Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Epidemiology, diagnosis and management of hypertension among patients on chronic dialysis

Key Points

  • Contrary to the reverse epidemiology of hypertension as assessed by peridialytic blood pressure (BP) recordings, interdialytic BP assessed either by home or ambulatory BP monitoring is linearly associated with an increased risk of all-cause and cardiovascular mortality

  • Routine BP recordings obtained before or after dialysis sessions display high variability, poor reproducibility and provide inaccurate estimates of the interdialytic BP burden; out-of-dialysis BP monitoring improves the accuracy of hypertension diagnoses among dialysis patients

  • Rather than initiating or intensifying antihypertensive drug therapy, management of hypertension among dialysis patients should initially involve strict control of sodium and volume excess

  • Restricting dietary sodium intake, individualizing dialysate sodium, avoiding use of short dialysis sessions and probing of dry weight represent the major non-pharmacological interventions to control volume excess

  • Antihypertensive drug therapy is necessary when BP remains uncontrolled despite the optimal management of volume; with the exception of diuretics, all major antihypertensive classes are useful in treating hypertension in patients on dialysis

  • Choice of the appropriate antihypertensive regimen should be individualized and based on the BP-lowering efficacy, cardioprotective properties, intradialytic and interdialytic pharmacokinetics and adverse-effect profiles of the agents; β-blockers, particularly atenolol, or long-acting calcium-channel blockers are reasonable options

Abstract

The diagnosis and management of hypertension among patients on chronic dialysis is challenging. Routine peridialytic blood pressure recordings are unable to accurately diagnose hypertension and stratify cardiovascular risk. By contrast, blood pressure recordings taken outside the dialysis setting exhibit clear prognostic associations with survival and might facilitate the diagnosis and long-term management of hypertension. Once accurately diagnosed, management of hypertension in individuals on chronic dialysis should initially involve non-pharmacological strategies to control volume overload. Accordingly, first-line strategies should focus on achieving dry weight, individualizing dialysate sodium concentrations and ensuring dialysis sessions are at least 4 h in duration. If blood pressure remains unresponsive to volume management strategies, pharmacological treatment is required. The choice of appropriate antihypertensive regimen should be individualized taking into account the efficacy, safety, and pharmacokinetic properties of the antihypertensive medications as well as any comorbid conditions and the overall risk profile of the patient. In contrast to their effects in the general hypertensive population, emerging evidence suggests that β-blockers might offer the greatest cardioprotection in hypertensive patients on dialysis. In this Review, we discuss estimates of the epidemiology of hypertension in the dialysis population as well as the challenges in diagnosing and managing hypertension among these patients.

This is a preview of subscription content, access via your institution

Access options

Figure 1: Changes in relative plasma volume (RPV) in response to reductions in dry weight in a patient on dialysis.
Figure 2: The effect of dry-weight probing on 44 h ambulatory systolic and diastolic blood pressure among hypertensive patients on dialysis.
Figure 3: Algorithm for the diagnosis and management of hypertension in patients on dialysis.

Similar content being viewed by others

References

  1. Lim, S. S., Vos, T., Flaxman, A. D. et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2224–2260 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Perkovic, V., Huxley, R., Wu, Y., Prabhakaran, D. & MacMahon, S. The burden of blood pressure-related disease: a neglected priority for global health. Hypertension 50, 991–997 (2007).

    CAS  PubMed  Google Scholar 

  3. Port, F. K., Hulbert-Shearon, T. E., Wolfe, R. A. et al. Predialysis blood pressure and mortality risk in a national sample of maintenance hemodialysis patients. Am. J. Kidney Dis. 33, 507–517 (1999).

    CAS  PubMed  Google Scholar 

  4. Zager, P.G., Nikolic, J., Brown, R.H. et al. “U” curve association of blood pressure and mortality in hemodialysis patients. Medical Directors of Dialysis Clinic, Inc. Kidney Int. 54, 561–569 (1998).

    CAS  PubMed  Google Scholar 

  5. Agarwal, R. Blood pressure and mortality among hemodialysis patients. Hypertension 55, 762–768 (2010).

    CAS  PubMed  Google Scholar 

  6. Alborzi, P., Patel, N. & Agarwal, R. Home blood pressures are of greater prognostic value than hemodialysis unit recordings. Clin. J. Am. Soc. Nephrol. 2, 1228–1234 (2007).

    PubMed  Google Scholar 

  7. Amar, J. et al. Nocturnal blood pressure and 24-hour pulse pressure are potent indicators of mortality in hemodialysis patients. Kidney Int. 57, 2485–2491 (2000).

    CAS  PubMed  Google Scholar 

  8. Agarwal, R. & Sinha, A. D. Cardiovascular protection with antihypertensive drugs in dialysis patients: systematic review and meta-analysis. Hypertension 53, 860–866 (2009).

    CAS  PubMed  Google Scholar 

  9. Heerspink, H. J. et al. Effect of lowering blood pressure on cardiovascular events and mortality in patients on dialysis: a systematic review and meta-analysis of randomised controlled trials. Lancet 373, 1009–1015 (2009).

    PubMed  PubMed Central  Google Scholar 

  10. Agarwal, R. & Weir, M. R. Dry-weight: a concept revisited in an effort to avoid medication-directed approaches for blood pressure control in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 5, 1255–1260 (2010).

    PubMed  PubMed Central  Google Scholar 

  11. Agarwal, R. et al. Assessment and management of hypertension in patients on dialysis. J. Am. Soc. Nephrol. 25, 1630–1646 (2014).

    PubMed  PubMed Central  Google Scholar 

  12. Denker, M. G. & Cohen, D. L. Antihypertensive medications in end-stage renal disease. Semin. Dial. 28, 330–336 (2015).

    PubMed  Google Scholar 

  13. Agarwal, R. Pro: ambulatory blood pressure should be used in all patients on hemodialysis. Nephrol. Dial. Transplant. 30, 1432–1437 (2015).

    PubMed  PubMed Central  Google Scholar 

  14. Rohrscheib, M. R., Myers, O. B., Servilla, K. S. et al. Age-related blood pressure patterns and blood pressure variability among hemodialysis patients. Clin. J. Am. Soc. Nephrol. 3, 1407–1414 (2008).

    PubMed  PubMed Central  Google Scholar 

  15. Rahman, M., Fu, P., Sehgal, A. R. & Smith, M. C. Interdialytic weight gain, compliance with dialysis regimen, and age are independent predictors of blood pressure in hemodialysis patients. Am. J. Kidney Dis. 35, 257–265 (2000).

    CAS  PubMed  Google Scholar 

  16. Rocco, M. V., Yan, G., Heyka, R. J., Benz, R. & Cheung, A. K. Risk factors for hypertension in chronic hemodialysis patients: baseline data from the HEMO study. Am. J. Nephrol. 21, 280–288 (2001).

    CAS  PubMed  Google Scholar 

  17. Salem, M. M. Hypertension in the hemodialysis population: a survey of 649 patients. Am. J. Kidney Dis. 26, 461–468 (1995).

    CAS  PubMed  Google Scholar 

  18. Agarwal, R. et al. Prevalence, treatment, and control of hypertension in chronic hemodialysis patients in the United States. Am. J. Med. 115, 291–297 (2003).

    PubMed  Google Scholar 

  19. Agarwal, R. Epidemiology of interdialytic ambulatory hypertension and the role of volume excess. Am. J. Nephrol. 34, 381–390 (2011).

    PubMed  PubMed Central  Google Scholar 

  20. Agarwal, R., Bouldin, J. M., Light, R. P. & Garg, A. Inferior vena cava diameter and left atrial diameter measure volume but not dry weight. Clin. J. Am. Soc. Nephrol. 6, 1066–1072 (2011).

    PubMed  PubMed Central  Google Scholar 

  21. Agarwal, R., Peixoto, A. J., Santos, S. F. & Zoccali, C. Pre- and postdialysis blood pressures are imprecise estimates of interdialytic ambulatory blood pressure. Clin. J. Am. Soc. Nephrol. 1, 389–398 (2006).

    PubMed  Google Scholar 

  22. Agarwal, R. & Lewis, R. R. Prediction of hypertension in chronic hemodialysis patients. Kidney Int. 60, 1982–1989 (2001).

    CAS  PubMed  Google Scholar 

  23. Rahman, M. et al. A comparison of standardized versus “usual” blood pressure measurements in hemodialysis patients. Am. J. Kidney Dis. 39, 1226–1230 (2002).

    PubMed  Google Scholar 

  24. Agarwal, R., Andersen, M. J., Bishu, K. & Saha, C. Home blood pressure monitoring improves the diagnosis of hypertension in hemodialysis patients. Kidney Int. 69, 900–906 (2006).

    CAS  PubMed  Google Scholar 

  25. Agarwal, R., Brim, N. J., Mahenthiran, J., Andersen, M. J. & Saha, C. Out-of-hemodialysis-unit blood pressure is a superior determinant of left ventricular hypertrophy. Hypertension 47, 62–68 (2006).

    CAS  PubMed  Google Scholar 

  26. Moriya, H., Ohtake, T. & Kobayashi, S. Aortic stiffness, left ventricular hypertrophy and weekly averaged blood pressure (WAB) in patients on haemodialysis. Nephrol. Dial. Transplant. 22, 1198–1204 (2007).

    PubMed  Google Scholar 

  27. Moriya, H. et al. Weekly averaged blood pressure is more important than a single-point blood pressure measurement in the risk stratification of dialysis patients. Clin. J. Am. Soc. Nephrol. 3, 416–422 (2008).

    PubMed  PubMed Central  Google Scholar 

  28. Agarwal, R. Managing hypertension using home blood pressure monitoring among haemodialysis patients—a call to action. Nephrol. Dial Transplant 25, 1766–1771 (2010).

    PubMed  PubMed Central  Google Scholar 

  29. Agarwal, R., Metiku, T., Tegegne, G. G. et al. Diagnosing hypertension by intradialytic blood pressure recordings. Clin. J. Am. Soc. Nephrol. 3, 1364–1372 (2008).

    PubMed  PubMed Central  Google Scholar 

  30. Agarwal, R. et al. Home blood pressure measurements for managing hypertension in hemodialysis patients. Am. J. Nephrol. 30, 126–134 (2009).

    PubMed  PubMed Central  Google Scholar 

  31. da Silva, G. V. et al. Home blood pressure monitoring in blood pressure control among haemodialysis patients: an open randomized clinical trial. Nephrol. Dial. Transplant. 24, 3805–3811 (2009).

    PubMed  Google Scholar 

  32. Kauric-Klein, Z. & Artinian, N. Improving blood pressure control in hypertensive hemodialysis patients. CANNT J. 17, 24–26 (2007).

    PubMed  Google Scholar 

  33. Agarwal, R., Sinha, A. D., Pappas, M. K., Abraham, T. N. & Tegegne, G. G. Hypertension in hemodialysis patients treated with atenolol or lisinopril: a randomized controlled trial. Nephrol. Dial. Transplant. 29, 672–681 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Pickering, T. G., Shimbo, D. & Haas, D. Ambulatory blood-pressure monitoring. N. Engl. J. Med. 354, 2368–2374 (2006).

    CAS  PubMed  Google Scholar 

  35. Agarwal, R., Andersen, M. J. & Light, R. P. Location not quantity of blood pressure measurements predicts mortality in hemodialysis patients. Am. J. Nephrol. 28, 210–217 (2008).

    PubMed  Google Scholar 

  36. Bansal, N. et al. Blood pressure and risk of all-cause mortality in advanced chronic kidney disease and hemodialysis: the chronic renal insufficiency cohort study. Hypertension 65, 93–100 (2015).

    CAS  PubMed  Google Scholar 

  37. de la Sierra, A. et al. Nocturnal hypertension or nondipping: which is better associated with the cardiovascular risk profile? Am. J. Hypertens. 27, 680–687 (2014).

    CAS  PubMed  Google Scholar 

  38. Fan, H. Q. et al. Prognostic value of isolated nocturnal hypertension on ambulatory measurement in 8711 individuals from 10 populations. J. Hypertens. 28, 2036–2045 (2010).

    CAS  PubMed  Google Scholar 

  39. Zoccali, C. et al. Nocturnal hypoxemia, night-day arterial pressure changes and left ventricular geometry in dialysis patients. Kidney Int. 53, 1078–1084 (1998).

    CAS  PubMed  Google Scholar 

  40. Zoccali, C., Tripepi, R., Torino, C., Tripepi, G. & Mallamaci, F. Moderator's view: ambulatory blood pressure monitoring and home blood pressure for the prognosis, diagnosis and treatment of hypertension in dialysis patients. Nephrol. Dial. Transplant. 30, 1443–1448 (2015).

    PubMed  Google Scholar 

  41. Bishu, K., Gricz, K. M., Chewaka, S. & Agarwal, R. Appropriateness of antihypertensive drug therapy in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 1, 820–824 (2006).

    CAS  PubMed  Google Scholar 

  42. Mc Causland, F. R., Waikar, S. S. & Brunelli, S. M. Increased dietary sodium is independently associated with greater mortality among prevalent hemodialysis patients. Kidney Int. 82, 204–211 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Maduell, F. & Navarro, V. Dietary salt intake and blood pressure control in haemodialysis patients. Nephrol. Dial. Transplant. 15, 2063 (2000).

    CAS  PubMed  Google Scholar 

  44. Kooman, J. P., van der Sande, F., Leunissen, K. & Locatelli, F. Sodium balance in hemodialysis therapy. Semin. Dial 16, 351–355 (2003).

    PubMed  Google Scholar 

  45. Agarwal, R., Alborzi, P., Satyan, S. & Light, R. P. Dry-weight reduction in hypertensive hemodialysis patients (DRIP): a randomized, controlled trial. Hypertension 53, 500–507 (2009).

    CAS  PubMed  Google Scholar 

  46. Bibbins-Domingo, K., Chertow, G. M., Coxson, P. G. et al. Projected effect of dietary salt reductions on future cardiovascular disease. N. Engl. J. Med. 362, 590–599 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kayikcioglu, M. et al. The benefit of salt restriction in the treatment of end-stage renal disease by haemodialysis. Nephrol. Dial. Transplant. 24, 956–962 (2009).

    PubMed  Google Scholar 

  48. Ozkahya, M. et al. Impact of volume control on left ventricular hypertrophy in dialysis patients. J. Nephrol. 15, 655–660 (2002).

    PubMed  Google Scholar 

  49. Lynch, K. E., Lynch, R., Curhan, G. C. & Brunelli, S. M. Altered taste perception and nutritional status among hemodialysis patients. J. Ren Nutr. 23, 288–295 (2013).

    PubMed  Google Scholar 

  50. Munoz, M. J., Arramreddy, R. & Schiller, B. Dialysate sodium: choosing the optimal hemodialysis bath. Am. J. Kidney Dis. 66, 710–720 (2015).

    Google Scholar 

  51. Santos, S. F. & Peixoto, A. J. Revisiting the dialysate sodium prescription as a tool for better blood pressure and interdialytic weight gain management in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 3, 522–530 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Weiner, D. E. et al. Improving clinical outcomes among hemodialysis patients: a proposal for a “volume first” approach from the chief medical officers of US dialysis providers. Am. J. Kidney Dis. 64, 685–695 (2014).

    PubMed  Google Scholar 

  53. Van Stone, J. C., Bauer, J. & Carey, J. The effect of dialysate sodium concentration on body fluid compartment volume, plasma renin activity and plasma aldosterone concentration in chronic hemodialysis patients. Am. J. Kidney Dis. 2, 58–64 (1982).

    CAS  PubMed  Google Scholar 

  54. Flanigan, M. J., Khairullah, Q. T. & Lim, V. S. Dialysate sodium delivery can alter chronic blood pressure management. Am. J. Kidney Dis. 29, 383–391 (1997).

    CAS  PubMed  Google Scholar 

  55. Hecking, M. et al. Predialysis serum sodium level, dialysate sodium, and mortality in maintenance hemodialysis patients: the Dialysis Outcomes and Practice Patterns Study (DOPPS). Am. J. Kidney Dis. 59, 238–248 (2012).

    CAS  PubMed  Google Scholar 

  56. Waikar, S. S., Curhan, G. C. & Brunelli, S. M. Mortality associated with low serum sodium concentration in maintenance hemodialysis. Am. J. Med. 124, 77–84 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Arramreddy, R., Sun, S. J., Munoz, M. J., Chertow, G. M. & Schiller, B. Individualized reduction in dialysate sodium in conventional in-center hemodialysis. Hemodial. Int. 16, 473–480 (2012).

    PubMed  PubMed Central  Google Scholar 

  58. de Paula, F. M. et al. Clinical consequences of an individualized dialysate sodium prescription in hemodialysis patients. Kidney Int. 66, 1232–1238 (2004).

    PubMed  Google Scholar 

  59. Gumrukcuoglu, H. A. et al. Effects of lowering dialysate sodium on carotid artery atherosclerosis and endothelial dysfunction in maintenance hemodialysis patients. Int. Urol. Nephrol. 44, 1833–1839 (2012).

    CAS  PubMed  Google Scholar 

  60. Inrig, J. K. et al. Effect of low versus high dialysate sodium concentration on blood pressure and endothelial-derived vasoregulators during hemodialysis: a randomized crossover study. Am. J. Kidney Dis. 65, 464–473 (2014).

    PubMed  Google Scholar 

  61. Thein, H., Haloob, I. & Marshall, M. R. Associations of a facility level decrease in dialysate sodium concentration with blood pressure and interdialytic weight gain. Nephrol. Dial. Transplant. 22, 2630–2639 (2007).

    CAS  PubMed  Google Scholar 

  62. Zhou, Y. L., Liu, J., Ma, L. J. et al. Effects of increasing diffusive sodium removal on blood pressure control in hemodialysis patients with optimal dry weight. Blood Purif. 35, 209–215 (2013).

    CAS  PubMed  Google Scholar 

  63. Song, J. H., Lee, S. W., Suh, C. K. & Kim, M. J. Time-averaged concentration of dialysate sodium relates with sodium load and interdialytic weight gain during sodium-profiling hemodialysis. Am. J. Kidney Dis. 40, 291–301 (2002).

    CAS  PubMed  Google Scholar 

  64. Song, J. H. et al. Effect of sodium balance and the combination of ultrafiltration profile during sodium profiling hemodialysis on the maintenance of the quality of dialysis and sodium and fluid balances. J. Am. Soc. Nephrol. 16, 237–246 (2005).

    PubMed  Google Scholar 

  65. Sinha, A. D. & Agarwal, R. Can chronic volume overload be recognized and prevented in hemodialysis patients? The pitfalls of the clinical examination in assessing volume status. Semin. Dial. 22, 480–482 (2009).

    PubMed  Google Scholar 

  66. Sinha, A. D. Why assistive technology is needed for probing of dry weight. Blood Purif. 31, 197–202 (2011).

    PubMed  Google Scholar 

  67. Agarwal, R., Andersen, M. J. & Pratt, J. H. On the importance of pedal edema in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 3, 153–158 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Sinha, A. D., Light, R. P. & Agarwal, R. Relative plasma volume monitoring during hemodialysis AIDS the assessment of dry weight. Hypertension 55, 305–311 (2010).

    CAS  PubMed  Google Scholar 

  69. Hur, E. et al. Effect of fluid management guided by bioimpedance spectroscopy on cardiovascular parameters in hemodialysis patients: a randomized controlled trial. Am. J. Kidney Dis. 61, 957–965 (2013).

    PubMed  Google Scholar 

  70. Machek, P., Jirka, T., Moissl, U., Chamney, P. & Wabel, P. Guided optimization of fluid status in haemodialysis patients. Nephrol. Dial. Transplant. 25, 538–544 (2010).

    PubMed  Google Scholar 

  71. Onofriescu, M. et al. Randomized trial of bioelectrical impedance analysis versus clinical criteria for guiding ultrafiltration in hemodialysis patients: effects on blood pressure, hydration status, and arterial stiffness. Int. Urol. Nephrol. 44, 583–591 (2012).

    PubMed  Google Scholar 

  72. Zoccali, C. et al. Left ventricular mass monitoring in the follow-up of dialysis patients: prognostic value of left ventricular hypertrophy progression. Kidney Int. 65, 1492–1498 (2004).

    PubMed  Google Scholar 

  73. Agarwal, R., Bouldin, J. M., Light, R. P. & Garg, A. Probing dry-weight improves left ventricular mass index. Am. J. Nephrol. 33, 373–380 (2011).

    PubMed  PubMed Central  Google Scholar 

  74. Georgianos, P. I. & Agarwal, R. Relative importance of aortic stiffness and volume as predictors of treatment-induced improvement in left ventricular mass index in dialysis. PLoS ONE 10, e0135457 (2015).

    PubMed  PubMed Central  Google Scholar 

  75. Wizemann, V. et al. The mortality risk of overhydration in haemodialysis patients. Nephrol. Dial. Transplant. 24, 1574–1579 (2009).

    PubMed  PubMed Central  Google Scholar 

  76. Agarwal, R. Hypervolemia is associated with increased mortality among hemodialysis patients. Hypertension 56, 512–517 (2010).

    CAS  PubMed  Google Scholar 

  77. Reddan, D. N. et al. Intradialytic blood volume monitoring in ambulatory hemodialysis patients: a randomized trial. J. Am. Soc. Nephrol. 16, 2162–2169 (2005).

    PubMed  Google Scholar 

  78. Onofriescu, M. et al. Bioimpedance-guided fluid management in maintenance hemodialysis: a pilot randomized controlled trial. Am. J. Kidney Dis. 64, 111–118 (2014).

    PubMed  Google Scholar 

  79. Jansen, M. A. et al. Predictors of the rate of decline of residual renal function in incident dialysis patients. Kidney Int. 62, 1046–1053 (2002).

    PubMed  Google Scholar 

  80. Shafi, T., Jaar, B. G., Plantinga, L. C. et al. Association of residual urine output with mortality, quality of life, and inflammation in incident hemodialysis patients: the choices for healthy outcomes in caring for end-stage renal disease (CHOICE) study. Am. J. Kidney Dis. 56, 348–358 (2010).

    PubMed  PubMed Central  Google Scholar 

  81. Foley, R. N., Gilbertson, D. T., Murray, T. & Collins, A. J. Long interdialytic interval and mortality among patients receiving hemodialysis. N. Engl. J. Med. 365, 1099–1107 (2011).

    CAS  PubMed  Google Scholar 

  82. Tandon, T., Sinha, A. D. & Agarwal, R. Shorter delivered dialysis times associate with a higher and more difficult to treat blood pressure. Nephrol. Dial. Transplant. 28, 1562–1568 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Brunet, P. et al. Tolerance of haemodialysis: a randomized cross-over trial of 5-h versus 4-h treatment time. Nephrol. Dial. Transplant. 11 (Suppl. 8), 46–51 (1996).

    PubMed  Google Scholar 

  84. Chertow, G. M., Levin, N. W., Beck, G. J. et al. In-center hemodialysis six times per week versus three times per week. N. Engl. J. Med. 363, 2287–2300 (2010).

    CAS  PubMed  Google Scholar 

  85. Georgianos, P. I., Sarafidis, P. A., Sinha, A. D. & Agarwal, R. Adverse effects of conventional thrice-weekly hemodialysis: is it time to avoid 3-day interdialytic intervals? Am. J. Nephrol. 41, 400–408 (2015).

    PubMed  Google Scholar 

  86. Ok, E. et al. Comparison of 4- and 8-h dialysis sessions in thrice-weekly in-centre haemodialysis: a prospective, case-controlled study. Nephrol. Dial. Transplant. 26, 1287–1296 (2011).

    PubMed  Google Scholar 

  87. Tattersall, J. et al. EBPG guideline on dialysis strategies. Nephrol. Dial. Transplant. 22 (Suppl 2), ii5–21 (2007).

    PubMed  Google Scholar 

  88. Hayashi, S. Y. et al. Acute effects of low and high intravenous doses of furosemide on myocardial function in anuric haemodialysis patients: a tissue Doppler study. Nephrol. Dial. Transplant. 23, 1355–1361 (2008).

    CAS  PubMed  Google Scholar 

  89. Lemes, H. P. et al. Use of small doses of furosemide in chronic kidney disease patients with residual renal function undergoing hemodialysis. Clin. Exp. Nephrol. 15, 554–559 (2011).

    CAS  PubMed  Google Scholar 

  90. Zannad, F. et al. Prevention of cardiovascular events in end-stage renal disease: results of a randomized trial of fosinopril and implications for future studies. Kidney Int. 70, 1318–1324 (2006).

    CAS  PubMed  Google Scholar 

  91. Takahashi, A. et al. Candesartan, an angiotensin II type-1 receptor blocker, reduces cardiovascular events in patients on chronic haemodialysis—a randomized study. Nephrol. Dial. Transplant. 21, 2507–2512 (2006).

    CAS  PubMed  Google Scholar 

  92. Suzuki, H. et al. Effect of angiotensin receptor blockers on cardiovascular events in patients undergoing hemodialysis: an open-label randomized controlled trial. Am. J. Kidney Dis. 52, 501–506 (2008).

    CAS  PubMed  Google Scholar 

  93. Tai, D. J. et al. Cardiovascular effects of angiotensin converting enzyme inhibition or angiotensin receptor blockade in hemodialysis: a meta-analysis. Clin. J. Am. Soc. Nephrol. 5, 623–630 (2010).

    PubMed  PubMed Central  Google Scholar 

  94. Iseki, K. et al. Effects of angiotensin receptor blockade (ARB) on mortality and cardiovascular outcomes in patients with long-term haemodialysis: a randomized controlled trial. Nephrol. Dial. Transplant. 28, 1579–1589 (2013).

    CAS  PubMed  Google Scholar 

  95. Yang, L. Y., Ge, X., Wang, Y. L. et al. Angiotensin receptor blockers reduce left ventricular hypertrophy in dialysis patients: a meta-analysis. Am. J. Med. Sci. 345, 1–9 (2013).

    PubMed  Google Scholar 

  96. Peters, C. D., Kjaergaard, K. D., Jensen, J. D. et al. No significant effect of angiotensin II receptor blockade on intermediate cardiovascular end points in hemodialysis patients. Kidney Int. 86, 625–637 (2014).

    CAS  PubMed  Google Scholar 

  97. Zoccali, C. & Mallamaci, F. Pleiotropic effects of angiotensin II blockers in hemodialysis patients: myth or reality? Kidney Int. 86, 469–471 (2014).

    CAS  PubMed  Google Scholar 

  98. Sanghavi, S., Whiting, S. & Uribarri, J. Potassium balance in dialysis patients. Semin. Dial. 26, 597–603 (2013).

    PubMed  Google Scholar 

  99. Hatch, M., Freel, R. W. & Vaziri, N. D. Local upregulation of colonic angiotensin II receptors enhances potassium excretion in chronic renal failure. Am. J. Physiol. 274, F275–F282 (1998).

    CAS  PubMed  Google Scholar 

  100. Martin, R. S. et al. Increased secretion of potassium in the rectum of humans with chronic renal failure. Am. J. Kidney Dis. 8, 105–110 (1986).

    CAS  PubMed  Google Scholar 

  101. Knoll, G. A. et al. Renin-angiotensin system blockade and the risk of hyperkalemia in chronic hemodialysis patients. Am. J. Med. 112, 110–114 (2002).

    CAS  PubMed  Google Scholar 

  102. Inrig, J. K. Antihypertensive agents in hemodialysis patients: a current perspective. Semin. Dial. 23, 290–297 (2010).

    PubMed  PubMed Central  Google Scholar 

  103. Levin, N. W., Kotanko, P., Eckardt, K. U. et al. Blood pressure in chronic kidney disease stage 5D-report from a Kidney Disease: Improving Global Outcomes controversies conference. Kidney Int. 77, 273–284 (2010).

    PubMed  Google Scholar 

  104. Cice, G. et al. Carvedilol increases two-year survivalin dialysis patients with dilated cardiomyopathy: a prospective, placebo-controlled trial. J. Am. Coll. Cardiol. 41, 1438–1444 (2003).

    CAS  PubMed  Google Scholar 

  105. Georgianos, P. I. & Agarwal, R. Effect of lisinopril and atenolol on aortic stiffness in patients on hemodialysis. Clin. J. Am. Soc. Nephrol. 10, 639–645 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Tan, I., Butlin, M., Liu, Y. Y., Ng, K. & Avolio, A. P. Heart rate dependence of aortic pulse wave velocity at different arterial pressures in rats. Hypertension 60, 528–533 (2012).

    CAS  PubMed  Google Scholar 

  107. Wilkinson, I. B. et al. Heart rate dependency of pulse pressure amplification and arterial stiffness. Am. J. Hypertens. 15, 24–30 (2002).

    PubMed  Google Scholar 

  108. Swierblewska, E. et al. An independent relationship between muscle sympathetic nerve activity and pulse wave velocity in normal humans. J. Hypertens. 28, 979–984 (2010).

    CAS  PubMed  Google Scholar 

  109. Roberts, M. A., Pilmore, H. L., Ierino, F. L. et al. The β-Blocker to Lower Cardiovascular Dialysis Events (BLOCADE) feasibility study: a randomized controlled trial. Am. J. Kidney Dis. 67, 902–911 (2015).

    PubMed  Google Scholar 

  110. Weir, M. A., Dixon, S. N., Fleet, J. L. et al. β-Blocker dialyzability and mortality in older patients receiving hemodialysis. J. Am. Soc. Nephrol. 26, 987–996 (2015).

    CAS  PubMed  Google Scholar 

  111. Tepel, M., Hopfenmueller, W., Scholze, A., Maier, A. & Zidek, W. Effect of amlodipine on cardiovascular events in hypertensive haemodialysis patients. Nephrol. Dial. Transplant. 23, 3605–3612 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Aslam, S., Santha, T., Leone, A. & Wilcox, C. Effects of amlodipine and valsartan on oxidative stress and plasma methylarginines in end-stage renal disease patients on hemodialysis. Kidney Int. 70, 2109–2115 (2006).

    CAS  PubMed  Google Scholar 

  113. London, G. M., Marchais, S. J., Guerin, A. P. et al. Salt and water retention and calcium blockade in uremia. Circulation 82, 105–113 (1990).

    CAS  PubMed  Google Scholar 

  114. Matsumoto, Y. et al. Spironolactone reduces cardiovascular and cerebrovascular morbidity and mortality in hemodialysis patients. J. Am. Coll. Cardiol. 63, 528–536 (2014).

    CAS  PubMed  Google Scholar 

  115. Lin, C., Zhang, Q., Zhang, H. & Lin, A. Long-Term Effects of Low-Dose Spironolactone on Chronic Dialysis Patients: A Randomized Placebo-Controlled Study. J Clin Hypertens (Greenwich) 18, 121–128 (2016).

    CAS  Google Scholar 

  116. US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT01848639 (2016).

  117. Georgianos, P. I., Sarafidis, P. A., Liakopoulos, V., Balaskas, E. V. & Zebekakis, P. E. Mineralocorticoid receptor antagonism for cardiovascular protection in end-stage renal disease: new data but the controversy continues. J. Clin. Hypertens. (Greenwich) 18, 197–199 (2015).

    Google Scholar 

  118. Aybal, K. A. et al. Effects of lowering dialysate sodium on flow-mediated dilatation in patients with chronic kidney disease. Nephrol. Dial. Transplant. 26, 3678–3682 (2011).

    Google Scholar 

  119. Munoz, M. J., Bayes, L. Y., Sun, S., Doss, S. & Schiller, B. Effect of lowering dialysate sodium concentration on interdialytic weight gain and blood pressure in patients undergoing thrice-weekly in-center nocturnal hemodialysis: a quality improvement study. Am. J. Kidney Dis. 58, 956–963 (2011).

    Google Scholar 

Download references

Acknowledgements

R.A. is supported by NIH 5R01-HL126901 and a grant from VA Merit Review 5I01CX000829-04.

Author information

Authors and Affiliations

Authors

Contributions

P.I.G. drafted the first version of the article under the supervision of R.A. R.A. revised the manuscript and modified it significantly before submission.

Corresponding author

Correspondence to Rajiv Agarwal.

Ethics declarations

Competing interests

R.A. has consulted for Abbvie, Amgen, Astra Zeneca, Bayer, Boehringer Ingelheim, Celgene, Daiichi Sankyo Inc, Eli Lilly, Gilead, Glaxosmithkine, Johnson & Johnson, Merck, Novartis, Sandoz, Relypsa, and ZS Pharma. P.I.G. declares no competing interests.

PowerPoint slides

Glossary

Peridialytic BP

Blood pressure recordings obtained by the dialysis-unit staff shortly before and/or after the dialysis session.

Interdialytic BP

Blood pressure recordings obtained outside of the dialysis unit either with the use of home or ambulatory blood pressure monitoring.

Ambulatory BP monitoring

An automated method to measure blood pressure that uses an oscillometric device to typically record blood pressure 2–3 times per hour over an entire interdialytic interval. Averaged readings are considered the reference standard for true blood pressure.

Intradialytic BP

Blood pressure recordings obtained typically every 30 minutes during dialysis using an automated cuff attached to the dialysis machine.

Dry-weight probing

The iterative process of gently and gradually reducing postdialysis weight by setting the ultrafiltration goal to just a little below the previously achieved postdialysis weight; this process requires the assessment of intradialytic and interdialytic symptoms and signs of hypervolaemia or hypovolaemia.

Dry weight

The lowest tolerated postdialysis weight achieved at which minimal signs or symptoms of either hypovolaemia or hypervolaemia exist

Sodium-profiling dialysis

Time-dependent modification of the sodium concentration in the dialysate over the course of the dialysis session.

RPV monitoring

Continuous noninvasive measurement of the haematocrit level during dialysis using photo-optical technology to assess changes in intravascular blood volume with ultrafiltration.

Bioelectrical impedence analysis

A non-invasive method to estimate body composition and the relative pool sizes of total body water, extracellular fluid volume and intracellular fluid volume.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Georgianos, P., Agarwal, R. Epidemiology, diagnosis and management of hypertension among patients on chronic dialysis. Nat Rev Nephrol 12, 636–647 (2016). https://doi.org/10.1038/nrneph.2016.129

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2016.129

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing