Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hepatotoxicity related to antirheumatic drugs

Abstract

Antirheumatic agents are among commonly used drugs associated with adverse hepatic reactions. Sulfasalazine and azathioprine are among the most important causes of acute hepatotoxicity. Because such a large number of people take NSAIDs, even the rare occurrence of hepatotoxicity from these agents might contribute substantially to the total burden of drug-induced liver disease. A wide spectrum of hepatotoxic effects is described with antirheumatic drugs. Studies investigating genetic susceptibility to diclofenac hepatotoxicity have expanded our understanding of the potential drug-specific, class-specific and general factors involved in its pathogenesis, and methotrexate-associated liver disease demonstrates the interaction between drug, host and environmental factors that determines the likelihood and magnitude of liver disease. Infliximab therapy is associated with typical drug-induced autoimmune hepatitis. Although validated causality assessment methods have been used to objectively assess the strength of the association between a drug and a clinical event, in practice the diagnosis of drug-induced liver injury (DILI) involves a clinical index of suspicion, pattern recognition, the establishment of a temporal relationship between drug exposure and the adverse event, and the exclusion of alternative explanations for the clinical presentation. Detailed understanding of genetic and environmental factors underlying an individual's susceptibility would enable risk reduction and potentially primary prevention of hepatotoxicity.

Key Points

  • Antirheumatic agents are among commonly used drugs associated with hepatotoxic effects ranging from acute drug-induced liver injury (DILI) to chronic drug-associated liver disease and drug-induced autoimmune hepatitis

  • Diclofenac hepatotoxicity demonstrates that the pathogenesis of acute 'idiosyncratic' DILI is a multistep process involving interaction between metabolic and immunologic factors

  • Drug regimen and genetic susceptibility contribute to the pathogenesis of methotrexate-associated chronic liver disease; however, environmental factors are the major determinants of the extent of liver injury

  • Avoiding the use of a particular drug in those with recognized risk factors (e.g. methotrexate in those with diabetes, obesity or excessive alcohol consumption) whenever clinically feasible, could reduce the risk of serious DILI

  • Novel serum markers and imaging techniques can detect evidence of liver fibrosis non-invasively and their use in the monitoring of methotrexate-associated chronic liver disease should be evaluated

  • The strong association between a common HLA haplotype and lumiracoxib-induced liver injury raises the possibility of pre-prescription testing and primary prevention of acute idiosyncratic DILI

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of diclofenac hepatotoxicity, an archetype of idiosyncratic DILI.
Figure 2: Mechanisms underlying methotrexate hepatotoxicity, an archetype of chronic drug-associated liver disease.
Figure 3: Nodular regenerative hyperplasia associated with long-term azathioprine therapy.

Similar content being viewed by others

References

  1. Olson, H. et al. Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul. Toxicol. Pharmacol. 32, 56–67 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Laine, L. et al. How common is diclofenac-associated liver injury? Analysis of 17,289 arthritis patients in a long-term prospective clinical trial. Am. J. Gastroenterol. 104, 356–362 (2009).

    Article  PubMed  Google Scholar 

  3. Traversa, G. et al. Cohort study of hepatotoxicity associated with nimesulide and other non-steroidal anti-inflammatory drugs. BMJ 327, 18–22 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Scottish Government Health Directorates. Lumiracoxib: suspension of UK licences with immediate effect (non urgent) cascade within 48 hours. SGHD on SHOW [online], (2007).

  5. de Abajo, F. J., Montero, D., Madurga, M. & García Rodríguez, L. A. Acute and clinically relevant drug-induced liver injury: a population based case–control study. Br. J. Clin. Pharmacol. 58, 71–80 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Paulose-Ram, R. et al. Prescription and non-prescription analgesic use among the US adult population: results from the third National Health and Nutrition Examination Survey (NHANES III). Pharmacoepidemiol. Drug Saf. 12, 315–326 (2003).

    Article  PubMed  Google Scholar 

  7. Aithal, G. P. & Day, C. P. Nonsteroidal anti-inflammatory drug-induced hepatotoxicity. Clin. Liver Dis. 11, 563–575 (2007).

    Article  PubMed  Google Scholar 

  8. Rubenstein, J. H. & Laine, L. Systematic review: the hepatotoxicity of non-steroidal anti-inflammatory drugs. Aliment. Pharmacol. Ther. 20, 373–380 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Perez Gutthann, S. & García Rodríguez, L. A. The increased risk of hospitalizations for acute liver injury in a population with exposure to multiple drugs. Epidemiology 4, 496–501 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. García Rodríguez, L. A., Williams, R., Derby, L. E., Dean, A. D. & Jick, H. Acute liver injury associated with nonsteroidal anti-inflammatory drugs and the role of risk factors. Arch. Intern. Med. 154, 311–316 (1994).

    Article  PubMed  Google Scholar 

  11. Banks, A. T., Zimmerman, H. J., Ishak, K. G. & Harter, J. G. Diclofenac-associated hepatotoxicity: analysis of 180 cases reported to the Food and Drug Administration as adverse reactions. Hepatology 22, 820–827 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Chitturi, S. & George, J. Hepatotoxicity of commonly used drugs: nonsteroidal anti-inflammatory drugs, antihypertensives, antidiabetic agents, anticonvulsants, lipid-lowering agents, psychotropic drugs. Semin. Liver Dis. 22, 169–183 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Aithal, G. P. Diclofenac-induced liver injury: a paradigm of idiosyncratic drug toxicity. Expert Opin. Drug Saf. 3, 519–523 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Aithal, G. P., Day, C. P., Leathart, J. B. & Daly, A. K. Relationship of polymorphism in CYP2C9 to genetic susceptibility to diclofenac-induced hepatitis. Pharmacogenetics 10, 511–518 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Thibaudeau, J. et al. Characterization of common UGT1A8, UGT1A9, and UGT2B7 variants with different capacities to inactivate mutagenic 4-hydroxylated metabolites of estradiol and estrone. Cancer Res. 66, 125–133 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Duguay, Y., Báár, C., Skorpen, F. & Guillemette, C. A novel functional polymorphism in the uridine diphosphate–glucuronosyltransferase 2B7 promoter with significant impact on promoter activity. Clin. Pharmacol. Ther. 75, 223–233 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Daly, A. K. et al. Genetic susceptibility to diclofenac-induced hepatotoxicity: contribution of UGT2B7, CYP2C8, and ABCC2 genotypes. Gastroenterology 132, 272–281 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Jensen, L. E. et al. A common ABCC2 promoter polymorphism is not a determinant of the risk of spina bifida. Birth Defects Res. A Clin. Mol. Teratol. 70, 396–399 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Haenisch, S. et al. Influence of polymorphisms of ABCB1 and ABCC2 on mRNA and protein expression in normal and cancerous kidney cortex. Pharmacogenomics J. 7, 56–65 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Dai, D. et al. Polymorphisms in human CYP2C8 decrease metabolism of the anticancer drug paclitaxel and arachidonic acid. Pharmacogenetics 11, 597–607 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Bahadur, N. et al. CYP2C8 polymorphisms in Caucasians and their relationship with paclitaxel 6a-hydroxylase activity in human liver microsomes. Biochem. Pharmacol. 64, 1579–1589 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Niemi, M. et al. Polymorphism in CYP2C8 is associated with reduced plasma concentrations of repaglinide. Clin. Pharmacol. Ther. 74, 380–387 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Aithal, G. P. et al. Hepatic adducts, circulating antibodies, and cytokine polymorphisms in patients with diclofenac hepatotoxicity. Hepatology 39, 1430–1440 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Pirmohamed, M., Naisbitt, D. J., Gordon, F. & Park, B. K. The danger hypothesis—potential role in idiosyncratic drug reactions. Toxicology 181182, 55–63 (2002).

    Article  PubMed  Google Scholar 

  25. Kaplowitz, N. Idiosyncratic drug hepatotoxicity. Nat. Rev. Drug Discov. 4, 489–499 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Tarazi, E. M., Harter, J. G., Zimmerman, H. J., Ishak, K. G. & Eaton, R. A. Sulindac-associated hepatic injury: analysis of 91 cases reported to the Food and Drug Administration. Gastroenterology 104, 569–574 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Bolder, U. et al. Sulindac is excreted into bile by a canalicular bile salt pump and undergoes a cholehepatic circulation in rats. Gastroenterology 117, 962–971 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Jobanputra, P. et al. Hepatotoxicity associated with sulfasalazine in inflammatory arthritis: a case series from a local surveillance of serious adverse events. BMC Musculoskelet. Disord. 9, 48 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bocquet, H., Bagot, M. & Roujeau, J. C. Drug-induced pseudolymphoma and drug hypersensitivity syndrome (Drug Rash with Eosinophilia and Systemic Symptoms: DRESS). Semin. Cutan. Med. Surg. 15, 250–257 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Ohtani, T., Hiroi, A., Sakurane, M. & Furukawa, F. Slow acetylator genotypes as a possible risk factor for infectious mononucleosis-like syndrome induced by salazosulfapyridine. Br. J. Dermatol. 148, 1035–1039 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Kitas, G. D., Farr, M., Waterhouse, L. & Bacon, P. A. Influence of acetylator status on sulphasalazine efficacy and toxicity in patients with rheumatoid arthritis. Scand. J. Rheumatol. 21, 220–225 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Emery, P. et al. A comparison of the efficacy and safety of leflunomide and methotrexate for the treatment of rheumatoid arthritis. Rheumatology (Oxford) 39, 655–665 (2000).

    Article  CAS  Google Scholar 

  33. US Food and Drug Administration. Arthritis Advisory Committee slides March 5, 2003: Arava®(leflunomide). CDER 2003 meeting documents [online], (2003).

  34. Matteson, E. & Cush, J. J. Reports of leflunomide hepatotoxicity in patients with rheumatoid arthritis. August 2001. ACR Hotline [online], (2001).

    Google Scholar 

  35. Alcorn, N. Saunders, S. & Madhok, R. Benefit–risk assessment of leflunomide: an appraisal of leflunomide in rheumatoid arthritis 10 years after licensing. Drug Saf. 32, 1123–1134 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Helliwell, P. S. & Taylor, W. J. Treatment of psoriatic arthritis and rheumatoid arthritis with disease modifying drugs—comparison of drugs and adverse reactions. J. Rheumatol. 35, 472–476 (2008).

    PubMed  Google Scholar 

  37. Basset, C., Vadrot, J., Denis, J., Poupon, J. & Zafrani, E. S. Prolonged cholestasis and ductopenia following gold salt therapy. Liver Int. 23, 89–93 (2003).

    Article  PubMed  Google Scholar 

  38. Fleischner, G. M. et al. Light- and electron-microscopical study of a case of gold salt-induced hepatotoxicity. Hepatology 14, 422–425 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. Watkins, P. B., Schade, R., Mills, A. S., Carithers, R. L. Jr & van Thiel, D. H. Fatal hepatic necrosis associated with parenteral gold therapy. Dig. Dis. Sci. 33, 1025–1029 (1988).

    Article  CAS  PubMed  Google Scholar 

  40. Gisbert, J. P. et al. Liver injury in inflammatory bowel disease: long-term follow-up study of 786 patients. Inflamm. Bowel Dis. 13, 1106–1114 (2007).

    Article  PubMed  Google Scholar 

  41. Jeurissen, M. E. Boerbooms, A. M., van de Putte, L. B. & Kruijsen, M. W. Azathioprine induced fever, chills, rash, and hepatotoxicity in rheumatoid arthritis. Ann. Rheum. Dis. 49, 25–27 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Desmet, V. J. Vanishing bile duct syndrome in drug-induced liver disease. J. Hepatol. 26 (Suppl. 1), 31–35 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Dubinsky, M. C. et al. 6-MP metabolite profiles provide a biochemical explanation for 6-MP resistance in patients with inflammatory bowel disease. Gastroenterology 122, 904–915 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Sparrow, M. P., Hande, S. A., Friedman, S., Cao, D. & Hanauer, S. B. Effect of allopurinol on clinical outcomes in inflammatory bowel disease nonresponders to azathioprine or 6-mercaptopurine. Clin. Gastroenterol. Hepatol. 5, 209–214 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Ansari, A. et al. Long-term outcome of using allopurinol co-therapy as a strategy for overcoming thiopurine hepatotoxicity in treating inflammatory bowel disease. Aliment. Pharmacol. Ther. 28, 734–741 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Chandran, V., Schentag, C. T. & Gladman, D. D. Reappraisal of the effectiveness of methotrexate in psoriatic arthritis: results from a longitudinal observational cohort. J. Rheumatol. 35, 469–471 (2008).

    CAS  PubMed  Google Scholar 

  47. Taylor, W. J. et al. Drug use and toxicity in psoriatic disease: focus on methotrexate. J. Rheumatol. 35, 1454–1457 (2008).

    CAS  PubMed  Google Scholar 

  48. Hassan, W. Methotrexate and liver toxicity: role of surveillance liver biopsy. Conflict between guidelines for rheumatologists and dermatologists. Ann. Rheum. Dis. 55, 273–275 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kocharla, L. et al. Monitoring methotrexate toxicity in juvenile idiopathic arthritis. J. Rheumatol. 36, 2813–2818 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Salliot, C. & van der Heijde, D. Long-term safety of methotrexate monotherapy in patients with rheumatoid arthritis: a systematic literature research. Ann. Rheum. Dis. 68, 1100–1104 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Aithal, G. P. Dangerous liaisons: drug, host and the environment. J. Hepatol. 46, 995–998 (2007).

    Article  PubMed  Google Scholar 

  52. Kremer, J. M. Toward a better understanding of methotrexate. Arthritis Rheum. 50, 1370–1382 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Desouza, C., Keebler, M., McNamara, D. B. & Fonseca, V. Drugs affecting homocysteine metabolism: impact on cardiovascular risk. Drugs 62, 605–616 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Mato, J. M. & Lu, S. C. Homocysteine, the bad thiol. Hepatology 41, 976–979 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Basseri, S. & Austin, R. C. ER stress and lipogenesis: a slippery slope toward hepatic steatosis. Dev. Cell 15, 795–796 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Curtis, J. R. et al. Elevated liver enzyme tests among patients with rheumatoid arthritis or psoriatic arthritis treated with methotrexate and/or leflunomide. Ann. Rheum. Dis. 69, 43–47 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Aithal, G. P. et al. Monitoring methotrexate-induced hepatic fibrosis in patients with psoriasis: are serial liver biopsies justified? Aliment. Pharmacol. Ther. 19, 391–399 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Fisher, M. C. & Cronstein, B. N. Metaanalysis of methylenetetrahydrofolate reductase (MTHFR) polymorphisms affecting methotrexate toxicity. J. Rheumatol. 36, 539–545 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Bohanec Grabar, P., Logar, D., Lestan, B. & Dolzan, V. Genetic determinants of methotrexate toxicity in rheumatoid arthritis patients: a study of polymorphisms affecting methotrexate transport and folate metabolism. Eur. J. Clin. Pharmacol. 64, 1057–1068 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Kooloos, W. M. et al. Functional polymorphisms and methotrexate treatment outcome in recent-onset rheumatoid arthritis. Pharmacogenomics 11, 163–175 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Ranganathan, P. et al. Methotrexate (MTX) pathway gene polymorphisms and their effects on MTX toxicity in Caucasian and African American patients with rheumatoid arthritis. J. Rheumatol. 35, 572–579 (2008).

    CAS  PubMed  Google Scholar 

  62. Miele, L. et al. Prevalence, characteristics and severity of non-alcoholic fatty liver disease in patients with chronic plaque psoriasis. J. Hepatol. 51, 778–786 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Whiting-O'Keefe, Q. E., Fye, K. H. & Sack, K. D. Methotrexate and histologic hepatic abnormalities: a meta-analysis. Am. J. Med. 90, 711–716 (1991).

    Article  CAS  PubMed  Google Scholar 

  64. Rosenberg, P. et al. Psoriasis patients with diabetes type 2 are at high risk of developing liver fibrosis during methotrexate treatment. J. Hepatol. 46, 1111–1118 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Ozcan, U. et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313, 1137–1140 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ji, C. & Kaplowitz, N. ER stress: can the liver cope? J. Hepatol. 45, 321–333 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Katchamart, W., Trudeau, J., Phumethum, V. & Bombardier, C. Methotrexate monotherapy versus methotrexate combination therapy with non-biologic disease modifying anti-rheumatic drugs for rheumatoid arthritis. Cochrane Database of Systematic Reviews 2010, Issue 4. Art. No.: CD008495. doi:10.1002/14651858.CD008495 (2010).

  68. Reshamwala, P. A., Kleiner, D. E. & Heller, T. Nodular regenerative hyperplasia: not all nodules are created equal. Hepatology 44, 7–14 (2006).

    Article  PubMed  Google Scholar 

  69. Abraham, S., Begum, S. & Isenberg, D. Hepatic manifestations of autoimmune rheumatic diseases. Ann. Rheum. Dis. 63, 123–129 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Breen, D. P., Marinaki, A. M., Arenas, M. & Hayes, P. C. Pharmacogenetic association with adverse drug reactions to azathioprine immunosuppressive therapy following liver transplantation. Liver Transpl. 11, 826–833 (2005).

    Article  PubMed  Google Scholar 

  71. Seiderer, J. et al. Nodular regenerative hyperplasia: a reversible entity associated with azathioprine therapy. Eur. J. Gastroenterol. Hepatol. 18, 553–555 (2006).

    Article  PubMed  Google Scholar 

  72. Sokolove, J. et al. Risk of elevated liver enzymes associated with TNF inhibitor utilisation in patients with rheumatoid arthritis. Ann. Rheum. Dis. 69, 1612–1617 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Strand, V., Kimberly, R. & Isaacs, J. D. Biologic therapies in rheumatology: lessons learned, future directions. Nat. Rev. Drug Discov. 6, 75–92 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. US Food and Drug Administration. Important drug warning. FDA MedWatch [online], (2004).

  75. Suissa, S., Ernst, P., Hudson, M., Bitton, A. & Kezouh, A. Newer disease-modifying antirheumatic drugs and the risk of serious hepatic adverse events in patients with rheumatoid arthritis. Am. J. Med. 117, 87–92 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Tobon, G. J. Cañas, C., Jaller, J. J., Restrepo, J. C. & Anaya, J. M. Serious liver disease induced by infliximab. Clin. Rheumatol. 26, 578–581 (2007).

    Article  PubMed  Google Scholar 

  77. Mancini, S., Amorotti, E., Vecchio, S., Ponz de Leon, M. & Roncucci, L. Infliximab-related hepatitis: discussion of a case and review of the literature. Intern. Emerg. Med. 193–200 (2010).

  78. Kong, Y. C., Wei, W. Z. & Tomer, Y. Opportunistic autoimmune disorders: from immunotherapy to immune dysregulation. Ann. NY Acad. Sci. 1183, 222–236 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Danan, G. & Benichou, C. Causality assessment of adverse reactions to drugs—I. A novel method based on the conclusions of international consensus meetings: application to drug-induced liver injuries. J. Clin. Epidemiol. 46, 1323–1330 (1993).

    Article  CAS  PubMed  Google Scholar 

  80. Goldkind, L. & Laine, L. A systematic review of NSAIDs withdrawn from the market due to hepatotoxicity: lessons learned from the bromfenac experience. Pharmacoepidemiol. Drug Saf. 15, 213–220 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Björnsson, E. & Olsson, R. Outcome and prognostic markers in severe drug-induced liver disease. Hepatology 42, 481–489 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. British Society for Rheumatology. National guidelines for the monitoring of second line drugs. Produced by the British Society for Rheumatology July 2000. Guidelines archive [online], (2000).

  83. Senior, J. R. Monitoring for hepatotoxicity: what is the predictive value of liver “function” tests? Clin. Pharmacol. Ther. 85, 331–334 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Thomas, J. A. & Aithal, G. P. Monitoring liver function during methotrexate therapy for psoriasis: are routine biopsies really necessary? Am. J. Clin. Dermatol. 6, 357–363 (2005).

    Article  PubMed  Google Scholar 

  85. Smith, C. H. & Barker, J. N. Psoriasis and its management. BMJ 333, 380–384 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Chalmers, R. J. et al. Replacement of routine liver biopsy by procollagen III aminopeptide for monitoring patients with psoriasis receiving long-term methotrexate: a multicentre audit and health economic analysis. Br. J. Dermatol. 152, 444–450 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. MacDonald, A. & Burden, A. D. Noninvasive monitoring for methotrexate hepatotoxicity. Br. J. Dermatol. 152, 405–408 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Bossuyt, P. M. et al. Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. Standards for reporting of diagnostic accuracy. Clin. Chem. 49, 1–6 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Guha, I. N. et al. Noninvasive markers of fibrosis in nonalcoholic fatty liver disease: Validating the European Liver Fibrosis Panel and exploring simple markers. Hepatology 47, 455–460 (2008).

    Article  PubMed  Google Scholar 

  90. Laharie, D. et al. Assessment of liver fibrosis with transient elastography and FibroTest in patients treated with methotrexate for chronic inflammatory diseases: a case–control study. J. Hepatol. 53, 1035–1040 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Abdelmalek, M. F. et al. Betaine for nonalcoholic fatty liver disease: results of a randomized placebo-controlled trial. Hepatology 50, 1818–1826 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Singer, J. B. et al. A genome-wide study identifies HLA alleles associated with lumiracoxib-related liver injury. Nat. Genet. 42, 711–714 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Aithal, G. P. & Daly, A. K. Preempting and preventing drug-induced liver injury. Nat. Genet. 42, 650–651 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author is grateful to Dr. Charles Paulding, Novartis Institutes for BioMedical Research and Dr. Muhammad F. Dawwas, Nottingham University Hospitals, for allowing him to discuss their unpublished data in this Review. The author also thanks Dr. Philip Kaye, Nottingham University Hospitals NHS Trust, for providing histology slides used in this article. C. P. Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the MedscapeCME-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aithal, G. Hepatotoxicity related to antirheumatic drugs. Nat Rev Rheumatol 7, 139–150 (2011). https://doi.org/10.1038/nrrheum.2010.214

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2010.214

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing