin relaxes bladder via PI3K/AKT/eNOS pathway activation in mucosa: unfolded protein response-dependent insulin resistance as a cause of obesity-associated overactive bladder. J. Physiol. 591, 2259–2273 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ozcan, U. et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306, 457–461 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Yoshimura, K. et al. Prevalence of and risk factors for nocturia: analysis of a health screening program. Int. J. Urol. 11, 282–287 (2004).

    Article  PubMed  Google Scholar 

  119. Ponholzer, A., Temml, C., Wehrberger, C., Marszalek, M. & Madersbacher, S. The association between vascular risk factors and lower urinary tract symptoms in both sexes. Eur. Urol. 50, 581–586 (2006).

    Article  PubMed  Google Scholar 

  120. Yokoyama, O. et al. Nocturnal polyuria and hypertension in patients with lifestyle related diseases and overactive bladder. J. Urol. 197, 423–431 (2017).

    Article  PubMed  Google Scholar 

  121. Ramos-Filho, A. C. et al. Blockade of renin-angiotensin system prevents micturition dysfunction in renovascular hypertensive rats. Eur. J. Pharmacol. 738, 285–292 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Ribeiro, M. O., Antunes, E., de Nucci, G., Lovisolo, S. M. & Zatz, R. Chronic inhibition of nitric oxide synthesis. A new model of arterial hypertension. Hypertension 20, 298–303 (1992).

    Article  CAS  PubMed  Google Scholar 

  123. Persson, K., Igawa, Y., Mattiasson, A. & Andersson, K. E. Effects of inhibition of the L-arginine/nitric oxide pathway in the rat lower urinary tract in vivo and in vitro. Br. J. Pharmacol. 107, 178–184 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Calmasini, F. B. et al. Increased Rho-kinase-mediated prostate contractions associated with impairment of beta-adrenergic-cAMP-signaling pathway by chronic nitric oxide deficiency. Eur. J. Pharmacol. 758, 24–30 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Claudino, M. A. et al. Long-term oral treatment with BAY 41–2272 ameliorates impaired corpus cavernosum relaxations in a nitric oxide-deficient rat model. BJU Int. 108, 116–122 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Teixeira, C. E., Priviero, F. B. & Webb, R. C. Effects of 5-cyclopropyl-2-[1-(2-fluoro-benzyl)-1H-pyrazolo[3,4-b]pyridine-3-yl]pyrim idin-4-ylamine (BAY 41–2272) on smooth muscle tone, soluble guanylyl cyclase activity, and NADPH oxidase activity/expression in corpus cavernosum from wild-type, neuronal, and endothelial nitric-oxide synthase null mice. J. Pharmacol. Exp. Ther. 322, 1093–1102 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Hammarsten, J. & Peeker, R. Urological aspects of the metabolic syndrome. Nat. Rev. Urol. 8, 483–494 (2011).

    Article  CAS  PubMed  Google Scholar 

  128. Silva, F. H. et al. Superoxide anion production by NADPH oxidase plays a major role in erectile dysfunction in middle-aged rats: prevention by antioxidant therapy. J. Sex. Med. 10, 960–971 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. Fibbi, B. et al. Characterization of phosphodiesterase type 5 expression and functional activity in the human male lower urinary tract. J. Sex. Med. 7, 59–69 (2010).

    Article  CAS  PubMed  Google Scholar 

  130. Kalsi, J. S. et al. BAY41-2272, a novel nitric oxide independent soluble guanylate cyclase activator, relaxes human and rabbit corpus cavernosum in vitro. J. Urol. 169, 761–766 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Baracat, J. S. et al. Relaxing effects induced by the soluble guanylyl cyclase stimulator BAY 41–2272 in human and rabbit corpus cavernosum. Eur. J. Pharmacol. 477, 163–169 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Bischoff, E., Schramm, M., Straub, A., Feurer, A. & Stasch, J. P. BAY 41-2272: a stimulator of soluble guanylyl cyclase induces nitric oxide-dependent penile erection in vivo. Urology 61, 464–467 (2003).

    Article  CAS  PubMed  Google Scholar 

  133. Nimmegeers, S. et al. Role of the soluble guanylyl cyclase alpha1-subunit in mice corpus cavernosum smooth muscle relaxation. Int. J. Impot Res. 20, 278–284 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Lasker, G. F. et al. The sGC activator BAY 60–2770 has potent erectile activity in the rat. Am. J. Physiol. Heart Circ. Physiol. 304, H1670–H1679 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Stephens, R. S. et al. cGMP increases antioxidant function and attenuates oxidant cell death in mouse lung microvascular endothelial cells by a protein kinase G-dependent mechanism. Am. J. Physiol. Lung Cell. Mol. Physiol. 299, L323–L333 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hoffmann, L. S. et al. Distinct molecular requirements for activation or stabilization of soluble guanylyl cyclase upon haem oxidation-induced degradation. Br. J. Pharmacol. 157, 781–795 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Martin, F. et al. Structure of cinaciguat (BAY 58–2667) bound to Nostoc H-NOX domain reveals insights into heme-mimetic activation of the soluble guanylyl cyclase. J. Biol. Chem. 285, 22651–22657 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kumar, V. et al. Insights into BAY 60–2770 activation and S-nitrosylation-dependent desensitization of soluble guanylyl cyclase via crystal structures of homologous nostoc H-NOX domain complexes. Biochemistry 52, 3601–3608 (2013).

    Article  CAS  PubMed  Google Scholar 

  139. McMurray, G., Casey, J. H. & Naylor, A. M. Animal models in urological disease and sexual dysfunction. Br. J. Pharmacol. 147 (Suppl. 2), S62–S79 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Schroder, A., Uvelius, B., Newgreen, D. & Andersson, K. E. Bladder overactivity in mice after 1 week of outlet obstruction. Mainly afferent dysfunction? J. Urol. 170, 1017–1021 (2003).

    Article  PubMed  Google Scholar 

  141. Hanno, P. M., Erickson, D., Moldwin, R. & Faraday, M. M. Diagnosis and treatment of interstitial cystitis/bladder pain syndrome: AUA guideline amendment. J. Urol. 193, 1545–1553 (2015).

    Article  PubMed  Google Scholar 

  142. van de Merwe, J. P. et al. Diagnostic criteria, classification, and nomenclature for painful bladder syndrome/interstitial cystitis: an ESSIC proposal. Eur. Urol. 53, 60–67 (2008).

    Article  PubMed  Google Scholar 

  143. de Oliveira, M. G. et al. Activation of soluble guanylyl cyclase by BAY 58–2667 improves bladder function in cyclophosphamide-induced cystitis in mice. Am. J. Physiol. Renal Physiol. 311, F85–F93 (2016).

    Article  CAS  PubMed  Google Scholar 

  144. Condorelli, R. A. et al. Arterial erectile dysfunction: different severities of endothelial apoptosis between diabetic patients “responders” and “non responders” to sildenafil. Eur. J. Intern. Med. 24, 234–240 (2013).

    Article  CAS  PubMed  Google Scholar 

  145. Lizarte, F. S. et al. Chronic alcoholism associated with diabetes impairs erectile function in rats. BJU Int. 105, 1592–1597 (2010).

    Article  PubMed  Google Scholar 

  146. Christ, G. J. The penis as a vascular organ. The importance of corporal smooth muscle tone in the control of erection. Urol. Clin. North Am. 22, 727–745 (1995).

    CAS  PubMed  Google Scholar 

  147. Fried, N. M. & Burnett, A. L. Novel methods for mapping the cavernous nerves during radical prostatectomy. Nat. Rev. Urol. 12, 451–460 (2015).

    Article  CAS  PubMed  Google Scholar 

  148. Kinsella, J. P., Neish, S. R., Shaffer, E. & Abman, S. H. Low-dose inhalation nitric oxide in persistent pulmonary hypertension of the newborn. Lancet 340, 819–820 (1992).

    Article  CAS  PubMed  Google Scholar 

  149. Kinsella, J. P. & Abman, S. H. Inhalational nitric oxide therapy for persistent pulmonary hypertension of the newborn. Pediatrics 91, 997–998 (1993).

    CAS  PubMed  Google Scholar 

  150. Montani, D. et al. Targeted therapies in pulmonary arterial hypertension. Pharmacol. Ther. 141, 172–119 (2014).

    Article  CAS  PubMed  Google Scholar 

  151. Beyer, C. et al. Stimulation of the soluble guanylate cyclase (sGC) inhibits fibrosis by blocking non-canonical TGFbeta signalling. Ann. Rheum. Dis. 74, 1408–1416 (2015).

    Article  CAS  PubMed  Google Scholar 

  152. Roehrborn, C. G., McVary, K. T., Elion-Mboussa, A. & Viktrup, L. Tadalafil administered once daily for lower urinary tract symptoms secondary to benign prostatic hyperplasia: a dose finding study. J. Urol. 180, 1228–1234 (2008).

    Article  CAS  PubMed  Google Scholar 

  153. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00855465 (2016).

  154. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00810693 (2016).

  155. Galiè, N., Müller, K., Scalise, A.-V. & Grünig, E. Patent Plus: a blinded, randomised and extension study of riociguat plus sildenafil in pulmonary arterial hypertension. Eur. Respir. J. 45, 1314–1322 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

F.Z.M. and E.A. acknowledge FAPESP, CAPES, CNPq, and UNICAMP for research support.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the manuscript, made substantial contributions to discussion of content, wrote the article, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Fabiola Z. Mónica.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mónica, F., Antunes, E. Stimulators and activators of soluble guanylate cyclase for urogenital disorders. Nat Rev Urol 15, 42–54 (2018). https://doi.org/10.1038/nrurol.2017.181

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2017.181

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing