Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The mucosa–kidney axis in IgA nephropathy

Key Points

  • Genome-wide association studies in patients with IgA nephropathy (IgAN) have identified risk loci in genes involved in the intestinal mucosal integrity and immune network

  • Immune responses to mucosal antigens and immunization studies suggest that the systemic response to mucosal antigens is exaggerated in patients with IgAN

  • Patients with IgAN have increased reactivity to dietary proteins associated with subclinical intestinal mucosal inflammation, although in general they do not have overt dietary intolerance

  • Very rarely, IgAN is associated with gastrointestinal diseases; whether these diseases indeed share a common pathogenesis or whether gastrointestinal inflammation exacerbates IgAN is uncertain

  • Mucosal alterations such as respiratory tract infections could activate the innate immune system, aggravate a pre-existing IgAN and promote disease manifestations such as macrohaematuria, rather than a share a pathogenetic link with IgAN

  • Intervention studies targeting the mucosae in IgAN have been inconclusive so far, but new studies are ongoing

Abstract

Links between IgA nephropathy (IgAN) and the mucosa have been recognized since the 1970s. In particular, the observation of visible haematuria induced by respiratory infections in patients with IgAN and the association of IgAN with diseases in which the mucosa plays a part, especially coeliac disease, have been taken as evidence of a mucosa–kidney axis. Here, we review current evidence that links the mucosa, in particular the gastrointestinal mucosa, and IgA produced by the bone marrow with IgAN. Genome-wide association studies in patients with IgAN have identified risk loci in genes involved in the intestinal mucosal integrity and immune network. Furthermore, the systemic immune response to mucosal antigens in IgAN is increased. Moreover, patients with IgAN have an increased reactivity to dietary proteins associated with subclinical intestinal mucosal inflammation. Associations between IgAN and gastrointestinal diseases have also been reported in a small number of patients, but whether these diseases share a common pathogenesis or whether gastrointestinal inflammation exacerbates IgAN is uncertain. Indeed, mucosal alterations such as infections could activate the innate immune system, aggravate a pre-existing IgAN and promote disease manifestations such as macrohaematuria. Various clinical interventions and trials targeting the mucosa or presumed mucosa-associated mechanisms have so far not yielded consistent findings and the results of ongoing trials are eagerly awaited.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of normal IgA production in the mucosal and systemic arms of the IgA immune system in humans.
Figure 2: A comparison of duodenal histology in IgA nephropathy (IgAN) and coeliac disease.

Similar content being viewed by others

References

  1. Floege, J. & Feehally, J. IgA nephropathy: recent developments. J. Am. Soc. Nephrol. 11, 2395–2403 (2000).

    CAS  PubMed  Google Scholar 

  2. Wyatt, R. J. & Julian, B. A. IgA nephropathy. N. Engl. J. Med. 368, 2402–2414 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Macpherson, A. J., Köller, Y. & McCoy, K. D. The bilateral responsiveness between intestinal microbes and IgA. Trends Immunol. 36, 460–470 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Leong, K. W. & Ding, J. L. The unexplored roles of human serum IgA. DNA Cell Biol. 33, 823–829 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bakema, J. E. & van Egmond, M. The human immunoglobulin A Fc receptor FcαRI: a multifaceted regulator of mucosal immunity. Mucosal Immunol. 4, 612–624 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Schweighoffer, T. et al. Selective expression of integrin alpha 4 beta 7 on a subset of human CD4+ memory T cells with hallmarks of gut-trophism. J. Immunol. 151, 717–729 (1993).

    CAS  PubMed  Google Scholar 

  7. Tarkowski, M., Pacheco, K. A. & Rosenwasser, L. J. The effect of antigen stimulation on α4, β1 and β7 chain integrin expression and function in CD4+ cells Int. Arch. Allergy Immunol. 121, 25–33 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Travers, J. & Rothenberg, M. E. Eosinophils in mucosal immune responses. Mucosal Immunol. 8, 464–475 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Harper, S. J. et al. Expression of J chain mRNA in duodenal IgA plasma cells in IgA nephropathy. Kidney Int. 45, 836–844 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Harper, S. J. et al. Increased immunoglobulin A and immunoglobulin A1 cells in bone marrow trephine biopsy specimens in immunoglobulin A nephropathy. Am. J. Kidney Dis. 24, 888–892 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Barratt, J., Eitner, F., Feehally, J. & Floege, J. Immune complex formation in IgA nephropathy: a case of the 'right' antibodies in the 'wrong' place at the 'wrong' time? Nephrol. Dial. Transplant. 24, 3620–3623 (2009).

    Article  PubMed  Google Scholar 

  12. Smith, A. C., Molyneux, K., Feehally, J. & Barratt, J. O-glycosylation of serum IgA1 antibodies against mucosal and systemic antigens in IgA nephropathy. J. Am. Soc. Nephrol. 17, 3520–3528 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Batra, A., Smith, A. C., Feehally, J. & Barratt, J. T-cell homing receptor expression in IgA nephropathy. Nephrol. Dial. Transplant. 22, 2540–2548 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Liu, L. L. et al. Tonsillectomy for IgA nephropathy: a meta-analysis. Am. J. Kidney Dis. 65, 80–87 (2015).

    Article  PubMed  Google Scholar 

  15. Kiryluk, K. et al. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat. Genet. 46, 1187–1196 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhu, L. et al. Variants in complement factor H and complement factor H-related protein genes, CFHR3 and CFHR1, affect complement activation in IgA nephropathy. J. Am. Soc. Nephrol. 26, 1195–1204 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Suzuki, K. et al. Incidence of latent mesangial IgA deposition in renal allograft donors in Japan. Kidney Int. 63, 86–94 (2003).

    Article  Google Scholar 

  18. Gutierrez, E. et al. Long-term outcomes of IgA nephropathy presenting with minimal or no proteinuria. J. Am. Soc. Nephrol. 23, 1753–1760 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dwivedi, R. S., Herman, J. G., McCaffrey, T. A. & Raj, D. S. Beyond genetics: epigenetic code in chronic kidney disease. Kidney Int. 79, 23–32 (2011).

    Article  PubMed  Google Scholar 

  20. Fortune, F., Courteau, M., Williams, D. G. & Lehner, T. T and B cell responses following immunization with tetanus toxoid in IgA nephropathy. Clin. Exp. Immunol. 88, 62–67 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Waldo, F. B. Systemic immune response after mucosal immunization in patients with IgA nephropathy. J. Clin. Immunol. 12, 21–26 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. de Fijter, J. W. et al. Deficient IgA1 immune response to nasal cholera toxin subunit B in primary IgA nephropathy. Kidney Int. 50, 952–961 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Layward, L., Allen, A. C., Hattersley, J. M., Harper, S. J. & Feehally, J. Response to mucosal antigen challenge in IgA nephropathy. Exp. Nephrol. 3, 300–307 (1995).

    CAS  PubMed  Google Scholar 

  24. Barratt, J. et al. Exaggerated systemic antibody response to mucosal Helicobacter pylori infection in IgA nephropathy. Am. J. Kidney Dis. 33, 1049–1057 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Schmitt, R. et al. Tissue deposits of IgA-binding streptococcal M proteins in IgA nephropathy and Henoch–Schönlein purpura. Am. J. Pathol. 176, 608–618 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Koyama, A. et al. Staphylococcus aureus cell envelope antigen is a new candidate for the induction of IgA nephropathy. Kidney Int. 66, 121–132 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. De Angelis, M. et al. Microbiota and metabolome associated with immunoglobulin A nephropathy (IgAN). PLoS ONE 9, e99006 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Piccolo, M. et al. Salivary microbiota associated with immunoglobulin A nephropathy. Microb. Ecol. 70, 557–565 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Nagy, J., Scott, H. & Brandtzaeg, P. Antibodies to dietary antigens in IgA nephropathy. Clin. Nephrol. 29, 275–279 (1988).

    CAS  PubMed  Google Scholar 

  30. Moeller, S. et al. Lack of serologic evidence to link IgA nephropathy with celiac disease or immune reactivity to gluten. PLoS ONE 9, e94677 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Feehally, J. et al. Response of circulating immune complexes to food challenge in relapsing IgA nephropathy. Pediatr. Nephrol. 1, 581–586 (1987).

    Article  CAS  PubMed  Google Scholar 

  32. Jackson, S. et al. IgA-containing immune complexes after challenge with food antigens in patients with IgA nephropathy. Clin. Exp. Immunol. 89, 315–320 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kloster Smerud, H. et al. Gastrointestinal sensitivity to soy and milk proteins in patients with IgA nephropathy. Clin. Nephrol. 74, 364–371 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Smerud, H. K. et al. Gluten sensitivity in patients with IgA nephropathy. Nephrol. Dial. Transplant. 24, 2476–2481 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Coppo, R. et al. Effects of a gluten-free diet in primary IgA nephropathy. Clin. Nephrol. 33, 72–86 (1990).

    CAS  PubMed  Google Scholar 

  36. Honkanen, T. et al. Small bowel cyclooxygenase 2 (COX-2) expression in patients with IgA nephropathy. Kidney Int. 67, 2187–2195 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Rantala, I. et al. Small bowel T cells, HLA class II antigen DR, and GroEL stress protein in IgA nephropathy. Kidney Int. 55, 2274–2280 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Coppo, R. et al. Mediterranean diet and primary IgA nephropathy. Clin. Nephrol. 26, 72–82 (1986).

    CAS  PubMed  Google Scholar 

  39. Hene, R. J., Schuurman, H. J. & Kater, L. Immunoglobulin A subclass-containing plasma cells in the jejunum in primary IgA nephropathy and in Henoch–Schönlein purpura. Nephron 48, 4–7 (1988).

    Article  CAS  PubMed  Google Scholar 

  40. Rostoker, G., Delchier, J. C. & Chaumette, M. T. Increased intestinal intra-epithelial T lymphocytes in primary glomerulonephritis: a role of oral tolerance breakdown in the pathophysiology of human primary glomerulonephritides? Nephrol. Dial. Transplant. 16, 513–517 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Savilahti, E., Reunala, T. & Maki, M. Increase of lymphocytes bearing the γ/δ T cell receptor in the jejunum of patients with dermatitis herpetiformis. Gut 33, 206–211 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Savilahti, E., Arato, A. & Verkasalo, M. Intestinal γ/δ receptor-bearing T lymphocytes in celiac disease and inflammatory bowel diseases in children. Constant increase in celiac disease. Pediatr. Res. 28, 579–581 (1990).

    Article  CAS  PubMed  Google Scholar 

  43. Olive, C. et al. Expression of the mucosal γδ T cell receptor V region repertoire in patients with IgA nephropathy. Kidney Int. 52, 1047–1053 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Westberg, N. G., Baklien, K., Schmekel, B., Gillberg, R. & Brandtzaeg, P. Quantitation of immunoglobulin-producing cells in small intestinal mucosa of patients with IgA nephropathy. Clin. Immunol. Immunopathol. 26, 442–445 (1983).

    Article  CAS  PubMed  Google Scholar 

  45. Emancipator, S. N., Chintalacharuvu, S. R. & Bagheri, N. Animal models of IgA nephropathy: formulating therapeutic strategies. Nephrol. (Carlton) 3, 45–50 (1997).

    Article  CAS  Google Scholar 

  46. Wang, J. et al. Dysregulated LIGHT expression on T cells mediates intestinal inflammation and contributes to IgA nephropathy. J. Clin. Invest. 113, 826–835 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kovacs, T. et al. Do intestinal hyperpermeability and the related food antigens play a role in the progression of IgA nephropathy? I. Study of intestinal permeability. Am. J. Nephrol. 16, 500–505 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Rostoker, G. et al. Mucosal immunity in primary glomerulonephritis. III. Study of intestinal permeability. Nephron 63, 286–290 (1993).

    Article  CAS  PubMed  Google Scholar 

  49. Kovacs, T. et al. Relationship between intestinal permeability and antibodies against food antigens in IgA nephropathy. Orv. Hetil. 137, 65–69 (in Hungarian) (1996).

    CAS  PubMed  Google Scholar 

  50. Davin, J. C., Forget, P. & Mahieu, P. R. Increased intestinal permeability to (51 Cr) EDTA is correlated with IgA immune complex-plasma levels in children with IgA-associated nephropathies. Acta Paediatr. Scand. 77, 118–124 (1988).

    Article  CAS  PubMed  Google Scholar 

  51. Davin, J. C. & Mahieu, P. R. Sequential measurements of intestinal permeability to [51Cr]EDTA in children with Henoch–Schönlein purpura nephritis. Nephron 60, 498–499 (1992).

    Article  CAS  PubMed  Google Scholar 

  52. Layward, L., Hattersley, J. M., Patel, H. R., Tanner, M. S. & Feehally, J. Gut permeability in IgA nephropathy. Nephrol. Dial. Transplant. 5, 569–571 (1990).

    Article  CAS  PubMed  Google Scholar 

  53. Jenkins, D. A., Bell, G. M., Ferguson, A. & Lambie, A. T. Intestinal permeability in IgA nephropathy. Nephron 50, 390 (1988).

    Article  CAS  PubMed  Google Scholar 

  54. Hodges, S., Ashmore, S. P., Patel, H. R. & Tanner, M. S. Cellobiose: mannitol differential permeability in small bowel disease. Arch. Dis. Child. 64, 853–855 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bazzi, C. et al. Low doses of drugs able to alter intestinal mucosal permeability to food antigens (5-aminosalicylic acid and sodium cromoglycate) do not reduce proteinuria in patients with IgA nephropathy: a preliminary noncontrolled trial. Nephron 61, 192–195 (1992).

    Article  CAS  PubMed  Google Scholar 

  56. Sato, M., Nakajima, Y. & Koshikawa, S. Effect of sodium cromoglycate on an experimental model of IgA nephropathy. Clin. Nephrol. 27, 141–146 (1987).

    CAS  PubMed  Google Scholar 

  57. Jin, S. Y. & Choi, I. J. The effect of sodium cromoglycate on the induction of experimental IgA nephropathy. Yonsei Med. J. 31, 33–48 (1990).

    Article  CAS  PubMed  Google Scholar 

  58. Sato, M., Takayama, K., Kojima, H. & Koshikawa, S. Sodium cromoglycate therapy in IgA nephropathy: a preliminary short-term trial. Am. J. Kidney Dis. 15, 141–146 (1990).

    Article  CAS  PubMed  Google Scholar 

  59. Smerud, H. K. et al. New treatment for IgA nephropathy: enteric budesonide targeted to the ileocecal region ameliorates proteinuria. Nephrol. Dial. Transplant. 26, 3237–3242 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. US National Library of Science. ClinicalTrials.gov [online], (2015).

  61. Pouria, S. & Barratt, J. Secondary IgA nephropathy. Semin. Nephrol. 28, 27–37 (2008).

    Article  PubMed  Google Scholar 

  62. Helin, H., Mustonen, J., Reunala, T. & Pasternack, A. IgA nephropathy associated with celiac disease and dermatitis herpetiformis. Arch. Pathol. Lab. Med. 107, 324–327 (1983).

    CAS  PubMed  Google Scholar 

  63. Pawar, R. D. et al. Toll-like receptor-7 modulates immune complex glomerulonephritis. J. Am. Soc. Nephrol. 17, 141–149 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Coppo, R. et al. Toll-like receptor 4 expression is increased in circulating mononuclear cells of patients with immunoglobulin A nephropathy. Clin. Exp. Immunol. 159, 73–81 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Suzuki, H. et al. Toll-like receptor 9 affects severity of IgA nephropathy. J. Am. Soc. Nephrol. 19, 2384–2395 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pasternack, A. et al. Glomerular IgA deposits in patients with celiac disease. Clin. Nephrol. 34, 56–60 (1990).

    CAS  PubMed  Google Scholar 

  67. Coppo, R. The intestine-renal connection in IgA nephropathy. Nephrol. Dial. Transplant. 30, 360–366 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Papista, C. et al. Gluten exacerbates IgA nephropathy in humanized mice through gliadin–CD89 interaction. Kidney Int. 88, 276–285 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Matysiak-Budnik, T. et al. Secretory IgA mediates retrotranscytosis of intact gliadin peptides via the transferrin receptor in celiac disease. J. Exp. Med. 205, 143–154 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Haddad, E. et al. Enhanced expression of the CD71 mesangial IgA1 receptor in Berger disease and Henoch–Schönlein nephritis: association between CD71 expression and IgA deposits. J. Am. Soc. Nephrol. 14, 327–337 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Lebreton, C. et al. Interactions among secretory immunoglobulin A, CD71, and transglutaminase-2 affect permeability of intestinal epithelial cells to gliadin peptides. Gastroenterology 143, 698–707.e4 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Berthelot, L. et al. Transglutaminase is essential for IgA nephropathy development acting through IgA receptors. J. Exp. Med. 209, 793–806 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Welander, A., Sundelin, B., Fored, M. & Ludvigsson, J. F. Increased risk of IgA nephropathy among individuals with celiac disease. J. Clin. Gastroenterol. 47, 678–683 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Collin, P. et al. Celiac disease and HLA DQ in patients with IgA nephropathy. Am. J. Gastroenterol. 97, 2572–2576 (2002).

    Article  PubMed  Google Scholar 

  75. Coppo, R. et al. IgA antibodies to dietary antigens and lectin-binding IgA in sera from Italian, Australian, and Japanese IgA nephropathy patients. Am. J. Kidney Dis. 17, 480–487 (1991).

    Article  CAS  PubMed  Google Scholar 

  76. Ots, M., Uibo, O., Metskula, K., Uibo, R. & Salupere, V. IgA-antigliadin antibodies in patients with IgA nephropathy: the secondary phenomenon? Am. J. Nephrol. 19, 453–458 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Almroth, G. et al. Increased prevalence of anti-gliadin IgA-antibodies with aberrant duodenal histopathological findings in patients with IgA-nephropathy and related disorders. Ups. J. Med. Sci. 111, 339–352 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Rostoker, G. et al. Lack of antireticulin and IgA antiendomysium antibodies in sera of patients with primary IgA nephropathy associated with circulating IgA antibodies to gliadin. Nephron 48, 81 (1988).

    Article  CAS  PubMed  Google Scholar 

  79. Coppo, R., Amore, A. & Roccatello, D. Dietary antigens and primary immunoglobulin A nephropathy. J. Am. Soc. Nephrol. 2, S173–S180 (1992).

    CAS  PubMed  Google Scholar 

  80. Pierucci, A. et al. Antiendomysial antibodies in Berger's disease. Am. J. Kidney Dis. 39, 1176–1182 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Ambruzs, J. M., Walker, P. D. & Larsen, C. P. The histopathologic spectrum of kidney biopsies in patients with inflammatory bowel disease. Clin. J. Am. Soc. Nephrol. 9, 265–270 (2014).

    Article  PubMed  Google Scholar 

  82. Hubert, D., Beaufils, M. & Meyrier, A. Immunoglobulin A glomerular nephropathy associated with inflammatory colitis. Apropos of 2 cases. Presse Med. 13, 1083–1085 (in French) (1984).

    CAS  PubMed  Google Scholar 

  83. Stirati, G., Antonelli, M., Fofi, C., Fierimonte, S. & Pecci, G. IgA nephropathy in cystic fibrosis. J. Nephrol. 12, 30–31 (1999).

    CAS  PubMed  Google Scholar 

  84. Yahiaoui, Y. et al. Renal involvement in cystic fibrosis: diseases spectrum and clinical relevance. Clin. J. Am. Soc. Nephrol. 4, 921–928 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Sato, D. et al. Tonsillar TLR9 expression and efficacy of tonsillectomy with steroid pulse therapy in IgA nephropathy patients. Nephrol. Dial. Transplant. 27, 1090–1097 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Kawamura, T. et al. A multicenter randomized controlled trial of tonsillectomy combined with steroid pulse therapy in patients with immunoglobulin A nephropathy. Nephrol. Dial. Transplant. 29, 1546–1553 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Vergano, L. et al. Can tonsillectomy modify the innate and adaptive immunity pathways involved in IgA nephropathy? J. Nephrol. 28, 51–58 (2015).

    Article  CAS  PubMed  Google Scholar 

  88. Feehally, J. et al. Tonsillectomy in a European cohort of 1147 patients with IgA nephropathy. Nephron Clin. Pract. http://dx.doi.org/10.1159/000441852 (2015).

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to researching data for the article, discussing its content, writing and reviewing/editing the manuscript before submission.

Corresponding author

Correspondence to Jürgen Floege.

Ethics declarations

Competing interests

J. Floege has received honoraria from Pharmalink, Sweden. J. Feehally declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Floege, J., Feehally, J. The mucosa–kidney axis in IgA nephropathy. Nat Rev Nephrol 12, 147–156 (2016). https://doi.org/10.1038/nrneph.2015.208

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2015.208

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing