Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mesenchymal stem cells in joint disease and repair

Abstract

Osteoarthritis (OA), a prevalent chronic condition with a striking impact on quality of life, represents an enormous societal burden that increases greatly as populations age. Yet no approved pharmacological intervention, biologic therapy or procedure prevents the progressive destruction of the OA joint. Mesenchymal stem cells (MSCs)—multipotent precursors of connective tissue cells that can be isolated from many adult tissues, including those of the diarthrodial joint—have emerged as a potential therapy. Endogenous MSCs contribute to maintenance of healthy tissues by acting as reservoirs of repair cells or as immunomodulatory sentinels to reduce inflammation. The onset of degenerative changes in the joint is associated with aberrant activity or depletion of these cell reservoirs, leading to loss of chondrogenic potential and preponderance of a fibrogenic phenotype. Local delivery of ex vivo cultures of MSCs has produced promising outcomes in preclinical models of joint disease. Mechanistically, paracrine signalling by MSCs might be more important than differentiation in stimulating repair responses; thus, paracrine factors must be assessed as measures of MSC therapeutic potency, to replace traditional assays based on cell-surface markers and differentiation. Several early-stage clinical trials, initiated or underway in 2013, are testing the delivery of MSCs as an intra-articular injection into the knee, but optimal dose and vehicle are yet to be established.

Key Points

  • Osteoarthritis (OA) is associated with progressive and irreversible destruction of joint tissues with no defined aetiology

  • All joint tissues contain resident populations of mesenchymal stem cells (MSCs) capable of differentiating into cartilage, bone and other tissues

  • OA seems to be associated with changes in the quantity, phenotype, and differentiation potential of resident MSCs

  • Transplantation of ex vivo preparations of MSCs to the OA joint can evoke a therapeutically useful repair response in animal models of the disease

  • The repair effect mediated by delivered MSCs seems to arise as a result of paracrine responses

  • Early-stage clinical trials, initiated or underway in 2013, are testing intra-articular injection of MSCs, mostly without scaffold in the knee, but the optimal dose and vehicle have not been established

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characteristics, culture phenotypes and cell-surface markers* of MSCs isolated from tissues within the knee joint.
Figure 2: Cell therapy for the treatment of osteoarthritis using bone marrow-derived MSCs.
Figure 3: Examples of MSC therapy used for the treatment of joint lesions or preclinical models of OA.

Similar content being viewed by others

References

  1. Buckwalter, J. A. & Martin, J. A. Osteoarthritis. Adv. Drug Deliv. Rev. 58, 150–167 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Michaud, C. M. et al. The burden of disease and injury in the United States 1996. Popul. Health Metr. 4, 11 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lawrence, R. C. et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum. 58, 26–35 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gore, M., Tai, K. S., Sadosky, A., Leslie, D. & Stacey, B. R. Clinical comorbidities, treatment patterns, and direct medical costs of patients with osteoarthritis in usual care: a retrospective claims database analysis. J. Med. Econ. 14, 497–507 (2011).

    Article  PubMed  Google Scholar 

  5. McKenna, M. T., Michaud, C. M., Murray, C. J. & Marks, J. S. Assessing the burden of disease in the United States using disability-adjusted life years. Am. J. Prev. Med. 28, 415–423 (2005).

    Article  PubMed  Google Scholar 

  6. Guilak, F. Biomechanical factors in osteoarthritis. Best Pract. Res. Clin. Rheumatol. 25, 815–823 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Findlay, D. M. If good things come from above, do bad things come from below? Arthritis Res. Ther. 12, 119 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Goldring, M. B. & Goldring, S. R. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann. NY Acad. Sci. 1192, 230–237 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. de Lange-Brokaar, B. J. et al. Synovial inflammation, immune cells and their cytokines in osteoarthritis: a review. Osteoarthritis Cartilage 20, 1484–1499 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Ayral, X., Pickering, E. H., Woodworth, T. G., Mackillop, N. & Dougados, M. Synovitis: a potential predictive factor of structural progression of medial tibiofemoral knee osteoarthritis—results of a 1 year longitudinal arthroscopic study in 422 patients. Osteoarthritis Cartilage 13, 361–367 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Benito, M. J., Veale, D. J., FitzGerald, O., van den Berg, W. B. & Bresnihan, B. Synovial tissue inflammation in early and late osteoarthritis. Ann. Rheum. Dis. 64, 1263–1267 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Buckwalter, J. A., Saltzman, C. & Brown, T. The impact of osteoarthritis: implications for research. Clin. Orthop. Relat. Res. 427 (Suppl.), S6–S15 (2004).

    Article  Google Scholar 

  13. Kurtz, S., Ong, K., Lau, E., Mowat, F. & Halpern, M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J. Bone Joint Surg. Am. 89, 780–785 (2007).

    PubMed  Google Scholar 

  14. Friedenstein, A. J., Piatetzky, S. & Petrakova, K. V. Osteogenesis in transplants of bone marrow cells. J. Embryol. Exp. Morphol. 16, 381–390 (1966).

    CAS  PubMed  Google Scholar 

  15. Friedenstein, A. J., Chailakhjan, R. K. & Lalykina, K. S. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet. 3, 393–403 (1970).

    CAS  PubMed  Google Scholar 

  16. Friedenstein, A. J., Chailakhyan, R. K., Latsinik, N. V., Panasyuk, A. F. & Keiliss-Borok, I. V. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 17, 331–340 (1974).

    Article  CAS  PubMed  Google Scholar 

  17. Friedenstein, A. J. Marrow stromal fibroblasts. Calcif. Tissue Int. 56 (Suppl. 1), S17 (1995).

    Article  CAS  Google Scholar 

  18. Owen, M. & Friedenstein, A. J. Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found. Symp. 136, 42–60 (1988).

    CAS  PubMed  Google Scholar 

  19. Bunnell, B. A., Estes, B. T., Guilak, F. & Gimble, J. M. Differentiation of adipose stem cells. Methods Mol. Biol. 456, 155–171 (2008).

    Article  PubMed  Google Scholar 

  20. Gimble, J. M., Katz, A. J. & Bunnell, B. A. Adipose-derived stem cells for regenerative medicine. Circ. Res. 100, 1249–1260 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Meliga, E., Strem, B. M., Duckers, H. J. & Serruys, P. W. Adipose-derived cells. Cell Transplant. 16, 963–970 (2007).

    Article  PubMed  Google Scholar 

  22. Crisan, M. et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3, 301–313 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Troyer, D. L. & Weiss, M. L. Wharton's jelly-derived cells are a primitive stromal cell population. Stem Cells 26, 591–599 (2008).

    Article  PubMed  Google Scholar 

  24. Weiss, M. L. et al. Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson's disease. Stem Cells 24, 781–792 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Weiss, M. L. & Troyer, D. L. Stem cells in the umbilical cord. Stem Cell Rev. 2, 155–162 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Flynn, A., Barry, F. & O'Brien, T. UC blood-derived mesenchymal stromal cells: an overview. Cytotherapy 9, 717–726 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Barry, F. P. & Murphy, J. M. Mesenchymal stem cells: clinical applications and biological characterization. Int. J. Biochem. Cell Biol. 36, 568–584 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Delorme, B. & Charbord, P. Culture and characterization of human bone marrow mesenchymal stem cells. Methods Mol. Med. 140, 67–81 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Bianco, P., Robey, P. G. & Simmons, P. J. Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell 2, 313–319 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sacchetti, B. et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131, 324–336 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Tavian, M. et al. The vascular wall as a source of stem cells. Ann. NY Acad. Sci. 1044, 41–50 (2005).

    Article  PubMed  Google Scholar 

  32. Zannettino, A. C. et al. Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo. J. Cell. Physiol. 214, 413–421 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Caplan, A. I. All MSCs are pericytes? Cell Stem Cell 3, 229–230 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Dulauroy, S., Di Carlo, S. E., Langa, F., Eberl, G. & Peduto, L. Lineage tracing and genetic ablation of ADAM12+ perivascular cells identify a major source of profibrotic cells during acute tissue injury. Nat. Med. 18, 1262–1270 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Kurth, T. B. et al. Functional mesenchymal stem cell niches in adult mouse knee joint synovium in vivo. Arthritis Rheum. 63, 1289–1300 (2011).

    Article  PubMed  Google Scholar 

  36. De Bari, C., Dell'Accio, F., Tylzanowski, P. & Luyten, F. P. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 44, 1928–1942 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Karystinou, A. et al. Distinct mesenchymal progenitor cell subsets in the adult human synovium. Rheumatology (Oxford) 48, 1057–1064 (2009).

    Article  CAS  Google Scholar 

  38. De Bari, C. et al. Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane. J. Cell Biol. 160, 909–918 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Meng, J. et al. The contribution of human synovial stem cells to skeletal muscle regeneration. Neuromuscul. Disord. 20, 6–15 (2010).

    Article  PubMed  Google Scholar 

  40. Jones, E. A. et al. Synovial fluid mesenchymal stem cells in health and early osteoarthritis: detection and functional evaluation at the single-cell level. Arthritis Rheum. 58, 1731–1740 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Jones, E. A. et al. Enumeration and phenotypic characterization of synovial fluid multipotential mesenchymal progenitor cells in inflammatory and degenerative arthritis. Arthritis Rheum. 50, 817–827 (2004).

    Article  PubMed  Google Scholar 

  42. Sekiya, I. et al. Human mesenchymal stem cells in synovial fluid increase in the knee with degenerated cartilage and osteoarthritis. J. Orthop. Res. 30, 943–949 (2012).

    Article  PubMed  Google Scholar 

  43. Morito, T. et al. Synovial fluid-derived mesenchymal stem cells increase after intra-articular ligament injury in humans. Rheumatology (Oxfo rd) 47, 1137–1143 (2008).

    Google Scholar 

  44. Lee, D. H. et al. Synovial fluid CD34 CD44+ CD90+ mesenchymal stem cell levels are associated with the severity of primary knee osteoarthritis. Osteoarthritis Cartilage 20, 106–109 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Sakaguchi, Y., Sekiya, I., Yagishita, K. & Muneta, T. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum. 52, 2521–2529 (2005).

    Article  PubMed  Google Scholar 

  46. Fan, J., Varshney, R. R., Ren, L., Cai, D. & Wang, D. A. Synovium-derived mesenchymal stem cells: a new cell source for musculoskeletal regeneration. Tissue Eng. Part B Rev. 15, 75–86 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Khan, W. S., Adesida, A. B., Tew, S. R., Longo, U. G. & Hardingham, T. E. Fat pad-derived mesenchymal stem cells as a potential source for cell-based adipose tissue repair strategies. Cell Prolif. 45, 111–120 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dowthwaite, G. P. et al. The surface of articular cartilage contains a progenitor cell population. J. Cell Sci. 117, 889–897 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Khan, I. M., Bishop, J. C., Gilbert, S. & Archer, C. W. Clonal chondroprogenitors maintain telomerase activity and Sox9 expression during extended monolayer culture and retain chondrogenic potential. Osteoarthritis Cartilage 17, 518–528 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Williams, R. et al. Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage. PLoS ONE 5, e13246 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Alsalameh, S., Amin, R., Gemba, T. & Lotz, M. Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis Rheum. 50, 1522–1532 (2004).

    Article  PubMed  Google Scholar 

  52. Grogan, S. P., Miyaki, S., Asahara, H., D'Lima, D. D. & Lotz, M. K. Mesenchymal progenitor cell markers in human articular cartilage: normal distribution and changes in osteoarthritis. Arthritis Res. Ther. 11, R85 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fickert, S., Fiedler, J. & Brenner, R. E. Identification of subpopulations with characteristics of mesenchymal progenitor cells from human osteoarthritic cartilage using triple staining for cell surface markers. Arthritis Res. Ther. 6, R422–R432 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Huang, T. F. et al. Isolation and characterization of mesenchymal stromal cells from human anterior cruciate ligament. Cytotherapy 10, 806–814 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Steinert, A. F. et al. Mesenchymal stem cell characteristics of human anterior cruciate ligament outgrowth cells. Tissue Eng. Part A 17, 1375–1388 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Murray, M. M., Bennett, R., Zhang, X. & Spector, M. Cell outgrowth from the human ACL in vitro: regional variation and response to TGF-β1. J. Orthop. Res. 20, 875–880 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Murray, M. M. & Spector, M. The migration of cells from the ruptured human anterior cruciate ligament into collagen-glycosaminoglycan regeneration templates in vitro. Biomaterials 22, 2393–2402 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Cheng, M. T., Yang, H. W., Chen, T. H. & Lee, O. K. Isolation and characterization of multipotent stem cells from human cruciate ligaments. Cell Prolif. 42, 448–460 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Segawa, Y. et al. Mesenchymal stem cells derived from synovium, meniscus, anterior cruciate ligament, and articular chondrocytes share similar gene expression profiles. J. Orthop. Res. 27, 435–441 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Park, D. et al. Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell 10, 259–272 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rinkevich, Y., Lindau, P., Ueno, H., Longaker, M. T. & Weissman, I. L. Germ-layer and lineage-restricted stem/progenitors regenerate the mouse digit tip. Nature 476, 409–413 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Mendez-Ferrer, S. et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466, 829–834 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Flannery, C. R. et al. Articular cartilage superficial zone protein (SZP) is homologous to megakaryocyte stimulating factor precursor and Is a multifunctional proteoglycan with potential growth-promoting, cytoprotective, and lubricating properties in cartilage metabolism. Biochem. Biophys. Res. Commun. 254, 535–541 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Koyama, E. et al. A distinct cohort of progenitor cells participates in synovial joint and articular cartilage formation during mouse limb skeletogenesis. Dev. Biol. 316, 62–73 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lee, C. H. et al. Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. Lancet 376, 440–448 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Murphy, J. M. et al. Reduced chondrogenic and adipogenic activity of mesenchymal stem cells from patients with advanced osteoarthritis. Arthritis Rheum. 46, 704–713 (2002).

    Article  PubMed  Google Scholar 

  67. Scharstuhl, A. et al. Chondrogenic potential of human adult mesenchymal stem cells is independent of age or osteoarthritis etiology. Stem Cells 25, 3244–3251 (2007).

    Article  CAS  PubMed  Google Scholar 

  68. Im, G. I., Jung, N. H. & Tae, S. K. Chondrogenic differentiation of mesenchymal stem cells isolated from patients in late adulthood: the optimal conditions of growth factors. Tissue Eng. 12, 527–536 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Coutu, D. L., Francois, M. & Galipeau, J. Inhibition of cellular senescence by developmentally regulated FGF receptors in mesenchymal stem cells. Blood 117, 6801–6812 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. De Bari, C., Dell'Accio, F. & Luyten, F. P. Human periosteum-derived cells maintain phenotypic stability and chondrogenic potential throughout expansion regardless of donor age. Arthritis Rheum. 44, 85–95 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Jones, E. et al. Large-scale extraction and characterization of CD271+ multipotential stromal cells from trabecular bone in health and osteoarthritis: implications for bone regeneration strategies based on uncultured or minimally cultured multipotential stromal cells. Arthritis Rheum. 62, 1944–1954 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Hiraoka, K., Grogan, S., Olee, T. & Lotz, M. Mesenchymal progenitor cells in adult human articular cartilage. Biorheology 43, 447–454 (2006).

    PubMed  Google Scholar 

  73. Lotz, M. K. et al. Cartilage cell clusters. Arthritis Rheum. 62, 2206–2218 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Koelling, S. et al. Migratory chondrogenic progenitor cells from repair tissue during the later stages of human osteoarthritis. Cell Stem Cell 4, 324–335 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Blaney Davidson, E. N. et al. Elevated extracellular matrix production and degradation upon bone morphogenetic protein-2 (BMP-2) stimulation point toward a role for BMP-2 in cartilage repair and remodeling. Arthritis Res. Ther. 9, R102 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Guo, X., Thomas, A. & Pirkko, L. A study on abnormal chondrocyte differentiation and abnormal expression of collagen types in articular cartilage from patients with Kaschin-Beck disease [Chinese]. Zhonghua Bing Li Xue Za Zhi 27, 19–22 (1998).

    CAS  PubMed  Google Scholar 

  77. Guo, X. et al. Abnormal expression of Col X, PTHrP, TGF-β, bFGF, and VEGF in cartilage with Kashin-Beck disease. J. Bone Miner. Metab. 24, 319–328 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Pufe, T., Bartscher, M., Petersen, W., Tillmann, B. & Mentlein, R. Pleiotrophin, an embryonic differentiation and growth factor, is expressed in osteoarthritis. Osteoarthritis Cartilage 11, 260–264 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Plaas, A. et al. The relationship between fibrogenic TGFβ1 signaling in the joint and cartilage degradation in post-injury osteoarthritis. Osteoarthritis Cartilage 19, 1081–1090 (2011).

    Article  CAS  PubMed  Google Scholar 

  80. Sandy, J. D., Neame, P. J., Boynton, R. E. & Flannery, C. R. Catabolism of aggrecan in cartilage explants. Identification of a major cleavage site within the interglobular domain. J. Biol. Chem. 266, 8683–8685 (1991).

    CAS  PubMed  Google Scholar 

  81. Glasson, S. S. et al. Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature 434, 644–648 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Stanton, H. et al. ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature 434, 648–652 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Li, J. et al. Knockout of ADAMTS5 does not eliminate cartilage aggrecanase activity but abrogates joint fibrosis and promotes cartilage aggrecan deposition in murine osteoarthritis models. J. Orthop. Res. 29, 516–522 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Velasco, J. et al. Adamts5 deletion blocks murine dermal repair through CD44-mediated aggrecan accumulation and modulation of transforming growth factor β 1 (TGF β 1) signaling. J. Biol. Chem. 286, 26016–26027 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang, Y. W. et al. Targeted disruption of Mig-6 in the mouse genome leads to early onset degenerative joint disease. Proc. Natl Acad. Sci. USA 102, 11740–11745 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Blaney Davidson, E. N. et al. Resemblance of osteophytes in experimental osteoarthritis to transforming growth factor beta-induced osteophytes: limited role of bone morphogenetic protein in early osteoarthritic osteophyte formation. Arthritis Rheum. 56, 4065–4073 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. van der Kraan, P. M., Goumans, M. J., Blaney Davidson, E. & ten Dijke, P. Age-dependent alteration of TGF- β signalling in osteoarthritis. Cell Tissue Res. 347, 257–265 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Anitua, E. et al. Relationship between investigative biomarkers and radiographic grading in patients with knee osteoarthritis. Int. J. Rheumatol. 747432 (2009).

  89. Matsumoto, T. et al. Articular cartilage repair with autologous bone marrow mesenchymal cells. J. Cell. Physiol. 225, 291–295 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Wakitani, S. et al. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J. Bone Joint Surg. Am. 76, 579–592 (1994).

    Article  CAS  PubMed  Google Scholar 

  91. Wakitani, S. et al. Repair of large full-thickness articular cartilage defects with allograft articular chondrocytes embedded in a collagen gel. Tissue Eng. 4, 429–444 (1998).

    Article  CAS  PubMed  Google Scholar 

  92. Murphy, J. M., Fink, D. J., Hunziker, E. B. & Barry, F. P. Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum. 48, 3464–3474 (2003).

    Article  PubMed  Google Scholar 

  93. Diekman, B. O. et al. Intra-articular delivery of purified mesenchymal stem cells from C57BL/6 or MRL/MpJ superhealer mice prevents post-traumatic arthritis. Cell Transplant. http://dx.doi.org/10.3727/096368912X653264

  94. Toghraie, F. et al. Scaffold-free adipose-derived stem cells (ASCs) improve experimentally induced osteoarthritis in rabbits. Arch. Iran. Med. 15, 495–499 (2012).

    PubMed  Google Scholar 

  95. Horie, M. et al. Intra-articular injection of human mesenchymal stem cells (MSCs) promote rat meniscal regeneration by being activated to express Indian hedgehog that enhances expression of type II collagen. Osteoarthritis Cartilage 20, 1197–1207 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sato, M. et al. Direct transplantation of mesenchymal stem cells into the knee joints of Hartley strain guinea pigs with spontaneous osteoarthritis. Arthritis Res. Ther. 14, R31 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Al Faqeh, H., Nor Hamdan, B. M., Chen, H. C., Aminuddin, B. S. & Ruszymah, B. H. The potential of intra-articular injection of chondrogenic-induced bone marrow stem cells to retard the progression of osteoarthritis in a sheep model. Exp. Gerontol. 47, 458–464 (2012).

    Article  PubMed  Google Scholar 

  98. Guercio, A. et al. Production of canine mesenchymal stem cells from adipose tissue and their application in dogs with chronic osteoarthritis of the humeroradial joints. Cell Biol. Int. 36, 189–194 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Frisbie, D. D., Kisiday, J. D., Kawcak, C. E., Werpy, N. M. & McIlwraith, C. W. Evaluation of adipose-derived stromal vascular fraction or bone marrow-derived mesenchymal stem cells for treatment of osteoarthritis. J. Orthop. Res. 27, 1675–1680 (2009).

    Article  PubMed  Google Scholar 

  100. ter Huurne, M. et al. Antiinflammatory and chondroprotective effects of intraarticular injection of adipose-derived stem cells in experimental osteoarthritis. Arthritis Rheum. 64, 3604–3613 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Johnson, K. et al. A stem cell-based approach to cartilage repair. Science 336, 717–721 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Wang, Y. et al. Runx1/AML1/Cbfa2 mediates onset of mesenchymal cell differentiation toward chondrogenesis. J. Bone Miner. Res. 20, 1624–1636 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Wotton, S. et al. Gene array analysis reveals a common Runx transcriptional programme controlling cell adhesion and survival. Oncogene 27, 5856–5866 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  105. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  106. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  107. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  108. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  109. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  110. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  111. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  112. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  113. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  114. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  115. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  116. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  117. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  118. Dominici M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315–317 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding support from Science Foundation Ireland (grant number 09/SRC/B1794), the European Union's 7th Framework Programme (grant numbers HEALTH-2007-B-223298 [PurStem], HEALTH-2009-1.4-3-241719 [ADIPOA] and NMP3-SL-2010-245993 [GAMBA]), and the Health Research Board of Ireland.

Author information

Authors and Affiliations

Authors

Contributions

Both authors made substantial contributions to researching data for the article, discussions of content, writing the article, and review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Frank Barry.

Ethics declarations

Competing interests

F. Barry declares that he owns stocks in Osiris Therapeutics and Orbsen Therapeutics, and is a Director of Orbsen Therapeutics. M. Murphy declares that she owns stocks in Osiris Therapeutics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barry, F., Murphy, M. Mesenchymal stem cells in joint disease and repair. Nat Rev Rheumatol 9, 584–594 (2013). https://doi.org/10.1038/nrrheum.2013.109

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2013.109

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing