Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Regenerative medicine in rheumatic disease—progress in tissue engineering

Abstract

Joint destruction occurs in both osteoarthritis and rheumatoid arthritis. Even in the era of biologic agents, this destruction can be delayed but not averted. As cartilage has limited ability to self-regenerate, joint arthroplasty is required. Here, we outline current tissue engineering procedures (including autologous chondrocyte implantation and in situ mesenchymal stem cell recruitment) that are routinely applied for the regenerative treatment of injured or early osteoarthritic cartilage. Potential future regenerative therapies, including administration of multipotent or pluripotent stem cells, are also discussed. In the future, cell-free, material-based (for cartilage lesions) or cell-free, factor-based (for osteoarthritic cartilage) therapies to facilitate the recruitment of repair cells and improve cartilage metabolism are likely to become more important. Moreover, delivery of anti-inflammatory factors or immunomodulatory cells could be a regenerative treatment option for rheumatoid arthritis. Tissue engineering faces a crucial phase to translate products into clinical routine and the regulatory framework for cell-based products in particular is an important issue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Components, mode of administration and regulatory categories of regenerative therapies.
Figure 2: Major principles for the regenerative treatment of cartilage lesions.

Similar content being viewed by others

References

  1. Grande, D. A., Pitman, M. I., Peterson, L., Menche, D. & Klein, M. The repair of experimentally produced defects in rabbit articular cartilage by autologous chondrocyte transplantation. J. Orthop. Res. 7, 208–218 (1989).

    Article  CAS  Google Scholar 

  2. Daher, R. J., Chahine, N. O., Greenberg, A. S., Sgaglione, N. A. & Grande, D. A. New methods to diagnose and treat cartilage degeneration. Nat. Rev. Rheumatol. 5, 599–607 (2009).

    Article  Google Scholar 

  3. Ossendorf, C. et al. Treatment of posttraumatic and focal osteoarthritic cartilage defects of the knee with autologous polymer-based three-dimensional chondrocyte grafts: 2-year clinical results. Arthritis Res. Ther. 9, R41 (2007).

    Article  Google Scholar 

  4. Kon, E. et al. Second-generation autologous chondrocyte transplantation: MRI findings and clinical correlations at a minimum 5-year follow-up. Eur. J. Radiol. 79, 382–388 (2011).

    Article  CAS  Google Scholar 

  5. Behrens, P., Bitter, T., Kurz, B. & Russlies, M. Matrix-associated autologous chondrocyte transplantation/implantation (MACT/MACI)—5-year follow-up. Knee 13, 194–202 (2006).

    Article  Google Scholar 

  6. Sittinger, M. & Burmester, G. R. Can engineered cartilage transplants be used for treating rheumatic diseases? Nat. Clin. Pract. Rheumatol. 2, 172–173 (2006).

    Article  Google Scholar 

  7. Peterson, L., Vasiliadis, H. S., Brittberg, M. & Lindahl, A. Autologous chondrocyte implantation: a long-term follow-up. Am. J. Sports Med. 38, 1117–1124 (2010).

    Article  Google Scholar 

  8. Knutsen, G. et al. A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J. Bone Joint Surg. Am. 89, 2105–2112 (2007).

    Google Scholar 

  9. Saris, D. B. et al. Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture. Am. J. Sports Med. 36, 235–246 (2008).

    Article  Google Scholar 

  10. Kreuz, P. C. et al. Repair of focal cartilage defects with scaffold-assisted autologous chondrocyte grafts: clinical and biomechanical results 48 months after transplantation. Am. J. Sports Med. 39, 1697–1705 (2011).

    Article  Google Scholar 

  11. Benthien, J. P., Schwaninger, M. & Behrens, P. We do not have evidence based methods for the treatment of cartilage defects in the knee. Knee Surg. Sports Traumatol. Arthrosc. 19, 543–552 (2011).

    Article  Google Scholar 

  12. Bartlett, W. et al. Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study. J. Bone Joint Surg. Br. 87, 640–645 (2005).

    Article  CAS  Google Scholar 

  13. Dehne, T., Karlsson, C., Ringe, J., Sittinger, M. & Lindahl, A. Chondrogenic differentiation potential of osteoarthritic chondrocytes and their possible use in matrix-associated autologous chondrocyte transplantation. Arthritis Res. Ther. 11, R133 (2009).

    Article  Google Scholar 

  14. Hollander, A. P. et al. Maturation of tissue engineered cartilage implanted in injured and osteoarthritic human knees. Tissue Eng. 12, 1787–1798 (2006).

    Article  CAS  Google Scholar 

  15. Kreuz, P. C., Muller, S., Ossendorf, C., Kaps, C. & Erggelet, C. Treatment of focal degenerative cartilage defects with polymer-based autologous chondrocyte grafts: four-year clinical results. Arthritis Res. Ther. 11, R33 (2009).

    Article  Google Scholar 

  16. Pittenger, M. F. et al. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147 (1999).

    Article  CAS  Google Scholar 

  17. Jorgensen, C. & Noel, D. Mesenchymal stem cells in osteoarticular diseases. Regen. Med. 6, 44–51 (2011).

    Article  CAS  Google Scholar 

  18. Murphy, J. M., Fink, D. J., Hunziker, E. B. & Barry, F. P. Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum. 48, 3464–3474 (2003).

    Article  Google Scholar 

  19. Davatchi, F., Abdollahi, B. S., Mohyeddin, M., Shahram, F. & Nikbin, B. Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients. Int. J. Rheum. Dis. 14, 211–215 (2011).

    Article  Google Scholar 

  20. Nejadnik, H., Hui, J. H., Feng Choong, E. P., Tai, B. C. & Lee, E. H. Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am. J. Sports Med. 38, 1110–1116 (2010).

    Article  Google Scholar 

  21. Kuroda, R. et al. Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells. Osteoarthritis Cartilage 15, 226–231 (2007).

    Article  CAS  Google Scholar 

  22. Wakitani, S. et al. Autologous bone marrow stromal cell transplantation for repair of full-thickness articular cartilage defects in human patellae: two case reports. Cell. Transplant. 13, 595–600 (2004).

    Article  Google Scholar 

  23. Wakitani, S. et al. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthritis Cartilage 10, 199–206 (2002).

    Article  CAS  Google Scholar 

  24. Kafienah, W. et al. Three-dimensional cartilage tissue engineering using adult stem cells from osteoarthritis patients. Arthritis Rheum. 56, 177–187 (2007).

    Article  Google Scholar 

  25. Ringe, J. & Sittinger, M. Tissue engineering in the rheumatic diseases. Arthritis Res. Ther. 11, 211 (2009).

    Article  Google Scholar 

  26. Mohal, J. S., Tailor, H. D. & Khan, W. S. Sources of adult mesenchymal stem cells and their applicability for musculoskeletal applications. Curr. Stem Cell Res. Ther. 7, 103–109 (2012).

    Article  CAS  Google Scholar 

  27. Pei, M., He, F. & Vunjak-Novakovic, G. Synovium-derived stem cell-based chondrogenesis. Differentiation 76, 1044–1056 (2008).

    Article  CAS  Google Scholar 

  28. De Bari, C., Dell'Accio, F. & Luyten, F. P. Failure of in vitro-differentiated mesenchymal stem cells from the synovial membrane to form ectopic stable cartilage in vivo. Arthritis Rheum. 50, 142–150 (2004).

    Article  CAS  Google Scholar 

  29. Kim, M. J. et al. Generation of human induced pluripotent stem cells from osteoarthritis patient-derived synovial cells. Arthritis Rheum. 63, 3010–3021 (2011).

    Article  CAS  Google Scholar 

  30. Toh, W. S., Lee, E. H. & Cao, T. Potential of human embryonic stem cells in cartilage tissue engineering and regenerative medicine. Stem Cell Rev. 7, 544–559 (2011).

    Article  Google Scholar 

  31. Benthien, J. P. & Behrens, P. The treatment of chondral and osteochondral defects of the knee with autologous matrix-induced chondrogenesis (AMIC): method description and recent developments. Knee Surg. Sports Traumatol. Arthrosc. 19, 1316–1319 (2011).

    Article  Google Scholar 

  32. Kusano, T. et al. Treatment of isolated chondral and osteochondral defects in the knee by autologous matrix-induced chondrogenesis (AMIC). Knee Surg. Sports Traumatol. Arthrosc. http://dx.doi.org/10.1007/s00167-011-1840-1842.

  33. Erggelet, C. et al. Formation of cartilage repair tissue in articular cartilage defects pretreated with microfracture and covered with cell-free polymer-based implants. J. Orthop. Res. 27, 1353–1360 (2009).

    Article  Google Scholar 

  34. Patrascu, J. M., Freymann, U., Kaps, C. & Poenaru, D. V. Repair of a post-traumatic cartilage defect with a cell-free polymer-based cartilage implant: a follow-up at two years by MRI and histological review. J. Bone Joint Surg. Br. 92, 1160–1163 (2010).

    Article  CAS  Google Scholar 

  35. Siclari, A., Mascaro, G., Gentili, C., Cancedda, R. & Boux, E. A cell-free scaffold-based cartilage repair provides improved function hyaline-like repair at one year. Clin. Orthop. Relat. Res. 470, 910–919 (2012).

    Article  Google Scholar 

  36. Pretzel, D. et al. Relative percentage and zonal distribution of mesenchymal progenitor cells in human osteoarthritic and normal cartilage. Arthritis Res. Ther. 13, R64 (2011).

    Article  CAS  Google Scholar 

  37. Stich, S. et al. Gene expression profiling of human mesenchymal stem cells chemotactically induced with CXCL12. Cell Tissue Res. 336, 225–236 (2009).

    Article  CAS  Google Scholar 

  38. Kruger, J. P. et al. Human platelet-rich plasma stimulates migration and chondrogenic differentiation of human subchondral progenitor cells. J. Orthop. Res. 30, 845–852 (2011).

    Article  Google Scholar 

  39. Fiedler, J., Roderer, G., Gunther, K. P. & Brenner, R. E. BMP-2, BMP-4, and PDGF-bb stimulate chemotactic migration of primary human mesenchymal progenitor cells. J. Cell. Biochem. 87, 305–312 (2002).

    Article  CAS  Google Scholar 

  40. Endres, M. et al. Synovial fluid recruits human mesenchymal progenitors from subchondral spongious bone marrow. J. Orthop. Res. 25, 1299–1307 (2007).

    Article  Google Scholar 

  41. Kalwitz, G. et al. Chemokine profile of human serum from whole blood: migratory effects of CXCL-10 and CXCL-11 on human mesenchymal stem cells. Connect. Tissue Res. 51, 113–122 (2010).

    Article  CAS  Google Scholar 

  42. Fortier, L. A., Barker, J. U., Strauss, E. J., McCarrel, T. M. & Cole, B. J. The role of growth factors in cartilage repair. Clin. Orthop. Relat. Res. 469, 2706–2715 (2011).

    Article  Google Scholar 

  43. US National Library of Medicine. Study of TG-C in patients with grade 3 degenerative joint diseases of the knee. ClinialTrial.gov [online], (2012).

  44. Chen, W., Tabata, Y. & Tong, Y. W. Fabricating tissue engineering scaffolds for simultaneous cell growth and drug delivery. Curr. Pharm. Des. 16, 2388–2394 (2010).

    Article  CAS  Google Scholar 

  45. Andreas, K. et al. Biodegradable insulin-loaded PLGA microspheres fabricated by three different emulsification techniques: investigation for cartilage tissue engineering. Acta Biomater. 7, 1485–1495 (2011).

    Article  CAS  Google Scholar 

  46. Park, J. S., Yang, H. N., Woo, D. G., Chung, H. M. & Park, K. H. In vitro and in vivo chondrogenesis of rabbit bone marrow-derived stromal cells in fibrin matrix mixed with growth factor loaded in nanoparticles. Tissue Eng. Part A 15, 2163–2175 (2009).

    Article  CAS  Google Scholar 

  47. da Silva, M. A., Martins, A., Teixeira, A. A., Reis, R. L. & Neves, N. M. Impact of biological agents and tissue engineering approaches on the treatment of rheumatic diseases. Tissue Eng. Part B Rev. 16, 331–339 (2010).

    Article  Google Scholar 

  48. Ghannam, S., Bouffi, C., Djouad, F., Jorgensen, C. & Noel, D. Immunosuppression by mesenchymal stem cells: mechanisms and clinical applications. Stem Cell Res. Ther. 1, 2 (2010).

    Article  Google Scholar 

  49. European Medicines Agency, CAT Secretariat & US Food and Drug Administration. Regen. Med. 6, 90–96 (2011).

  50. Halme, D. G. & Kessler, D. A. FDA regulation of stem-cell-based therapies. N. Engl. J. Med. 355, 1730–1735 (2006).

    Article  CAS  Google Scholar 

  51. McAllister, T. N., Dusserre, N., Maruszewski, M. & L'Heureux, N. Cell-based therapeutics from an economic perspective: primed for a commercial success or a research sinkhole? Regen. Med. 3, 925–937 (2008).

    Article  Google Scholar 

  52. Gerlier, L. et al. The cost utility of autologous chondrocytes implantation using ChondroCelect(R) in symptomatic knee cartilage lesions in Belgium. Pharmacoeconomics 28, 1129–1146 (2010).

    Article  Google Scholar 

  53. Rayment, E. A. & Williams, D. J. Concise review: mind the gap: challenges in characterizing and quantifying cell- and tissue-based therapies for clinical translation. Stem Cells 28, 996–1004 (2010).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (Grant: DFG SI 569/7-1) and the Bundesministerium für Bildung und Forschung (Grant: BCRT 0315848A).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to researching of data, writing, and reviewing/editing of the manuscript before submission. J. Ringe and M. Sittinger made equal contributions to discussion of content.

Corresponding author

Correspondence to Michael Sittinger.

Ethics declarations

Competing interests

M. Sittinger is a shareholder of CellServe GmbH (Berlin, Germany) and BioRetis GmbH (Berlin, Germany), and works as consultant for BioTissue Technologies GmbH (Freiburg, Germany) that develops tissue transplants for the regeneration of bone and cartilage. G.R. Burmester and J. Ringe have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ringe, J., Burmester, G. & Sittinger, M. Regenerative medicine in rheumatic disease—progress in tissue engineering. Nat Rev Rheumatol 8, 493–498 (2012). https://doi.org/10.1038/nrrheum.2012.98

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2012.98

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research