Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Intervertebral disc regeneration: do nutrients lead the way?

Abstract

Strategies for the biological repair of intervertebral discs derive from the premise that disc degeneration results from impaired cellular activity and, therefore, that these structures can be induced to regenerate by implanting active cells or providing factors that restore normal cellular activity. In vitro and animal studies using this approach have had some success, but whether this success can be reproduced in degenerate human lumbar discs is unknown. Successful repair requires that the disc cells remain viable and active; they therefore need an adequate supply of nutrients. However, as the disc degenerates, the nutrient supply decreases, thereby limiting cell activity and viability. Current biologic approaches might place additional demands on an already precarious nutrient supply. Here, we discuss whether the loss of nutrients associated with disc degeneration limits the effectiveness of biologic approaches, and indicate that this neglected problem requires investigation if clinical application of such therapies is to succeed.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Pathways of nutrient supply in a normal intervertebral disc.
Figure 2: Schematic showing factors influencing the balance between the rates of nutrient supply and demand.
Figure 3: Schematic showing the potential influence of biological therapies on nutrient balance.

References

  1. Vos, T. et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2163–2196 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Roberts, S., Evans, H., Trivedi, J. & Menage, J. Histology and pathology of the human intervertebral disc. J. Bone Joint Surg. Am. 88 (Suppl. 2), 10–14 (2006).

    PubMed  Google Scholar 

  3. Adams, M. A. & Roughley, P. J. What is intervertebral disc degeneration, and what causes it? Spine 31, 2151–2161 (2006).

    Article  PubMed  Google Scholar 

  4. Thompson, J. et al. Preliminary evaluation of a scheme for grading the gross morphology of the human intervertebral disc. Spine 15, 411–415 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Pfirrmann, C. W., Metzdorf, A., Zanetti, M., Hodler, J. & Boos, N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila. Pa 1976) 26, 1873–1878 (2001).

    Article  CAS  Google Scholar 

  6. Battie, M. C. & Videman, T. Lumbar disc degeneration: epidemiology and genetics. J. Bone Joint Surg. Am. 88 (Suppl. 2), 3–9 (2006).

    PubMed  Google Scholar 

  7. Sivan, S. S. et al. Biochemical composition and turnover of the extracellular matrix of the normal and degenerate intervertebral disc. Eur. Spine J. http://dx.doi.org/10.1007/s00586-013-2767-8.

  8. Grunhagen, T., Shirazi-Adl, A., Fairbank, J. C. & Urban, J. P. Intervertebral disk nutrition: a review of factors influencing concentrations of nutrients and metabolites. Orthop. Clin. North Am. 42, 465–477 (2011).

    Article  PubMed  Google Scholar 

  9. Roberts, S., Menage, J. & Urban, J. P. Biochemical and structural properties of the cartilage end-plate and its relation to the intervertebral disc. Spine (Phila. Pa 1976) 14, 166–174 (1989).

    Article  CAS  Google Scholar 

  10. Urban, J. P., Holm, S., Maroudas, A. & Nachemson, A. Nutrition of the intervertebral disc: effect of fluid flow on solute transport. Clin. Orthop. Relat. Res. 170, 296–302 (1982).

    CAS  Google Scholar 

  11. Boubriak, O. A., Watson, N., Sivan, S. S., Stubbens, N. & Urban, J. P. Factors regulating viable cell density in the intervertebral disc: blood supply in relation to disc height. J. Anat. 222, 341–348 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Horner, H. A. & Urban, J. P. 2001 Volvo Award Winner in Basic Science Studies: Effect of nutrient supply on the viability of cells from the nucleus pulposus of the intervertebral disc. Spine (Phila. Pa 1976) 26, 2543–2549 (2001).

    Article  CAS  Google Scholar 

  13. Bibby, S. R., Fairbank, J. C., Urban, M. R. & Urban, J. P. Cell viability in scoliotic discs in relation to disc deformity and nutrient levels. Spine (Phila. Pa 1976) 27, 2220–2228 (2002).

    Article  Google Scholar 

  14. Stephan, S., Johnson, W. E. & Roberts, S. The influence of nutrient supply and cell density on the growth and survival of intervertebral disc cells in 3D culture. Eur. Cell. Mater. 22, 97–108 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Bartels, E. M., Fairbank, J. C., Winlove, C. P. & Urban, J. P. Oxygen and lactate concentrations measured in vivo in the intervertebral discs of patients with scoliosis and back pain. Spine (Phila. Pa 1976) 23, 1–7 (1998).

    Article  CAS  Google Scholar 

  16. Kobayashi, S., Meir, A. & Urban, J. Effect of cell density on the rate of glycosaminoglycan accumulation by disc and cartilage cells in vitro. J. Orthop. Res. 26, 493–503 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Huang, Y. C., Leung, V. Y., Lu, W. W. & Luk, K. D. The effects of microenvironment in mesenchymal stem cell-based regeneration of intervertebral disc. Spine J. 13, 352–362 (2013).

    Article  PubMed  Google Scholar 

  18. Wuertz, K., Godburn, K. & Iatridis, J. C. MSC response to pH levels found in degenerating intervertebral discs. Biochem. Biophys. Res. Commun. 379, 824–829 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kauppila, L. I. Atherosclerosis and disc degeneration/low-back pain--a systematic review. Eur. J. Vasc Endovasc Surg. 37, 661–670 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Tokuda, O., Okada, M., Fujita, T. & Matsunaga, N. Correlation between diffusion in lumbar intervertebral disks and lumbar artery status: evaluation with fresh blood imaging technique. J. Magn. Reson. Imaging 25, 185–191 (2007).

    Article  PubMed  Google Scholar 

  21. Rajasekaran, S., Venkatadass, K., Naresh Babu, J., Ganesh, K. & Shetty, A. P. Pharmacological enhancement of disc diffusion and differentiation of healthy, ageing and degenerated discs: Results from in-vivo serial post-contrast MRI studies in 365 human lumbar discs. Eur. Spine J. 17, 626–643 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Turgut, M., Uysal, A., Uslu, S., Tavus, N. & Yurtseven, M. E. The effects of calcium channel antagonist nimodipine on end-plate vascularity of the degenerated intervertebral disc in rats. J. Clin. Neurosci. 10, 219–223 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Holm, S. & Nachemson, A. Nutrition of the intervertebral disc: acute effects of cigarette smoking. An experimental animal study. Ups. J. Med. Sci. 93, 91–99 (1988).

    Article  CAS  PubMed  Google Scholar 

  24. Nachemson, A., Lewin, T., Maroudas, A. & Freeman, M. A. In vitro diffusion of dye through the end-plates and the annulus fibrosus of human lumbar inter-vertebral discs. Acta Orthop. Scand. 41, 589–607 (1970).

    Article  CAS  PubMed  Google Scholar 

  25. Benneker, L. M., Heini, P. F., Alini, M., Anderson, S. E. & Ito, K. 2004 Young Investigator Award Winner: vertebral endplate marrow contact channel occlusions and intervertebral disc degeneration. Spine (Phila. Pa 1976) 30, 167–173 (2005).

    Article  Google Scholar 

  26. Hristova, G. I. et al. Calcification in human intervertebral disc degeneration and scoliosis. J. Orthop. Res. 29, 1888–1895 (2011).

    Article  PubMed  Google Scholar 

  27. Roberts, S., Urban, J. P., Evans, H. & Eisenstein, S. M. Transport properties of the human cartilage endplate in relation to its composition and calcification. Spine (Phila. Pa 1976) 21, 415–420 (1996).

    Article  CAS  Google Scholar 

  28. Wang, Y., Videman, T. & Battie, M. C. Lumbar vertebral endplate lesions: prevalence, classification, and association with age. Spine (Phila. Pa 1976) 37, 1432–1439 (2012).

    Article  Google Scholar 

  29. Ogata, K. & Whiteside, L. A. 1980 Volvo award winner in basic science. Nutritional pathways of the intervertebral disc. An experimental study using hydrogen washout technique. Spine (Phila. Pa 1976) 6, 211–216 (1981).

    Article  CAS  Google Scholar 

  30. Rajasekaran, S. et al. ISSLS prize winner: A study of diffusion in human lumbar discs: a serial magnetic resonance imaging study documenting the influence of the endplate on diffusion in normal and degenerate discs. Spine (Phila. Pa 1976) 29, 2654–2667 (2004).

    Article  CAS  Google Scholar 

  31. Stefanovic-Racic, M., Stadler, J., Georgescu, H. I. & Evans, C. H. Nitric oxide and energy production in articular chondrocytes. J. Cell Physiol. 159, 274–280 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Risbud, M. V. & Shapiro, I. M. Role of cytokines in intervertebral disc degeneration: pain and disc content. Nat. Rev. Rheumatol. 10, 44–56 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Shirazi-Adl, A., Taheri, M. & Urban, J. P. Analysis of cell viability in intervertebral disc: Effect of endplate permeability on cell population. J. Biomech. 43, 1330–1336 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Nomura, T., Mochida, J., Okuma, M., Nishimura, K. & Sakabe, K. Nucleus pulposus allograft retards intervertebral disc degeneration. Clin. Orthop. Relat. Res. 389, 94–101 (2001).

    Article  Google Scholar 

  35. Kregar Velikonja, N. et al. Cell sources for nucleus pulposus regeneration. Eur. Spine J. http://dx.doi.org/10.1007/s00586-013-3106-9.

  36. Pereira, D. R., Silva-Correia, J., Oliveira, J. M. & Reis, R. L. Hydrogels in acellular and cellular strategies for intervertebral disc regeneration. J. Tissue Eng. Regen. Med. 7, 85–98 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Hudson, K. D., Alimi, M., Grunert, P., Hartl, R. & Bonassar, L. J. Recent advances in biological therapies for disc degeneration: tissue engineering of the annulus fibrosus, nucleus pulposus and whole intervertebral discs. Curr. Opin. Biotechnol. 24, 872–879 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Yoshikawa, T., Ueda, Y., Miyazaki, K., Koizumi, M. & Takakura, Y. Disc regeneration therapy using marrow mesenchymal cell transplantation: a report of two case studies. Spine (Phila. Pa 1976) 35, E475–E480 (2010).

    Article  Google Scholar 

  39. Orozco, L. et al. Intervertebral disc repair by autologous mesenchymal bone marrow cells: a pilot study. Transplantation 92, 822–828 (2011).

    Article  PubMed  Google Scholar 

  40. Meisel, H. J. et al. Clinical experience in cell-based therapeutics: disc chondrocyte transplantation A treatment for degenerated or damaged intervertebral disc. Biomol. Eng. 24, 5–21 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Coric, D., Pettine, K., Sumich, A. & Boltes, M. O. Prospective study of disc repair with allogeneic chondrocytes presented at the 2012 Joint Spine Section Meeting. J. Neurosurg. Spine 18, 85–95 (2013).

    Article  PubMed  Google Scholar 

  42. US National Library of Medicine. ClinialTrial.gov [online], (2013).

  43. US National Library of Medicine. ClinialTrial.gov [online], (2013).

  44. Bae, W. C. & Masuda, K. Emerging technologies for molecular therapy for intervertebral disk degeneration. Orthop. Clin. North Am. 42, 585–601 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Woods, B. I., Vo, N., Sowa, G. & Kang, J. D. Gene therapy for intervertebral disk degeneration. Orthop. Clin. North Am. 42, 563–574, ix (2011).

    Article  PubMed  Google Scholar 

  46. Wang, Z., Hutton, W. C. & Yoon, S. T. ISSLS Prize winner: Effect of link protein peptide on human intervertebral disc cells. Spine (Phila. Pa 1976) 38, 1501–1507 (2013).

    Article  Google Scholar 

  47. Gawri, R. et al. Best paper NASS 2013: link-N. can stimulate proteoglycan synthesis in the degenerated human intervertebral discs. Eur. Cell. Mater. 26, 107–119 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. US National Library of Medicine. ClinialTrial.gov [online], (2013).

  49. Bowles, R. D., Gebhard, H. H., Hartl, R. & Bonassar, L. J. Tissue-engineered intervertebral discs produce new matrix, maintain disc height, and restore biomechanical function to the rodent spine. Proc. Natl Acad. Sci. USA 108, 13106–13111 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schollum, M. L., Robertson, P. A. & Broom, N. D. A microstructural investigation of intervertebral disc lamellar connectivity: detailed analysis of the translamellar bridges. J. Anat. 214, 805–816 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Alini, M., Roughley, P. J., Antoniou, J., Stoll, T. & Aebi, M. A biological approach to treating disc degeneration: not for today, but maybe for tomorrow. Eur. Spine J. 11 (Suppl. 2), S215–S220 (2002).

    PubMed  PubMed Central  Google Scholar 

  52. Nosikova, Y. S., Santerre, J. P., Grynpas, M., Gibson, G. & Kandel, R. A. Characterization of the annulus fibrosus-vertebral body interface: identification of new structural features. J. Anat. 221, 577–589 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Luk, K. D. & Ruan, D. K. Intervertebral disc transplantation: a biological approach to motion preservation. Eur. Spine J. 17 (Suppl. 4), 504–510 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ruan, D. et al. Intervertebral disc transplantation in the treatment of degenerative spine disease: a preliminary study. Lancet 369, 993–999 (2007).

    Article  PubMed  Google Scholar 

  55. Ding, Y. et al. Imaging evaluation and relative significance in cases of cervical disc allografting: radiographic character following total disc transplantation. J. Spinal Disord. Tech. http://dx.doi.org/10.1097/BSD.0b013e318290fc41.

  56. Alini, M. et al. Are animal models useful for studying human disc disorders/degeneration? Eur. Spine J. 17, 2–19 (2008).

    Article  PubMed  Google Scholar 

  57. Bendtsen, M., Bunger, C. E., Zou, X., Foldager, C. & Jorgensen, H. S. Autologous stem cell therapy maintains vertebral blood flow and contrast diffusion through the endplate in experimental intervertebral disc degeneration. Spine (Phila. Pa 1976) 36, E373–E379 (2011).

    Article  Google Scholar 

  58. Le Maitre, C. L., Hoyland, J. A. & Freemont, A. J. Interleukin-1 receptor antagonist delivered directly and by gene therapy inhibits matrix degradation in the intact degenerate human intervertebral disc: an in situ zymographic and gene therapy study. Arthritis Res. Ther. 9, R83 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ellingson, A. M., Mehta, H., Polly, D. W., Ellermann, J. & Nuckley, D. J. Disc degeneration assessed by quantitative T2* (T2 star) correlated with functional lumbar mechanics. Spine (Phila. Pa 1976) 38, E1533–E1540 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The authors of this work were supported financially by the Research Grants Council of Hong Hong and Tam Sai Kit Endowment Fund (Y.-C.H and K.D.K.L) and by the European Community (FP7,2007-2013) under grant agreement no. HEALTH-F2-2008-201626 (J.P.G.U).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article, provided substantial contributions to discussions of its content, wrote the article and undertook review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Keith D. K. Luk.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, YC., Urban, J. & Luk, K. Intervertebral disc regeneration: do nutrients lead the way?. Nat Rev Rheumatol 10, 561–566 (2014). https://doi.org/10.1038/nrrheum.2014.91

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2014.91

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing