Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Frontiers in robot-assisted retroperitoneal oncological surgery

Key Points

  • Robotic assistance has been rapidly adopted by urologists for a wide range of surgical procedures involving the retroperitoneal space

  • The rapid dissemination of robot-assisted techniques is attributable to the limited working space available in the retroperitoneum, and the availability of 3D imaging, wristed instrumentation and a shorter learning curve compared with purely laparoscopic techniques

  • Robot-assisted approaches have been established for partial nephrectomy, radical nephrectomy, retroperitoneal lymph node dissection, nephroureterectomy, and adrenalectomy

  • The oncological outcomes obtained using robot-assisted retroperitoneal procedures are largely equivalent to those obtained using their open counterparts, albeit with an improved recuperative profile

Abstract

Robot assistance has been rapidly adopted by urological surgeons and has become particularly popular for oncological procedures involving the retroperitoneal space. The wide dissemination of robot assistance probably reflects the limited amount of operating space available within the retroperitoneum and the advantages provided by robot-assisted approaches, including 3D imaging, wristed instrumentation and the shorter learning curve compared with that associated with the equivalent laparoscopic techniques. Surgical procedures that have traditionally been performed using an open or laparoscopic approach, such as partial nephrectomy, radical nephrectomy, retroperitoneal lymph node dissection, nephroureterectomy and adrenalectomy, are now often being performed using robot assistance. The frontiers of robot-assisted retroperitoneal oncological surgery are constantly expanding, with an emphasis on maintaining oncological and functional outcomes, while minimizing the level of surgical invasiveness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The caval thrombus grouping system.
Figure 2: Representative images from a right radical nephrectomy and removal of the associated tumour thrombus77.

Similar content being viewed by others

References

  1. Poletajew, S., Antoniewicz, A. A. & Borówka, A. Kidney removal the past, presence, and perspectives: a historical review. Urol. J. 7, 215–223 (2010).

    PubMed  Google Scholar 

  2. Park, S. K. et al. Patient-reported body image and cosmesis outcomes following kidney surgery: comparison of laparoendoscopic single-site, laparoscopic, and open surgery. Eur. Urol. 60, 1097–1104 (2011).

    PubMed  Google Scholar 

  3. Kerbl, K., Clayman, R. V., McDougall, E. M. & Kavoussi, L. R. Laparoscopic nephrectomy: the Washington University experience. Br. J. Urol. 73, 231–236 (1994).

    CAS  PubMed  Google Scholar 

  4. Allan, J. D., Tolley, D. A., Kaouk, J. H., Novick, A. C. & Gill, I. S. Laparoscopic radical nephrectomy. Eur. Urol. 40, 17–23 (2001).

    CAS  PubMed  Google Scholar 

  5. Shuford, M. D. et al. Complications of contemporary radical nephrectomy: comparison of open vs. laparoscopic approach. Urol. Oncol. 22, 121–126 (2004).

    PubMed  Google Scholar 

  6. Leal Ghezzi, T. & Campos Corleta, O. 30 years of robotic surgery. World J. Surg. 40, 2550–2557 (2016).

    PubMed  Google Scholar 

  7. Klingler, D. W., Hemstreet, G. P. & Balaji, K. C. Feasibility of robotic radical nephrectomy — initial results of single-institution pilot study. Urology 65, 1086–1089 (2005).

    PubMed  Google Scholar 

  8. Ghani, K. R. et al. Practice patterns and outcomes of open and minimally invasive partial nephrectomy since the introduction of robotic partial nephrectomy: results from the nationwide inpatient sample. J. Urol. 191, 907–913 (2014).

    PubMed  Google Scholar 

  9. Barbash, G. I. & Glied, S. A. New technology and health care costs — the case of robot-assisted surgery. N. Engl. J. Med. 363, 701–704 (2010).

    CAS  PubMed  Google Scholar 

  10. Thiel, D. D. & Winfield, H. N. Robotics in urology: past, present, and future. J. Endourol. 22, 825–830 (2008).

    PubMed  Google Scholar 

  11. Moore, L. J. et al. Robotic technology results in faster and more robust surgical skill acquisition than traditional laparoscopy. J. Robot. Surg. 9, 67–73 (2015).

    PubMed  Google Scholar 

  12. Wright, J. D. et al. Effect of regional hospital competition and hospital financial status on the use of robotic-assisted surgery. JAMA Surg. 151, 612–620 (2016).

    PubMed  Google Scholar 

  13. Smith, Z. L. Current status of minimally invasive surgery for renal cell carcinoma. Curr. Urol. Rep. 17, 43 (2016).

    PubMed  Google Scholar 

  14. Van Poppel, H. et al. A prospective, randomised EORTC intergroup phase 3 study comparing the oncologic outcome of elective nephron-sparing surgery and radical nephrectomy for low-stage renal cell carcinoma. Eur. Urol. 59, 543–552 (2011).

    PubMed  Google Scholar 

  15. Pierorazio, P. et al. Systematic review of oncological outcomes following surgical management of localised renal cancer. J. Urol. 196, 989–999 (2016).

    PubMed  PubMed Central  Google Scholar 

  16. Andrade, H. S. et al. Five-year oncologic outcomes after transperitoneal robotic partial nephrectomy for renal cell carcinoma. Eur. Urol. 69, 1149–1154 (2016).

    PubMed  Google Scholar 

  17. Patel, H. D. et al. Trends in renal surgery: robotic technology is associated with increased use of partial nephrectomy. J. Urol. 189, 1229–1235 (2013).

    PubMed  Google Scholar 

  18. Zargar, H. et al. Trifecta and optimal perioperative outcomes of robotic and laparoscopic partial nephrectomy in surgical treatment of small renal masses: a multi-institutional study. BJU Int. 116, 407–414 (2015).

    PubMed  Google Scholar 

  19. Campbell, S. et al. Renal mass and localized renal cancer: AUA guideline. J. Urol. 198, 520–529 (2017).

    PubMed  Google Scholar 

  20. Ljungberg, B. et al. EAU guidelines on renal cell carcinoma: 2014 update. Eur. Urol. 67, 913–924 (2015).

    PubMed  Google Scholar 

  21. Ficarra, V. et al. Preoperative aspects and dimensions used for an anatomical (PADUA) classification of renal tumours in patients who are candidates for nephron-sparing surgery. Eur. Urol. 56, 786–793 (2009).

    PubMed  Google Scholar 

  22. Kutikov, A. & Uzzo, R. G. The R.E.N.A.L. nephrometry score: a comprehensive standardized system for quantitating renal tumor size, location and depth. J. Urol. 182, 844–853 (2009).

    PubMed  Google Scholar 

  23. Patard, J. J. et al. Morbidity and clinical outcome of nephron-sparing surgery in relation to tumour size and indication. Eur. Urol. 52, 148–154 (2007).

    PubMed  Google Scholar 

  24. Joniau, S., Eeckt, Vander, K., Srirangam, S. J. & Van Poppel, H. Outcome of nephron-sparing surgery for T1b renal cell carcinoma. BJU Int. 103, 1344–1348 (2009).

    PubMed  Google Scholar 

  25. Crépel, M. et al. Nephron-sparing surgery is equally effective to radical nephrectomy for T1BN0M0 renal cell carcinoma: a population-based assessment. Urology 75, 271–275 (2010).

    PubMed  Google Scholar 

  26. Peycelon, M. et al. Long-term outcomes after nephron sparing surgery for renal cell carcinoma larger than 4 cm. J. Urol. 181, 35–41 (2009).

    PubMed  Google Scholar 

  27. Mir, M. et al. Partial nephrectomy versus radical nephrectomy for clinical T1b and T2 renal tumors: a systematic review and meta-analysis of comparative studies. Eur. Urol. 71, 606–617 (2016).

    PubMed  Google Scholar 

  28. Scosyrev, E., Messing, E. M., Sylvester, R., Campbell, S. & Van Poppel, H. Renal function after nephron-sparing surgery versus radical nephrectomy: results from EORTC randomized trial 30904. Eur. Urol. 65, 372–377 (2014).

    PubMed  Google Scholar 

  29. Benway, B. M., Wang, A. J., Cabello, J. M. & Bhayani, S. B. Robotic partial nephrectomy with sliding-clip renorrhaphy: technique and outcomes. Eur. Urol. 55, 592–599 (2009).

    PubMed  Google Scholar 

  30. Patel, M. N. et al. Robotic partial nephrectomy for renal tumors larger than 4 cm. Eur. Urol. 57, 310–316 (2010).

    PubMed  Google Scholar 

  31. Masson-Lecomte, A. et al. Robot-assisted laparoscopic nephron sparing surgery for tumors over 4 cm: operative results and preliminary oncologic outcomes from a multicentre French study. Eur. J. Surg. Oncol. 39, 799–803 (2013).

    CAS  PubMed  Google Scholar 

  32. Janda, G. et al. Single institution experience with robotic partial nephrectomy for renal masses greater than 4cm. J. Endourol. 30, 384–389 (2016).

    PubMed  Google Scholar 

  33. Raheem, A. et al. Outcomes of high-complexity renal tumours with a preoperative aspects and dimensions used for an anatomical (PADUA) score of ≥10 after robot-assisted partial nephrectomy with a median 46.5-month follow-up: a tertiary centre experience. BJU Int. 118, 770–778 (2016).

    PubMed  Google Scholar 

  34. Tiu, A. et al. Feasibility of robotic laparoendoscopic single-site partial nephrectomy for renal tumors >4 cm. Eur. Urol. 63, 941–946 (2013).

    PubMed  Google Scholar 

  35. Simmons, M. N. et al. Functional recovery after partial nephrectomy: effects of volume loss and ischemic injury. J. Urol. 187, 1667–1673 (2012).

    PubMed  Google Scholar 

  36. Maurice, M. et al. Predictors of excisional volume loss in partial nephrectomy: is there still room for improvement? Eur. Urol. 70, 413–415 (2016).

    PubMed  Google Scholar 

  37. Golan, S., Patel, A. R., Eggener, S. E. & Shalhav, A. L. The volume of nonneoplastic parenchyma in a minimally invasive partial nephrectomy specimen: predictive factors and impact on renal function. J. Endourol. 28, 196–200 (2014).

    PubMed  Google Scholar 

  38. Kaouk, J. H. et al. Robotic partial nephrectomy with intracorporeal renal hypothermia using ice slush. Urology 84, 712–718 (2014).

    PubMed  Google Scholar 

  39. Rogers, C., Ghani, K., Kumar, R., Jeong, W. & Menon, M. Robotic partial nephrectomy with cold ischemia and on-clamp tumor extraction: recapitulating the open approach. Eur. Urol. 63, 573–578 (2013).

    PubMed  Google Scholar 

  40. Ramirez, D., Caputo, P. A., Krishnan, J., Zargar, H. & Kaouk, J. H. Robot-assisted partial nephrectomy with intracorporeal renal hypothermia using ice slush: step-by-step technique and matched comparison with warm ischaemia. BJU Int. 117, 531–536 (2016).

    CAS  PubMed  Google Scholar 

  41. Furukawa, J. et al. Renal functional and perioperative outcomes of selective versus complete renal arterial clamping during robot-assisted partial nephrectomy: early single-center experience with 39 cases. Surg. Innov. 23, 242–248 (2016).

    PubMed  Google Scholar 

  42. Komninos, C. et al. Renal function is the same 6 months after robot-assisted partial nephrectomy regardless of clamp technique: analysis of outcomes for off-clamp, selective arterial clamp and main artery clamp techniques, with a minimum follow-up of 1 year. BJU Int. 115, 921–928 (2015).

    PubMed  Google Scholar 

  43. Paulucci, D. J. et al. Selective arterial clamping does not improve outcomes in robot-assisted partial nephrectomy: a propensity-score analysis of patients without impaired renal function. BJU Int. 119, 430–435 (2017).

    PubMed  Google Scholar 

  44. Kaczmarek, B. F. et al. Off-clamp robot-assisted partial nephrectomy preserves renal function: a multi-institutional propensity score analysis. Eur. Urol. 64, 988–993 (2013).

    PubMed  Google Scholar 

  45. Tobis, S. et al. Near infrared fluorescence imaging with robotic assisted laparoscopic partial nephrectomy: initial clinical experience for renal cortical tumors. J. Urol. 186, 47–52 (2011).

    PubMed  Google Scholar 

  46. Harke, N., Schoen, G., Schiefelbein, F. & Heinrich, E. Selective clamping under the usage of near-infrared fluorescence imaging with indocyanine green in robot-assisted partial nephrectomy: a single-surgeon matched-pair study. World J. Urol. 32, 1259–1265 (2014).

    PubMed  Google Scholar 

  47. Borofsky, M. S. et al. Near-infrared fluorescence imaging to facilitate super-selective arterial clamping during zero-ischaemia robotic partial nephrectomy. BJU Int. 111, 604–610 (2013).

    PubMed  Google Scholar 

  48. Angell, J. E., Khemees, T. A. & Abaza, R. Optimization of near infrared fluorescence tumor localization during robotic partial nephrectomy. J. Urol. 190, 1668–1673 (2013).

    PubMed  Google Scholar 

  49. Krane, L. S., Manny, T. B. & Hemal, A. K. Is near infrared fluorescence imaging using indocyanine green dye useful in robotic partial nephrectomy: a prospective comparative study of 94 patients. Urology 80, 110–116 (2012).

    PubMed  Google Scholar 

  50. Richstone, L. et al. Conversion during laparoscopic surgery: frequency, indications and risk factors. J. Urol. 180, 855–859 (2008).

    PubMed  Google Scholar 

  51. Kim, H., Choe, H., Lee, D., Yoo, J. & Lee, S. Extending the indication for robot-assisted retroperitoneal partial nephrectomy to antero-lateral renal tumors. Int. J. Med. Robot. 13, e1755 (2017).

    Google Scholar 

  52. Wright, J. L. & Porter, J. R. Laparoscopic partial nephrectomy: comparison of transperitoneal and retroperitoneal approaches. J. Urol. 174, 841–845 (2005).

    PubMed  Google Scholar 

  53. Ng, C. S. et al. Transperitoneal versus retroperitoneal laparoscopic partial nephrectomy: patient selection and perioperative outcomes. J. Urol. 174, 846–849 (2005).

    PubMed  Google Scholar 

  54. Tanaka, K. et al. Comparison of the transperitoneal and retroperitoneal approach in robot-assisted partial nephrectomy in an initial case series in Japan. J. Endourol. 27, 1384–1388 (2013).

    PubMed  Google Scholar 

  55. Hughes-Hallett, A. et al. Robot-assisted partial nephrectomy: a comparison of the transperitoneal and retroperitoneal approaches. J. Endourol. 27, 869–874 (2013).

    PubMed  Google Scholar 

  56. Choo, S. H. et al. Transperitoneal versus retroperitoneal robotic partial nephrectomy: matched-pair comparisons by nephrometry scores. World J. Urol. 32, 1523–1529 (2014).

    PubMed  Google Scholar 

  57. Gin, G. E. et al. Comparison of perioperative outcomes of retroperitoneal and transperitoneal minimally invasive partial nephrectomy after adjusting for tumor complexity. Urology 84, 1355–1360 (2014).

    PubMed  Google Scholar 

  58. Kim, E. H. et al. Retroperitoneal robot-assisted partial nephrectomy for posterior renal masses is associated with earlier hospital discharge: a single-institution retrospective comparison. J. Endourol. 29, 1137–1142 (2015).

    PubMed  Google Scholar 

  59. Maurice, M., Ramirez, D. & Kaouk, J. Robotic laparoendoscopic single-site retroperitioneal renal surgery: initial investigation of a purpose-built single-port surgical system. Eur. Urol. 71, 643–647 (2016).

    PubMed  Google Scholar 

  60. Asimakopoulos, A. D. et al. Robotic radical nephrectomy for renal cell carcinoma: a systematic review. BMC Urol. 14, 75 (2014).

    PubMed  PubMed Central  Google Scholar 

  61. Hemal, A. K. & Kumar, A. A prospective comparison of laparoscopic and robotic radical nephrectomy for T1-2N0M0 renal cell carcinoma. World J. Urol. 27, 89–94 (2009).

    PubMed  Google Scholar 

  62. Boger, M., Lucas, S., Popp, S., Gardner, T. & Sundaram, C. P. Comparison of robot-assisted nephrectomy with laparoscopic and hand-assisted laparoscopic nephrectomy. JSLS 14, 374–380 (2010).

    PubMed  PubMed Central  Google Scholar 

  63. White, M. A. et al. Robotic laparoendoscopic single site urological surgery: analysis of 50 consecutive cases. J. Urol. 187, 1696–1701 (2012).

    PubMed  Google Scholar 

  64. Mathieu, R., Verhoest, G., Vincendeau, S., Manunta, A. & Bensalah, K. Robotic-assisted laparoendoscopic single-site radical nephrectomy: first experience with the novel da Vinci single-site platform. World J. Urol. 32, 273–276 (2014).

    CAS  PubMed  Google Scholar 

  65. Montie, J. E. et al. Resection of inferior vena cava tumor thrombi from renal cell carcinoma. Am. Surg. 57, 56–61 (1991).

    CAS  PubMed  Google Scholar 

  66. Marshall, F. Renal cell carcinoma: surgical management of regional lymph nodes and inferior vena-caval tumor thrombus. Semin. Surg. Oncol. 4, 129–132 (1988).

    CAS  PubMed  Google Scholar 

  67. Blute, M. L., Leibovich, B. C., Lohse, C. M., Cheville, J. C. & Zincke, H. The Mayo Clinic experience with surgical management, complications and outcome for patients with renal cell carcinoma and venous tumour thrombus. BJU Int. 94, 33–41 (2004).

    PubMed  Google Scholar 

  68. Swierzewski, D. J., Swierzewski, M. J. & Libertino, J. A. Radical nephrectomy in patients with renal cell carcinoma with venous, vena caval, and atrial extension. Am. J. Surg. 168, 205–209 (1994).

    CAS  PubMed  Google Scholar 

  69. Ali, A. et al. The surgical management and prognosis of renal cell cancer with IVC tumor thrombus: 15-years of experience using a multi-specialty approach at a single UK referral center. Urol. Oncol. 31, 1298–1304 (2013).

    PubMed  Google Scholar 

  70. Neves, R. J. & Zincke, H. Surgical treatment of renal cancer with vena cava extension. Br. J. Urol. 59, 390–395 (1987).

    CAS  PubMed  Google Scholar 

  71. Skinner, D. G., Pritchett, T. R., Lieskovsky, G., Boyd, S. D. & Stiles, Q. R. Vena caval involvement by renal cell carcinoma. Surgical resection provides meaningful long-term survival. Ann. Surg. 210, 387–392–4 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Ciancio, G., Livingstone, A. S. & Soloway, M. Surgical management of renal cell carcinoma with tumor thrombus in the renal and inferior vena cava: the University of Miami experience in using liver transplantation techniques. Eur. Urol. 51, 985–988 (2007).

    Google Scholar 

  73. Hevia, V. et al. Surgical technique for the treatment of renal cell carcinoma with inferior vena cava tumor thrombus: tips, tricks and oncological results. Springerplus 5, 132 (2016).

    PubMed  PubMed Central  Google Scholar 

  74. Desai, M. M. et al. Laparoscopic radical nephrectomy for cancer with level I renal vein involvement. J. Urol. 169, 487–491 (2003).

    PubMed  Google Scholar 

  75. Varkarakis, I. M. et al. Laparoscopic-assisted nephrectomy with inferior vena cava tumor thrombectomy: preliminary results. Urology 64, 925–929 (2004).

    PubMed  Google Scholar 

  76. Shao, P. et al. Laparoscopic radical nephrectomy and inferior vena cava thrombectomy in the treatment of renal cell carcinoma. Eur. Urol. 68, 115–122 (2015).

    PubMed  Google Scholar 

  77. Abaza, R. et al. Multi-institutional experience with robotic nephrectomy with inferior vena cava tumor thrombectomy. J. Urol. 195, 865–871 (2016).

    PubMed  Google Scholar 

  78. Abaza, R. Initial series of robotic radical nephrectomy with vena caval tumor thrombectomy. Eur. Urol. 59, 652–656 (2011).

    PubMed  Google Scholar 

  79. Wang, B. et al. Robot-assisted laparoscopic inferior vena cava thrombectomy: different sides require different techniques. Eur. Urol. 69, 1112–1119 (2016).

    PubMed  Google Scholar 

  80. de Castro Abreu, A. et al. Robotic transabdominal control of the suprahepatic, infradiaphragmatic vena cava to enable level 3 caval tumor thrombectomy: pilot study in a perfused-cadaver model. J. Endourol. 29, 1177–1181 (2015).

    PubMed  Google Scholar 

  81. Sood, A. et al. Robot-assisted hepatic mobilization and control of suprahepatic infradiaphragmatic inferior vena cava for level 3 vena caval thrombectomy: an IDEAL stage 0 study. J. Surg. Oncol. 112, 741–745 (2015).

    PubMed  Google Scholar 

  82. Ramirez, D., Maurice, M. J., Cohen, B., Krishnamurthi, V. & Haber, G. P. Robotic level III IVC tumor thrombectomy: duplicating the open approach. Urology 90, 204–207 (2016).

    PubMed  Google Scholar 

  83. Gill, I. S. et al. Robotic level III inferior vena cava tumor thrombectomy: initial series. J. Urol. 194, 929–936 (2015).

    PubMed  Google Scholar 

  84. Abel, E. J. et al. Perioperative outcomes following surgical resection of renal cell carcinoma with inferior vena cava thrombus extending above the hepatic veins: a contemporary multicenter experience. Eur. Urol. 66, 584–592 (2014).

    PubMed  Google Scholar 

  85. Ball, M., Gorin, M., Jayram, G., Pierorazio, P. & Allaf, M. Robot-assisted radical nephrectomy with inferior vena cava tumor thrombectomy: technique and initial outcomes. Can. J. Urol. 22, 7666–7670 (2015).

    PubMed  Google Scholar 

  86. Kundavaram, C. et al. Advances in robotic vena cava tumor thrombectomy: intracaval balloon occlusion, patch grafting, and vena cavoscopy. Eur. Urol. 16, 30342–30346 (2016).

    Google Scholar 

  87. Motzer, R. J. et al. Testicular cancer, version 2.2015. J. Natl Compr. Canc. Netw. 13, 772–799 (2015).

    PubMed  Google Scholar 

  88. Subramanian, V. S., Nguyen, C. T., Stephenson, A. J. & Klein, E. A. Complications of open primary and post-chemotherapy retroperitoneal lymph node dissection for testicular cancer. Urol. Oncol. 28, 504–509 (2010).

    PubMed  Google Scholar 

  89. Mosharafa, A., Foster, R., Koch, M., Bihrle, R. & Donohue, J. Complications of post-chemotherapy retroperitoneal lymph node dissection for testis cancer, mosharafa. J. Urol. 171, 1839–1841 (2004).

    PubMed  Google Scholar 

  90. Baniel, J. & Sella, A. Complications of retroperitoneal lymph node dissection in testicular cancer: primary and post-chemotherapy. Semin. Surg. Oncol. 17, 263–267 (1999).

    CAS  PubMed  Google Scholar 

  91. Olweny, E. O. et al. Importance of cosmesis to patients undergoing renal surgery: a comparison of laparoendoscopic single-site (LESS), laparoscopic and open surgery. BJU Int. 110, 268–272 (2012).

    PubMed  Google Scholar 

  92. Rassweiler, J. J., Scheitlin, W., Heidenreich, A., Laguna, M. P. & Janetschek, G. Laparoscopic retroperitoneal lymph node dissection: does it still have a role in the management of clinical stage I nonseminomatous testis cancer? A European perspective. Eur. Urol. 54, 1004–1015 (2008).

    PubMed  Google Scholar 

  93. Janetschek, G., Hobisch, A., Peschel, R., Hittmair, A. & Bartsch, G. Laparoscopic retroperitoneal lymph node dissection for clinical stage I nonseminomatous testicular carcinoma: long-term outcome. J. Urol. 163, 1793–1796 (2000).

    CAS  PubMed  Google Scholar 

  94. Hyams, E. S. et al. Laparoscopic retroperitoneal lymph node dissection for clinical stage I nonseminomatous germ cell tumor: a large single institution experience. J. Urol. 187, 487–492 (2012).

    PubMed  Google Scholar 

  95. Davol, P., Sumfest, J. & Rukstalis, D. Robotic-assisted laparoscopic retroperitoneal lymph node dissection. Urology 67, 199 (2006).

    PubMed  Google Scholar 

  96. Williams, S. B., Lau, C. S. & Josephson, D. Y. Initial series of robot-assisted laparoscopic retroperitoneal lymph node dissection for clinical stage I nonseminomatous germ cell testicular cancer. Eur. Urol. 60, 1299–1302 (2011).

    PubMed  Google Scholar 

  97. Cheney, S. M., Andrews, P. E., Leibovich, B. C. & Castle, E. P. Robot-assisted retroperitoneal lymph node dissection: technique and initial case series of 18 patients. BJU Int. 115, 114–120 (2015).

    PubMed  Google Scholar 

  98. Harris, K. T., Gorin, M. A., Ball, M. W., Pierorazio, P. M. & Allaf, M. E. A comparative analysis of robotic vs laparoscopic retroperitoneal lymph node dissection for testicular cancer. BJU Int. 116, 920–923 (2015).

    PubMed  Google Scholar 

  99. Stepanian, S., Patel, M. & Porter, J. Robot-assisted laparoscopic retroperitoneal lymph node dissection for testicular cancer: evolution of the technique. Eur. Urol. 16, 385–387 (2016).

    Google Scholar 

  100. Pearce, S. et al. Safety and early oncologic effectiveness of primary robotic retroperitoneal lymph node dissection for nonseminomatous germ cell testicular cancer. Eur. Urol. 16, 30181–30186 (2016).

    Google Scholar 

  101. Kamel, M., Jackson, C., Moore, J., Heshmat, S. & Bissada, N. Post-chemotherapy robotic retroperitoneal lymph node dissection (RRPLND) in testicular cancer. J. Robot. Surg. 6, 359–362 (2012).

    PubMed  Google Scholar 

  102. Sharma, P. et al. Minimally invasive post-chemotherapy retroperitoneal lymph node dissection for nonseminoma. Can. J. Urol. 22, 7882–7889 (2015).

    PubMed  Google Scholar 

  103. Kamel, M., Littlejohn, N., Cox, M., Eltahawy, E. & Davis, R. Post-chemotherapy robotic retroperitoneal lymph node dissection: institutional experience. J. Endourol. 30, 510–519 (2016).

    PubMed  Google Scholar 

  104. Glaser, A., Bowen, D., Lindgren, B. & Meeks, J. Robot-assisted retroperitoneal lymph node dissection (RA-RPLND) in the adolescent population. J. Pediatr. Urol. 13, 223–224 (2017).

    CAS  PubMed  Google Scholar 

  105. Rouprêt, M. et al. European guidelines on upper tract urothelial carcinomas: 2013 update. Eur. Urol. 63, 1059–1071 (2013).

    Google Scholar 

  106. Clayman, R. V., Kavoussi, L. R., Figenshau, R. S., Chandhoke, P. S. & Albala, D. M. Laparoscopic nephroureterectomy: initial clinical case report. J. Laparoendosc. Surg. 1, 343–349 (1991).

    CAS  PubMed  Google Scholar 

  107. Keeley, F. X. Jr & Tolley, D. A. Laparoscopic nephroureterectomy: making management of upper-tract transitional-cell carcinoma entirely minimally invasive. J. Endourol. 12, 139–141 (1998).

    PubMed  Google Scholar 

  108. Matin, S. F. & Gill, I. S. Recurrence and survival following laparoscopic radical nephroureterectomy with various forms of bladder cuff control. J. Urol. 173, 395–400 (2005).

    PubMed  Google Scholar 

  109. Hu, J. C., Silletti, J. P. & Williams, S. B. Initial experience with robot-assisted minimally-invasive nephroureterectomy. J. Endourol. 22, 699–704 (2008).

    PubMed  Google Scholar 

  110. Nanigian, D. K., Smith, W. & Ellison, L. M. Robot-assisted laparoscopic nephroureterectomy. J. Endourol 20, 463–466 (2006).

    PubMed  Google Scholar 

  111. Busby, J. E. & Matin, S. F. Laparoscopic radical nephroureterectomy for transitional cell carcinoma: where are we in 2007? Curr. Opin. Urol. 17, 83–87 (2007).

    PubMed  Google Scholar 

  112. Eandi, J. A., Nelson, R. A., Wilson, T. G. & Josephson, D. Y. Oncologic outcomes for complete robot-assisted laparoscopic management of upper-tract transitional cell carcinoma. J. Endourol. 24, 969–975 (2010).

    PubMed  Google Scholar 

  113. Park, S. Y., Jeong, W., Ham, W. S., Kim, W. T. & Rha, K. H. Initial experience of robotic nephroureterectomy: a hybrid-port technique. BJU Int. 104, 1718–1721 (2009).

    PubMed  Google Scholar 

  114. Zargar, H. et al. Robotic nephroureterectomy: a simplified approach requiring no patient repositioning or robot redocking. Eur. Urol. 66, 769–777 (2014).

    PubMed  Google Scholar 

  115. Darwiche, F. et al. Operative technique and early experience for robotic-assisted laparoscopic nephroureterectomy (RALNU) using da Vinci Xi. Springerplus 4, 298 (2015).

    PubMed  PubMed Central  Google Scholar 

  116. Argun, O. et al. Radical nephroureterectomy without patient or port repositioning using the da Vinci Xi robotic system: initial experience. Urology 92, 136–139 (2016).

    PubMed  Google Scholar 

  117. Tinay, I. et al. Trends in utilisation, perioperative outcomes, and costs of nephroureterectomies in the management of upper tract urothelial carcinoma: a 10-year population-based analysis. BJU Int. 117, 954–960 (2016).

    PubMed  Google Scholar 

  118. Aboumohamed, A. A., Krane, L. S. & Hemal, A. K. Oncologic outcomes following robot-assisted laparoscopic nephroureterectomy with bladder cuff excision for upper tract urothelial carcinoma. J. Urol. 194, 1561–1566 (2015).

    PubMed  Google Scholar 

  119. Pearce, S. M. et al. The effect of surgical approach on performance of lymphadenectomy and perioperative morbidity for radical nephroureterectomy. Urol. Oncol. 34, 121.e15–121.e21 (2016).

    Google Scholar 

  120. Ball, M. W. & Allaf, M. E. Robot-assisted adrenalectomy (total, partial, and metastasectomy). Urol. Clin. North Am. 41, 539–547 (2014).

    PubMed  Google Scholar 

  121. Winfieid, H. N., Hamilton, B. D., Bravo, E. L. & Novick, A. C. Laparoscopic adrenalectomy: the preferred choice? A comparison to open adrenalectomy. J. Urol. 160, 325–329 (1998).

    Google Scholar 

  122. Morino, M. et al. Robot-assisted vs laparoscopic adrenalectomy: a prospective randomized controlled trial. Surg. Endosc. 18, 1742–1746 (2004).

    CAS  PubMed  Google Scholar 

  123. Brandao, L. F. et al. Robot-assisted laparoscopic adrenalectomy: step-by-step technique and comparative outcomes. Eur. Urol. 66, 898–905 (2014).

    PubMed  Google Scholar 

  124. Economopoulos, K. et al. Laparoscopic versus robotic adrenalectomy: a comprehensive meta-analysis. Int. J. Surg. 38, 95–104 (2017).

    PubMed  Google Scholar 

  125. Probst, K. A. et al. Robotic-assisted vs. open adrenalectomy: evaluation of cost effectiveness and perioperative outcome. BJU Int. 118, 952–957 (2016).

    PubMed  Google Scholar 

  126. Ludwig, A., Wagner, K., Lowry, P., Papaconstantinou, H. & Lairmore, T. Robot-assisted posterior retroperitoneoscopic adrenalectomy. J. Endourol. 24, 1307–1314 (2010).

    PubMed  Google Scholar 

  127. Lairmore, T. C., Folek, J., Govednik, C. M. & Snyder, S. K. Improving minimally invasive adrenalectomy: selection of optimal approach and comparison of outcomes. World J. Surg. 40, 1625–1631 (2016).

    PubMed  Google Scholar 

  128. Arghami, A., Dy, B. M., Bingener, J., Osborn, J. & Richards, M. L. Single-port robotic-assisted adrenalectomy: feasibility, safety, and cost-effectiveness. JSLS 19, e2014.00218 (2015).

    PubMed  PubMed Central  Google Scholar 

  129. Park, J. H. et al. Robot-assisted posterior retroperitoneoscopic adrenalectomy using single-port access: technical feasibility and preliminary results. Ann. Surg. Oncol. 20, 2741–2745 (2013).

    PubMed  Google Scholar 

  130. Colleselli, D. & Janetschek, G. Current trends in partial adrenalectomy. Curr. Opin. Urol. 25, 89–94 (2015).

    PubMed  Google Scholar 

  131. Kumar, A., Hyams, E. S. & Stifelman, M. D. Robot-assisted partial adrenalectomy for isolated adrenal metastasis. J. Endourol. 23, 651–654 (2009).

    PubMed  Google Scholar 

  132. Asher, K. P. et al. Robot-assisted laparoscopic partial adrenalectomy for pheochromocytoma: the national cancer institute technique. Eur. Urol. 60, 118–124 (2011).

    PubMed  PubMed Central  Google Scholar 

  133. Manny, T. B., Pompeo, A. S. & Hemal, A. K. Robotic partial adrenalectomy using indocyanine green dye with near-infrared imaging: the initial clinical experience. Urology 82, 738–742 (2013).

    PubMed  Google Scholar 

  134. Hu, J. C. et al. Technique and outcomes of robot-assisted retroperitoneoscopic partial nephrectomy: a multicenter study. Eur. Urol. 66, 542–549 (2014).

    PubMed  Google Scholar 

  135. Weizer, A. Z., Palella, G. V., Montgomery, J. S., Miller, D. C. & Hafez, K. S. Robot-assisted retroperitoneal partial nephrectomy: technique and perioperative results. J. Endourol. 25, 553–557 (2011).

    PubMed  Google Scholar 

  136. Feliciano, J. & Stifelman, M. Robotic retroperitoneal partial nephrectomy: a four-arm approach. JSLS 16, 208–211 (2012).

    PubMed  PubMed Central  Google Scholar 

  137. Patel, M. & Porter, J. Robotic retroperitoneal partial nephrectomy. World J. Urol. 31, 1377–1382 (2013).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for this manuscript and made a substantial contribution to discussions of content. W.W.L. wrote the manuscript, and all authors made a substantial contribution to editing and/or reviewing the manuscript prior to submission.

Corresponding author

Correspondence to Wesley W. Ludwig.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ludwig, W., Gorin, M., Pierorazio, P. et al. Frontiers in robot-assisted retroperitoneal oncological surgery. Nat Rev Urol 14, 731–741 (2017). https://doi.org/10.1038/nrurol.2017.149

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2017.149

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer