Pathophysiology of articular chondrocalcinosis—role of ANKH


Calcium pyrophosphate (CPP) crystal deposition (CPPD) is associated with ageing and osteoarthritis, and with uncommon disorders such as hyperparathyroidism, hypomagnesemia, hemochromatosis and hypophosphatasia. Elevated levels of synovial fluid pyrophosphate promote CPP crystal formation. This extracellular pyrophosphate originates either from the breakdown of nucleotide triphosphates by plasma-cell membrane glycoprotein 1 (PC-1) or from pyrophosphate transport by the transmembrane protein progressive ankylosis protein homolog (ANK). Although the etiology of apparent sporadic CPPD is not well-established, mutations in the ANK human gene (ANKH) have been shown to cause familial CPPD. In this Review, the key regulators of pyrophosphate metabolism and factors that lead to high extracellular pyrophosphate levels are described. Particular emphasis is placed on the mechanisms by which mutations in ANKH cause CPPD and the clinical phenotype of these mutations is discussed. Cartilage factors predisposing to CPPD and CPP-crystal-induced inflammation and current treatment options for the management of CPPD are also described.

Key Points

  • Calcium pyrophosphate (CPP) crystal deposition (CPPD) is associated with ageing, osteoarthritis, hemochromatosis, hyperparathyroidism and hypomagnesemia

  • High levels of extracellular inorganic pyrophosphate (PPi) facilitates CPP crystal formation

  • Progressive ankylosis protein homolog (ANK), a transmembrane PPi transporter, and plasma-cell membrane glycoprotein 1 (PC-1) generate extracellular PPi

  • Mutations in ANKH lead to familial CPPD

  • Methotrexate and/or hydroxychloroquine, and interleukin-1 antagonists might be treatment options for chronic CPP crystal inflammatory arthritis and resistant acute CPP crystal arthritis, respectively

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: An outline of ePPi metabolism.
Figure 2: Role of mouse progressive ankylosis protein and human ANK in pathologic crystal formation in joints.


  1. 1

    Neame, R. & Doherty, M. in Rheumatology 4th edn (eds Hochberg, M. C. et al.) 1845–1858 (Mosby, Edinburgh, 2008).

    Google Scholar 

  2. 2

    Viriyavejkul, P., Wilairatana, V., Tanavalee, A. & Jaovisidha, K. Comparison of characteristics of patients with and without calcium pyrophosphate dihydrate crystal deposition disease who underwent total knee replacement surgery for osteoarthritis. Osteoarthritis Cartilage 15, 232–235 (2007).

    Article  CAS  Google Scholar 

  3. 3

    Derfus, B. A. et al. The high prevalence of pathologic calcium crystals in pre-operative knees. J. Rheumatol. 29, 570–574 (2002).

    PubMed  Google Scholar 

  4. 4

    McCarthy, G. M. in Rheumatology 4th edn (eds Hochberg, M. C. et al.) 1859–1868 (Mosby, Edinburgh, 2008).

    Google Scholar 

  5. 5

    McCarty, D. J., Kohn, N. H. & Faires, J. S. The significance of calcium phosphate crystals in the synovial fluid of arthritic patients: the 'pseudogout syndrome'. I. Clinical aspects. Ann. Intern. Med. 56, 711–737 (1962).

    Article  CAS  Google Scholar 

  6. 6

    McCarty, D. J. Calcium pyrophosphate dihydrate crystal deposition disease—1975. Arthritis Rheum. 19 (Suppl. 3), 275–285 (1976).

    Article  Google Scholar 

  7. 7

    Zhang, W. et al. EULAR evidence-based recommendations for calcium pyrophosphate deposition (CPPD). Part I: terminology and diagnosis. Ann. Rheum. Dis. 69 (Suppl. 3), 93 (2010).

    Google Scholar 

  8. 8

    Felson, D. T., Anderson, J. J., Naimark, A., Kannel, W. & Meenan, R. F. The prevalence of chondrocalcinosis in the elderly and its association with knee osteoarthritis: the Framingham Study. J. Rheumatol. 16, 1241–1245 (1989).

    CAS  PubMed  Google Scholar 

  9. 9

    Zhang, W., Neame, R., Doherty, S. & Doherty, M. Relative risk of knee chondrocalcinosis in siblings of index cases with pyrophosphate arthropathy. Ann. Rheum. Dis. 63, 969–973 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Ramonda, R. et al. Prevalence of chondrocalcinosis in Italian subjects from northeastern Italy. The Pro. V. A. (PROgetto Veneto Anziani) study. Clin. Exp. Rheumatol. 27, 981–984 (2009).

    CAS  PubMed  Google Scholar 

  11. 11

    Neame, R. L., Carr, A. J., Muir, K. & Doherty, M. UK community prevalence of knee chondrocalcinosis: evidence that correlation with osteoarthritis is through a shared association with osteophyte. Ann. Rheum. Dis. 62, 513–518 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Sanmartí, R. et al. Prevalence of articular chondrocalcinosis in elderly subjects in a rural area of Catalonia. Ann. Rheum. Dis. 52, 418–422 (1993).

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13

    Zhang, Y. et al. Lower prevalence of chondrocalcinosis in Chinese subjects in Beijing than in white subjects in the United States: the Beijing Osteoarthritis Study. Arthritis Rheum. 54, 3508–3512 (2006).

    Article  Google Scholar 

  14. 14

    Malaviya, A. N. et al. Calcium pyrophosphatase dihydrate (CPPD) crystal deposition disease in a teaching hospital in Kuwait. Ann. Rheum. Dis. 60, 416–419 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Doherty, M., Watt, I. & Dieppe, P. A. Localised chondrocalcinosis in post-meniscectomy knees. Lancet 1, 1207–1210 (1982).

    Article  CAS  Google Scholar 

  16. 16

    Fuerst, M. et al. Articular cartilage mineralization in osteoarthritis of the hip. BMC Musculoskelet. Disord. 10, 166 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Fuerst, M. et al. Calcification of articular cartilage in human osteoarthritis. Arthritis Rheum. 60, 2694–2703 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. 18

    Richette, P., Bardin, T. & Doherty, M. An update on the epidemiology of calcium pyrophosphate dihydrate crystal deposition disease. Rheumatology (Oxford) 48, 711–715 (2009).

    Article  Google Scholar 

  19. 19

    Calò, L., Punzi, L. & Semplicini, A. Hypomagnesemia and chondrocalcinosis in Bartter's and Gitelman's syndrome: review of the pathogenetic mechanisms. Am. J. Nephrol. 20, 347–350 (2000).

    Article  Google Scholar 

  20. 20

    Richette, P. et al. Hypomagnesemia associated with chondrocalcinosis: a cross-sectional study. Arthritis Rheum. 57, 1496–1501 (2007).

    Article  Google Scholar 

  21. 21

    Hollingworth, P., Williams, P. L. & Scott, J. T. Frequency of chondrocalcinosis of the knees in asymptomatic hyperuricaemia and rheumatoid arthritis: a controlled study. Ann. Rheum. Dis. 41, 344–346 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Doherty, M., Dieppe, P. & Watt, I. Low incidence of calcium pyrophosphate dihydrate crystal deposition in rheumatoid arthritis, with modification of radiographic features in coexistent disease. Arthritis Rheum. 27, 1002–1009 (1984).

    Article  CAS  Google Scholar 

  23. 23

    Rothschild, B. CPPD complicating other forms of inflammatory arthritis. Clin. Rheumatol. 26, 1130–1131 (2007).

    Article  Google Scholar 

  24. 24

    Gerster, J. C., Varisco, P. A., Kern, J., Dudler, J. & So, A. K. CPPD crystal deposition disease in patients with rheumatoid arthritis. Clin. Rheumatol. 25, 468–469 (2006).

    Article  CAS  Google Scholar 

  25. 25

    Hughes, A. E., McGibbon, D., Woodward, E., Dixey, J. & Doherty, M. Localisation of a gene for chondrocalcinosis to chromosome 5p. Hum. Mol. Genet. 4, 1225–1228 (1995).

    Article  CAS  Google Scholar 

  26. 26

    Williams, C. J. et al. Mutations in the amino terminus of ANKH in two US families with calcium pyrophosphate dihydrate crystal deposition disease. Arthritis Rheum. 48, 2627–2631 (2003).

    Article  CAS  Google Scholar 

  27. 27

    Andrew, L. J. et al. Refinement of the chromosome 5p locus for familial calcium pyrophosphate dihydrate deposition disease. Am. J. Hum. Genet. 64, 136–145 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Doherty, M., Hamilton, E., Henderson, J., Misra, H. & Dixey, J. Familial chondrocalcinosis due to calcium pyrophosphate dihydrate crystal deposition in English families. Br. J. Rheumatol. 30, 10–15 (1991).

    Article  CAS  Google Scholar 

  29. 29

    Hamza, M. et al. HLA-antigens in a Tunisian familial chondrocalcinosis. Dis. Markers 8, 109–112 (1990).

    CAS  PubMed  Google Scholar 

  30. 30

    Gaucher, A. et al. Hereditary diffuse articular chondrocalcinosis. Dominant manifestation without close linkage with the HLA system in a large pedigree. Scand. J. Rheumatol. 6, 217–221 (1977).

    Article  CAS  Google Scholar 

  31. 31

    Hamza, M., Meddeb, N. & Bardin, T. Hereditary chondrocalcinosis in a Tunisian family. Clin. Exp. Rheumatol. 10, 43–49 (1992).

    CAS  PubMed  Google Scholar 

  32. 32

    Baldwin, C. T. et al. Linkage of early-onset osteoarthritis and chondrocalcinosis to human chromosome 8q. Am. J. Hum. Genet. 56, 692–697 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Pendleton, A. et al. Mutations in ANKH cause chondrocalcinosis. Am. J. Hum. Genet. 71, 933–940 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34

    Béjia, I. et al. Familial calcium pyrophosphate dihydrate deposition disease. A Tunisian kindred. Joint Bone Spine 71, 401–408 (2004).

    Article  Google Scholar 

  35. 35

    Gaudreau, A. et al. Familial articular chondrocalcinosis in Quebec. Arthritis Rheum. 24, 611–615 (1981).

    Article  CAS  Google Scholar 

  36. 36

    Fernandez Dapica, M. P. & Gómez-Reino, J. J. Familial chondrocalcinosis in the Spanish population. J. Rheumatol. 13, 631–633 (1986).

    CAS  PubMed  Google Scholar 

  37. 37

    Balsa, A. et al. Familial articular chondrocalcinosis in Spain. Ann. Rheum. Dis. 49, 531–535 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Zhang, Y. et al. Association of sporadic chondrocalcinosis with a 4-basepair G-to-A transition in the 5′-untranslated region of ANKH that promotes enhanced expression of ANKH protein and excess generation of extracellular inorganic pyrophosphate. Arthritis Rheum. 52, 1110–1117 (2005).

    Article  CAS  Google Scholar 

  39. 39

    Sahinbegovic, E. et al. Musculoskeletal disease burden of hereditary hemochromatosis. Arthritis Rheum. doi:10.1002/art.27712.

  40. 40

    Derfus, B. A. et al. Articular cartilage vesicles generate calcium pyrophosphate dihydrate-like crystals in vitro. Arthritis Rheum. 35, 231–240 (1992).

    Article  CAS  Google Scholar 

  41. 41

    Pritzker, K. P., Cheng, P. T. & Renlund, R. C. Calcium pyrophosphate crystal deposition in hyaline cartilage. Ultrastructural analysis and implications for pathogenesis. J. Rheumatol. 15, 828–835 (1988).

    CAS  PubMed  Google Scholar 

  42. 42

    Ryan, L. M. & McCarty, D. J. Understanding inorganic pyrophosphate metabolism: toward prevention of calcium pyrophosphate dihydrate crystal deposition. Ann. Rheum. Dis. 54, 939–941 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Harmey, D. et al. Concerted regulation of inorganic pyrophosphate and osteopontin by Akp2, Enpp1, and Ank: an integrated model of the pathogenesis of mineralization disorders. Am. J. Pathol. 164, 1199–1209 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Derfus, B. et al. Characterization of an additional articular cartilage vesicle fraction that generates calcium pyrophosphate dihydrate crystals in vitro. J. Rheumatol. 22, 1514–1519 (1995).

    CAS  PubMed  Google Scholar 

  45. 45

    Derfus, B. et al. Human osteoarthritic cartilage matrix vesicles generate both calcium pyrophosphate dihydrate and apatite in vitro. Calcif. Tissue Int. 63, 258–262 (1998).

    Article  CAS  Google Scholar 

  46. 46

    Mitton, E., Gohr, C. M., McNally, M. T. & Rosenthal, A. K. Articular cartilage vesicles contain RNA. Biochem. Biophys. Res. Commun. 388, 533–538 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Grassi, W., Meenagh, G., Pascual, E. & Filippucci, E. “Crystal clear”-sonographic assessment of gout and calcium pyrophosphate deposition disease. Semin. Arthritis Rheum. 36, 197–202 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. 48

    Muehleman, C. et al. Association between crystals and cartilage degeneration in the ankle. J. Rheumatol. 35, 1108–1117 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Beutler, A., Rothfuss, S., Clayburne, G., Sieck, M. & Schumacher, H. R. Jr . Calcium pyrophosphate dihydrate crystal deposition in synovium. Relationship to collagen fibers and chondrometaplasia. Arthritis Rheum. 36, 704–715 (1993).

    Article  CAS  Google Scholar 

  50. 50

    Ishikawa, K., Masuda, I., Ohira, T. & Yokoyama, M. A histological study of calcium pyrophosphate dihydrate crystal-deposition disease. J. Bone Joint Surg. Am. 71, 875–886 (1989).

    Article  CAS  Google Scholar 

  51. 51

    Mandel, N. S., Mandel, G. S., Carroll, D. J. & Halverson, P. B. Calcium pyrophosphate crystal deposition. An in vitro study using a gelatin matrix model. Arthritis Rheum. 27, 789–796 (1984).

    Article  CAS  Google Scholar 

  52. 52

    Terkeltaub, R. A. Inorganic pyrophosphate generation and disposition in pathophysiology. Am. J. Physiol. Cell Physiol. 281, C1–C11 (2001).

    Article  CAS  Google Scholar 

  53. 53

    Russell, R. G. Metabolism of inorganic pyrophosphate (PPi). Arthritis Rheum. 19 (Suppl. 3), 465–478 (1976).

    Article  CAS  Google Scholar 

  54. 54

    Murray, R. K., Granner, D. K., Mayes, P. A. & Rodwell, V. W. (eds) Harper's Biochemistry 24th edn, 112 (Appleton & Lange, Stamford, 1996).

    Google Scholar 

  55. 55

    Ryan, L. M., Cheung, H. S. & McCarty, D. J. Release of pyrophosphate by normal mammalian articular hyaline and fibrocartilage in organ culture. Arthritis Rheum. 24, 1522–1527 (1981).

    Article  CAS  Google Scholar 

  56. 56

    Rosenthal, A. K., McCarty, B. A., Cheung, H. S. & Ryan, L. M. A comparison of the effect of transforming growth factor β1 on pyrophosphate elaboration from various articular tissues. Arthritis Rheum. 36, 539–542 (1993).

    Article  CAS  Google Scholar 

  57. 57

    Altman, R. D., Muniz, O. E., Pita, J. C. & Howell, D. S. Articular chondrocalcinosis. Microanalysis of pyrophosphate (PPi) in synovial fluid and plasma. Arthritis Rheum. 16, 171–178 (1973).

    Article  CAS  Google Scholar 

  58. 58

    Doherty, M., Belcher, C., Regan, M., Jones, A. & Ledingham, J. Association between synovial fluid levels of inorganic pyrophosphate and short term radiographic outcome of knee osteoarthritis. Ann. Rheum. Dis. 55, 432–436 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Thouverey, C., Bechkoff, G., Pikula, S. & Buchet, R. Inorganic pyrophosphate as a regulator of hydroxyapatite or calcium pyrophosphate dihydrate mineral deposition by matrix vesicles. Osteoarthritis Cartilage 17, 64–72 (2009).

    Article  CAS  Google Scholar 

  60. 60

    Cheng, P. T. & Pritzker, K. P. Pyrophosphate, phosphate ion interaction: effects on calcium pyrophosphate and calcium hydroxyapatite crystal formation in aqueous solutions. J. Rheumatol. 10, 769–777 (1983).

    CAS  PubMed  Google Scholar 

  61. 61

    Johnson, K., Pritzker, K., Goding, J. & Terkeltaub, R. The nucleoside triphosphate pyrophosphohydrolase isozyme PC-1 directly promotes cartilage calcification through chondrocyte apoptosis and increased calcium precipitation by mineralizing vesicles. J. Rheumatol. 28, 2681–2691 (2001).

    CAS  PubMed  Google Scholar 

  62. 62

    Gurley, K. A., Reimer, R. J. & Kingsley, D. M. Biochemical and genetic analysis of ANK in arthritis and bone disease. Am. J. Hum. Genet. 79, 1017–1029 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Hessle, L. et al. Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc. Natl Acad. Sci. USA 99, 9445–9449 (2002).

    Article  CAS  Google Scholar 

  64. 64

    Graff, R. D., Lazarowski, E. R., Banes, A. J. & Lee, G. M. ATP release by mechanically loaded porcine chondrons in pellet culture. Arthritis Rheum. 43, 1571–1579 (2000).

    Article  CAS  Google Scholar 

  65. 65

    Ryan, L. M., Kurup, I. V., Derfus, B. A. & Kushnaryov, V. M. ATP-induced chondrocalcinosis. Arthritis Rheum. 35, 1520–1525 (1992).

    Article  CAS  Google Scholar 

  66. 66

    Lotz, M. et al. Interleukin 1β suppresses transforming growth factor-induced inorganic pyrophosphate (PPi) production and expression of the PPi-generating enzyme PC-1 in human chondrocytes. Proc. Natl Acad. Sci. USA 92, 10364–10368 (1995).

    Article  CAS  Google Scholar 

  67. 67

    Johnson, K. et al. Up-regulated expression of the phosphodiesterase nucleotide pyrophosphatase family member PC-1 is a marker and pathogenic factor for knee meniscal cartilage matrix calcification. Arthritis Rheum. 44, 1071–1081 (2001).

    Article  CAS  Google Scholar 

  68. 68

    Johnson, K. et al. Differential mechanisms of inorganic pyrophosphate production by plasma cell membrane glycoprotein-1 and B10 in chondrocytes. Arthritis Rheum. 42, 1986–1997 (1999).

    Article  CAS  Google Scholar 

  69. 69

    Hirose, J., Masuda, I. & Ryan, L. M. Expression of cartilage intermediate layer protein/nucleotide pyrophosphohydrolase parallels the production of extracellular inorganic pyrophosphate in response to growth factors and with aging. Arthritis Rheum. 43, 2703–2711 (2000).

    Article  CAS  Google Scholar 

  70. 70

    Johnson, K., Farley, D., Hu, S. I. & Terkeltaub, R. One of two chondrocyte-expressed isoforms of cartilage intermediate-layer protein functions as an insulin-like growth factor 1 antagonist. Arthritis Rheum. 48, 1302–1314 (2003).

    Article  CAS  Google Scholar 

  71. 71

    Garimella, R., Bi, X., Anderson, H. C. & Camacho, N. P. Nature of phosphate substrate as a major determinant of mineral type formed in matrix vesicle-mediated in vitro mineralization: an FTIR imaging study. Bone 38, 811–817 (2006).

    Article  CAS  Google Scholar 

  72. 72

    Rosenthal, A. K., Gohr, C. M., Uzuki, M. & Masuda, I. Osteopontin promotes pathologic mineralization in articular cartilage. Matrix Biol. 26, 96–105 (2007).

    Article  CAS  Google Scholar 

  73. 73

    Zaka, R. et al. P5L mutation in Ank results in an increase in extracellular inorganic pyrophosphate during proliferation and nonmineralizing hypertrophy in stably transduced ATDC5 cells. Arthritis Res. Ther. 8, R164 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Ho, A. M., Johnson, M. D. & Kingsley, D. M. Role of the mouse Ank gene in control of tissue calcification and arthritis. Science 289, 265–270 (2000).

    Article  CAS  Google Scholar 

  75. 75

    Caswell, A., Guilland-Cumming, D. F., Hearn, P. R., McGuire, M. K. & Russell, R. G. Pathogenesis of chondrocalcinosis and pseudogout. Metabolism of inorganic pyrophosphate and production of calcium pyrophosphate dihydrate crystals. Ann. Rheum. Dis. 42 (Suppl. 1), 27–37 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Hamilton, E. B. Diseases associated with CPPD deposition disease. Arthritis Rheum. 19 (Suppl. 3), 353–357 (1976).

    Article  Google Scholar 

  77. 77

    Zhang, L. et al. Phosphodiesterase activity of alkaline phosphatase in ATP-initiated Ca2+ and phosphate deposition in isolated chicken matrix vesicles. J. Biol. Chem. 280, 37289–37296 (2005).

    Article  CAS  Google Scholar 

  78. 78

    Wang, W., Xu, J., Du, B. & Kirsch, T. Role of the progressive ankylosis gene (Ank) in cartilage mineralization. Mol. Cell. Biol. 25, 312–323 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Rosen, F. et al. Differential effects of aging on human chondrocyte responses to transforming growth factor β: increased pyrophosphate production and decreased cell proliferation. Arthritis Rheum. 40, 1275–1281 (1997).

    CAS  PubMed  Google Scholar 

  80. 80

    Hakim, F. T. et al. Hereditary joint disorder in progressive ankylosis (Ank/Ank) mice. I. Association of calcium hydroxyapatite deposition with inflammatory arthropathy. Arthritis Rheum. 27, 1411–1420 (1984).

    Article  CAS  Google Scholar 

  81. 81

    Netter, P., Bardin, T., Bianchi, A., Richette, P. & Loeuille, D. The ANKH gene and familial calcium pyrophosphate dihydrate deposition disease. Joint Bone Spine 71, 365–368 (2004).

    Article  Google Scholar 

  82. 82

    Jubeck, B. et al. Promotion of articular cartilage matrix vesicle mineralization by type I collagen. Arthritis Rheum. 58, 2809–2817 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  83. 83

    Kalya, S. & Rosenthal, A. K. Extracellular matrix changes regulate calcium crystal formation in articular cartilage. Curr. Opin. Rheumatol. 17, 325–329 (2005).

    Article  CAS  Google Scholar 

  84. 84

    Ishikawa, K. Chondrocytes that accumulate proteoglycans and inorganic pyrophosphate in the pathogenesis of chondrocalcinosis. Arthritis Rheum. 28, 118–120 (1985).

    Article  CAS  Google Scholar 

  85. 85

    Rosenthal, A. K., Masuda, I., Gohr, C. M., Derfus, B. A. & Le, M. The transglutaminase, Factor XIIIA, is present in articular chondrocytes. Osteoarthritis Cartilage 9, 578–581 (2001).

    Article  CAS  Google Scholar 

  86. 86

    Heinkel, D., Gohr, C. M., Uzuki, M. & Rosenthal, A. K. Transglutaminase contributes to CPPD crystal formation in osteoarthritis. Front. Biosci. 9, 3257–3261 (2004).

    Article  CAS  Google Scholar 

  87. 87

    Rosenthal, A. K., Gohr, C. M., Henry, L. A. & Le, M. Participation of transglutaminase in the activation of latent transforming growth factor beta1 in aging articular cartilage. Arthritis Rheum. 43, 1729–1733 (2000).

    Article  CAS  Google Scholar 

  88. 88

    Rosenthal, A. K. & Henry, L. A. Thyroid hormones induce features of the hypertrophic phenotype and stimulate correlates of CPPD crystal formation in articular chondrocytes. J. Rheumatol. 26, 395–401 (1999).

    CAS  PubMed  Google Scholar 

  89. 89

    Masuda, I., Ishikawa, K. & Usuku, G. A histologic and immunohistochemical study of calcium pyrophosphate dihydrate crystal deposition disease. Clin. Orthop. Relat. Res. 263, 272–287 (1991).

    Google Scholar 

  90. 90

    Pasquetti, P. et al. Joint lavage and pseudogout. Ann. Rheum. Dis. 63, 1529–1530 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Liote, F. & Ea, H. K. Recent developments in crystal-induced inflammation pathogenesis and management. Curr. Rheumatol. Rep. 9, 243–250 (2007).

    Article  CAS  Google Scholar 

  92. 92

    Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    Article  CAS  Google Scholar 

  93. 93

    Higo, T., Duronio, V., Tudan, C., Burt, H. M. & Jackson, J. K. Calcium pyrophosphate dihydrate crystal-induced inhibition of neutrophil apoptosis: involvement of Bcl-2 family members. Inflamm. Res. 59, 71–81 (2010).

    Article  CAS  Google Scholar 

  94. 94

    Liu-Bryan, R. & Liote, F. Monosodium urate and calcium pyrophosphate dihydrate (CPPD) crystals, inflammation, and cellular signaling. Joint Bone Spine 72, 295–302 (2005).

    Article  Google Scholar 

  95. 95

    Tudan, C., Jackson, J. K., Blanis, L., Pelech, S. L. & Burt, H. M. Inhibition of TNF-α-induced neutrophil apoptosis by crystals of calcium pyrophosphate dihydrate is mediated by the extracellular signal-regulated kinase and phosphatidylinositol 3-kinase/Akt pathways up-stream of caspase 3. J. Immunol. 165, 5798–5806 (2000).

    Article  CAS  Google Scholar 

  96. 96

    Liu, Y. Z., Jackson, A. P. & Cosgrove, S. D. Contribution of calcium-containing crystals to cartilage degradation and synovial inflammation in osteoarthritis. Osteoarthritis Cartilage 17, 1333–1340 (2009).

    Article  CAS  Google Scholar 

  97. 97

    Fam, A. G. et al. Acceleration of experimental lapine osteoarthritis by calcium pyrophosphate microcrystalline synovitis. Arthritis Rheum. 38, 201–210 (1995).

    Article  CAS  Google Scholar 

  98. 98

    Martinez Sanchis, A. & Pascual, E. Intracellular and extracellular CPPD crystals are a regular feature in synovial fluid from uninflamed joints of patients with CPPD related arthropathy. Ann. Rheum. Dis. 64, 1769–1772 (2005).

    Article  CAS  Google Scholar 

  99. 99

    Schumacher, H. R., Fishbein, P., Phelps, P., Tse, R. & Krauser, R. Comparison of sodium urate and calcium pyrophosphate crystal phagocytosis by polymorphonuclear leukocytes. Effects of crystal size and other factors. Arthritis Rheum. 18, 783–792 (1975).

    Article  CAS  Google Scholar 

  100. 100

    Swan, A., Heywood, B., Chapman, B., Seward, H. & Dieppe, P. Evidence for a causal relationship between the structure, size, and load of calcium pyrophosphate dihydrate crystals, and attacks of pseudogout. Ann. Rheum. Dis. 54, 825–830 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. 101

    NICE clinical guideline 59. Osteoarthritis: the care and management of osteoarthritis in adults (National Institute for Health and Clinical Excellence London, 2008).

  102. 102

    Hilliquin, P., Le Devic, P. & Menkes, C. J. Comparison of the efficacy of nonsurgical synovectomy (synoviorthesis) and joint lavage in knee osteoarthritis with effusions. Rev. Rhum. Engl. Ed. 63, 93–102 (1996).

    CAS  PubMed  Google Scholar 

  103. 103

    Doherty, M. & Dieppe, P. A. Effect of intra-articular yttrium-90 on chronic pyrophosphate arthropathy of the knee. Lancet 2, 1243–1246 (1981).

    Article  CAS  Google Scholar 

  104. 104

    Pascual, E. Management of crystal arthritis. Rheumatology (Oxford) 38, 912–916 (1999).

    Article  CAS  Google Scholar 

  105. 105

    Roane, D. W. et al. Prospective use of intramuscular triamcinolone acetonide in pseudogout. J. Rheumatol. 24, 1168–1170 (1997).

    CAS  PubMed  Google Scholar 

  106. 106

    Announ, N. & Guerne, P. A. Treating difficult crystal pyrophosphate dihydrate deposition disease. Curr. Rheumatol. Rep. 10, 228–234 (2008).

    Article  CAS  Google Scholar 

  107. 107

    Tabatabai, M. R. & Cummings, N. A. Intravenous colchicine in the treatment of acute pseudogout. Arthritis Rheum. 23, 370–374 (1980).

    Article  CAS  Google Scholar 

  108. 108

    Alvarellos, A. & Spilberg, I. Colchicine prophylaxis in pseudogout. J. Rheumatol. 13, 804–805 (1986).

    CAS  PubMed  Google Scholar 

  109. 109

    McGonagle, D., Tan, A. L., Madden, J., Emery, P. & McDermott, M. F. Successful treatment of resistant pseudogout with anakinra. Arthritis Rheum. 58, 631–633 (2008).

    Article  Google Scholar 

  110. 110

    Terkeltaub, R. et al. The interleukin 1 inhibitor rilonacept in treatment of chronic gouty arthritis: results of a placebo controlled monosequence crossover, non-randomised, single blind-pilot study. Ann. Rheum. Dis. 68, 1613–1617 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. 111

    Chollet-Janin, A., Finckh, A., Dudler, J. & Guerne, P. A. Methotrexate as an alternative therapy for chronic calcium pyrophosphate deposition disease: an exploratory analysis. Arthritis Rheum. 56, 688–692 (2007).

    Article  Google Scholar 

  112. 112

    Doan, T. H. T., Chevalier, X., Leparc, J. M., Richette, P., Bardin, T. & Forestier, R. French Society for Rheumatology Osteoarthritis Section. Premature enthusiasm for the use of methotrexate for refractory chondrocalcinosis: Comment on the article by Chollet-Janin et al. Arthritis Rheum. 58, 2 (2008).

    Article  Google Scholar 

  113. 113

    Rothschild, B. & Yakubov, L. E. Prospective 6-month, double-blind trial of hydroxychloroquine treatment of CPDD. Compr. Ther. 23, 327–331 (1997).

    CAS  PubMed  Google Scholar 

  114. 114

    Doherty, M. & Dieppe, P. Double blind, placebo controlled trial of magnesium carbonate in chronic pyrophosphate arthropathy. Ann. Rheum. Dis. 42, 2 (1983).

    Article  Google Scholar 

  115. 115

    Hunter, G. K., Grynpas, M. D., Cheng, P. T. & Pritzker, K. P. Effect of glycosaminoglycans on calcium pyrophosphate crystal formation in collagen gels. Calcif. Tissue Int. 41, 164–170 (1987).

    Article  CAS  Google Scholar 

  116. 116

    Rosenthal, A. K. & Ryan, L. M. Probenecid inhibits transforming growth factor-β1 induced pyrophosphate elaboration by chondrocytes. J. Rheumatol. 21, 896–900 (1994).

    CAS  PubMed  Google Scholar 

  117. 117

    Kannampuzha, J. V., Tupy, J. H. & Pritzker, K. P. Mercaptopyruvate inhibits tissue-nonspecific alkaline phosphatase and calcium pyrophosphate dihydrate crystal dissolution. J. Rheumatol. 36, 8 (2009).

    Article  CAS  Google Scholar 

  118. 118

    Shinozaki, T. & Pritzker, K. P. Regulation of alkaline phosphatase: implications for calcium pyrophosphate dihydrate crystal dissolution and other alkaline phosphatase functions. J. Rheumatol. 23, 677–683 (1996).

    CAS  PubMed  Google Scholar 

  119. 119

    Cheung, H. S. Phosphocitrate as a potential therapeutic strategy for crystal deposition disease. Curr. Rheumatol. Rep. 3, 24–28 (2001).

    Article  CAS  Google Scholar 

  120. 120

    Derfus, B. et al. Transforming growth factor β-1 stimulates articular chondrocyte elaboration of matrix vesicles capable of greater calcium pyrophosphate precipitation. Osteoarthritis Cartilage 9, 189–194 (2001).

    Article  CAS  Google Scholar 

  121. 121

    Masuda, I. et al. Variations in site and levels of expression of chondrocyte nucleotide pyrophosphohydrolase with aging. J. Bone Miner. Res. 16, 868–875 (2001).

    Article  CAS  Google Scholar 

  122. 122

    Rosenthal, A. K. & Henry, L. A. Retinoic acid stimulates pyrophosphate elaboration by cartilage and chondrocytes. Calcif. Tissue Int. 59, 128–133 (1996).

    Article  CAS  Google Scholar 

  123. 123

    Kojima, S., Nara, K. & Rifkin, D. B. Requirement for transglutaminase in the activation of latent transforming growth factor-β in bovine endothelial cell. J. Cell Biol. 121, 439–448 (1993).

    Article  CAS  Google Scholar 

  124. 124

    Hirose, J., Ryan, L. M. & Masuda, I. Up-regulated expression of cartilage intermediate-layer protein and ANK in articular hyaline cartilage from patients with calcium pyrophosphate dihydrate crystal deposition disease. Arthritis Rheum. 46, 3218–3229 (2002).

    Article  CAS  Google Scholar 

  125. 125

    Sohn, P., Crowley, M., Slattery, E. & Serra, R. Developmental and TGF β mediated regulation of Ank mRNA expression in cartilage and bone. Osteoarthirtis Cartilage 10, 482–490 (2002).

    Article  CAS  Google Scholar 

  126. 126

    Rosenthal, A. K., Derfus, B. A. & Henry, L. A. Transglutaminase activity in aging articular chondrocytes and articular cartilage vesicles. Arthritis Rheum. 40, 966–970 (1997).

    Article  CAS  Google Scholar 

  127. 127

    Olmez, U., Ryan, L. M., Kurup, I. V. & Rosenthal, A. K. Insulin-like growth factor-1 suppresses pyrophosphate elaboration by transforming growth factor β1-stimulated chondrocytes and cartilage. Osteoarthritis Cartilage 2, 149–154 (1994).

    Article  CAS  Google Scholar 

  128. 128

    Cailotto, F. et al. Inorganic pyrophosphate generation by transforming growth factor β1 is mainly dependent on ANK induction by Ras/Raf-1/extracellular signal-regulated kinase pathways in chondrocytes. Arthritis Res. Ther. 9, R122 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. 129

    Ryan, L. M., Wortmann, R. L., Karas, B., Lynch, M. P. & McCarty, D. J. Pyrophosphohydrolase activity and inorganic pyrophosphate content of cultured human skin fibroblasts. Elevated levels in some patients with calcium pyrophosphate dihydrate deposition disease. J. Clin. Invest. 77, 1689–1693 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. 130

    Williams, C. J. et al. Autosomal dominant familial calcium pyrophosphate dihydrate deposition disease is caused by mutation in the transmembrane protein ANKH. Am. J. Hum. Genet. 71, 985–991 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  131. 131

    Lust, G., Faure, G., Netter, P., Gaucher, A. & Seegmiller, J. E. Evidence of a generalized metabolic defect in patients with hereditary chondrocalcinosis. Increased inorganic pyrophosphate in cultured fibroblasts and lymphoblasts. Arthritis Rheum. 24, 1517–1521 (1981).

    Article  CAS  Google Scholar 

  132. 132

    Wang, J., Tsui, H. W., Beier, F. & Tsui, F. W. The CPPDD-associated ANKH M48T mutation interrupts the interaction of ANKH with the sodium/phosphate cotransporter PiT-1. J. Rheumatol. 36, 1265–1272 (2009).

    Article  CAS  Google Scholar 

  133. 133

    Wang, J., Tsui, H. W., Beier, F., Pritzker, K. P., Inman, R. D. & Tsui, F. W. The ANKH DeltaE490 mutation in calcium pyrophosphate dihydrate crystal deposition disease (CPPDD) affects tissue non-specific alkaline phosphatase (TNAP) activities. Open Rheumatol. J. 2, 23–30 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information




A. Abhishek and M. Doherty contributed equally to researching data for the article, providing a substantial contribution to discussions of the content, writing the article, and to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Abhishek Abhishek.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Abhishek, A., Doherty, M. Pathophysiology of articular chondrocalcinosis—role of ANKH. Nat Rev Rheumatol 7, 96–104 (2011).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing