Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Genetic testing in nephrotic syndrome—challenges and opportunities

Abstract

Monogenic nephrotic syndrome (nephrotic syndrome caused by a single gene defect) is responsible for only a small percentage of cases of nephrotic syndrome, but information from studies of the unique cohort of patients with this form of the disease has dramatically improved our understanding of the disease pathogenesis. The use of genetic testing in the management of children and adults with nephrotic syndrome poses unique challenges for clinicians in terms of who to test and how to use the information obtained from testing in the clinical setting. In our view, not enough data exist at present to justify the routine genetic testing of all patients with nephrotic syndrome. Testing is warranted, however, in patients with congenital nephrotic syndrome (onset at 0–3 months), infantile nephrotic syndrome (onset at 3–12 months), a family history of nephrotic syndrome, and those in whom nephrotic syndrome is associated with other congenital malformations. The family and/or the patient should be given complete and unbiased information on the potential benefits and risks associated with therapy, including the reported outcomes of treatment in patients with similar mutations. Based on the data available in the literature so far, intensive immunosuppressive treatment is probably not indicated in monogenic nephrotic syndrome if complete or partial remission has not been achieved within 6 weeks of starting treatment. We advocate that family members of individuals with genetic forms of nephrotic syndrome undergo routine genetic testing prior to living-related kidney transplantation. Prospective, multicentre studies are needed to more completely determine the burden of disease caused by monogenic nephrotic syndrome, and randomized controlled trials are needed to clarify the presence or absence of clinical responses of monogenic nephrotic syndrome to available therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Algorithm for genetic testing in nephrotic syndrome.

Similar content being viewed by others

References

  1. McKinney, P. A., Feltbower, R. G., Brocklebank, J. T. & Fitzpatrick, M. M. Time trends and ethnic patterns of childhood nephrotic syndrome in Yorkshire, UK. Pediatr. Nephrol. 16, 1040–1044 (2001).

    Article  CAS  Google Scholar 

  2. [No authors listed] The primary nephrotic syndrome in children. Identification of patients with minimal change nephrotic syndrome from initial response to prednisone. A report of the International Study of Kidney Disease in Children. J. Pediatr. 98, 561–564 (1981).

  3. Kestila, M. et al. Positionally cloned gene for a novel glomerular protein—nephrin—is mutated in congenital nephrotic syndrome. Mol. Cell. 1, 575–582 (1998).

    Article  CAS  Google Scholar 

  4. Wiggins, R. C. The spectrum of podocytopathies: a unifying view of glomerular diseases. Kidney Int. 71, 1205–1214 (2007).

    Article  CAS  Google Scholar 

  5. Shih, N. Y. et al. Congenital nephrotic syndrome in mice lacking CD2-associated protein. Science 286, 312–315 (1999).

    Article  CAS  Google Scholar 

  6. Dreyer, S. D. et al. Mutations in LMX1B cause abnormal skeletal patterning and renal dysplasia in nail patella syndrome. Nat. Genet. 19, 47–50 (1998).

    Article  CAS  Google Scholar 

  7. Boute, N. et al. NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat. Genet. 24, 349–354 (2000).

    Article  CAS  Google Scholar 

  8. Zenker, M. et al. Human laminin β2 deficiency causes congenital nephrosis with mesangial sclerosis and distinct eye abnormalities. Hum. Mol. Genet. 13, 2625–2632 (2004).

    Article  CAS  Google Scholar 

  9. Kaplan, J. M. et al. Mutations in ACTN4, encoding alpha-actinin-4, cause familial focal segmental glomerulosclerosis. Nat. Genet. 24, 251–256 (2000).

    Article  CAS  Google Scholar 

  10. Boerkoel, C. F. et al. Mutant chromatin remodeling protein SMARCAL1 causes Schimke immuno-osseous dysplasia. Nat. Genet. 30, 215–220 (2002).

    Article  CAS  Google Scholar 

  11. Winn, M. P. et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308, 1801–1804 (2005).

    Article  CAS  Google Scholar 

  12. Hinkes, B. et al. Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible. Nat. Genet. 38, 1397–1405 (2006).

    Article  CAS  Google Scholar 

  13. Niaudet, P. & Gubler, M. C. WT1 and glomerular diseases. Pediatr. Nephrol. 21, 1653–1660 (2006).

    Article  Google Scholar 

  14. Berkovic, S. F. et al. Array-based gene discovery with three unrelated subjects shows SCARB2/LIMP-2 deficiency causes myoclonus epilepsy and glomerulosclerosis. Am. J. Hum. Genet. 82, 673–684 (2008).

    Article  CAS  Google Scholar 

  15. Brown, E. J. et al. Mutations in the formin gene INF2 cause focal segmental glomerulosclerosis. Nat. Genet. 42, 72–76 (2010).

    Article  CAS  Google Scholar 

  16. Boyer, O. et al. INF2 mutations in Charcot-Marie-Tooth disease with glomerulopathy. N. Engl. J. Med. 365, 2377–2388 (2011).

    Article  CAS  Google Scholar 

  17. Heeringa, S. F. et al. COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. J. Clin. Invest. 121, 2013–2024 (2011).

    Article  CAS  Google Scholar 

  18. Akilesh, S. et al. Arhgap24 inactivates Rac1 in mouse podocytes, and a mutant form is associated with familial focal segmental glomerulosclerosis. J. Clin. Invest. 121, 4127–4137 (2011).

    Article  CAS  Google Scholar 

  19. Mele, C. et al. MYO1E mutations and childhood familial focal segmental glomerulosclerosis. N. Engl. J. Med. 365, 295–306 (2011).

    Article  CAS  Google Scholar 

  20. Ozaltin, F. et al. Disruption of PTPRO causes childhood-onset nephrotic syndrome. Am. J. Hum. Genet. 89, 139–147 (2011).

    Article  CAS  Google Scholar 

  21. Has, C. et al. Integrin α3 mutations with kidney, lung, and skin disease. N. Engl. J. Med. 366, 1508–1514 (2012).

    Article  CAS  Google Scholar 

  22. Büscher, A. K. et al. Mutations in podocyte genes are a rare cause of primary FSGS associated with ESRD in adult patients. Clin. Nephrol. 78, 47–53 (2012).

    Article  Google Scholar 

  23. Ruf, R. G. et al. Patients with mutations in NPHS2 (podocin) do not respond to standard steroid treatment of nephrotic syndrome. J. Am. Soc. Nephrol. 15, 722–732 (2004).

    Article  Google Scholar 

  24. Hinkes, B. et al. Specific podocin mutations correlate with age of onset in steroid-resistant nephrotic syndrome. J. Am. Soc. Nephrol. 19, 365–371 (2008).

    Article  Google Scholar 

  25. Hinkes, B. G. et al. Nephrotic syndrome in the first year of life: two thirds of cases are caused by mutations in 4 genes (NPHS1, NPHS2, WT1, and LAMB2). Pediatrics 119, e907–e919 (2007).

    Article  Google Scholar 

  26. Gbadegesin, R. et al. Mutations in PLCE1 are a major cause of isolated diffuse mesangial sclerosis (IDMS). Nephrol. Dial. Transplant. 23, 1291–1297 (2008).

    Article  CAS  Google Scholar 

  27. Gbadegesin, R. A. et al. Inverted formin 2 mutations with variable expression in patients with sporadic and hereditary focal and segmental glomerulosclerosis. Kidney Int. 81, 94–99 (2012).

    Article  CAS  Google Scholar 

  28. Boyer, O. et al. Mutations in INF2 are a major cause of autosomal dominant focal segmental glomerulosclerosis. J. Am. Soc. Nephrol. 22, 239–245 (2011).

    Article  CAS  Google Scholar 

  29. Kopp, J. B. et al. MYH9 is a major-effect risk gene for focal segmental glomerulosclerosis. Nat. Genet. 40, 1175–1184 (2008).

    Article  CAS  Google Scholar 

  30. Genovese, G. et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329, 841–845 (2010).

    Article  CAS  Google Scholar 

  31. Santín, S. et al. Clinical utility of genetic testing in children and adults with steroid-resistant nephrotic syndrome. Clin. J. Am. Soc. Nephrol. 6, 1139–1148 (2011).

    Article  Google Scholar 

  32. Conrad, D. F. et al. Variation in genome-wide mutation rates within and between human families. Nat. Genet. 43, 712–714 (2011).

    Article  CAS  Google Scholar 

  33. National Center for Biotechnology Information. GeneTests [online], (2012).

  34. Gbadegesin, R. et al. Mutational analysis of NPHS2 and WT1 in frequently relapsing and steroid-dependent nephrotic syndrome. Pediatr. Nephrol. 22, 509–513 (2007).

    Article  Google Scholar 

  35. Büscher, A. K. et al. Immunosuppression and renal outcome in congenital and pediatric steroid-resistant nephrotic syndrome. Clin. J. Am. Soc. Nephrol. 5, 2075–2084 (2010).

    Article  Google Scholar 

  36. Kitamura, A. et al. A familial childhood-onset relapsing nephrotic syndrome. Kidney Int. 71, 946–951 (2007).

    Article  CAS  Google Scholar 

  37. Wasilewska, A. M. et al. Effect of cyclosporin A on proteinuria in the course of glomerulopathy associated with WT1 mutations. Eur. J. Pediatr. 170, 389–391 (2011).

    Article  CAS  Google Scholar 

  38. Ransom, R. F., Lam, N. G., Hallett, M. A., Atkinson, S. J. & Smoyer, W. E. Glucocorticoids protect and enhance recovery of cultured murine podocytes via actin filament stabilization. Kidney Int. 68, 2473–2483 (2005).

    Article  CAS  Google Scholar 

  39. Faul, C. et al. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat. Med. 14, 931–938 (2008).

    Article  CAS  Google Scholar 

  40. Coleman, J. E. & Watson, A. R. Hyperlipidaemia, diet and simvastatin therapy in steroid-resistant nephrotic syndrome of childhood. Pediatr. Nephrol. 10, 171–174 (1996).

    Article  CAS  Google Scholar 

  41. Sanjad, S. A. et al. Management of hyperlipidemia in children with refractory nephrotic syndrome: the effect of statin therapy. J. Pediatr. 130, 470–474 (1997).

    Article  CAS  Google Scholar 

  42. Valdivielso, P. et al. Atorvastatin in dyslipidaemia of the nephrotic syndrome. Nephrology (Carlton) 8, 61–64 (2003).

    Article  CAS  Google Scholar 

  43. Ellis, D. et al. Long-term antiproteinuric and renoprotective efficacy and safety of losartan in children with proteinuria. J. Pediatr. 143, 89–97 (2003).

    Article  CAS  Google Scholar 

  44. Prescott, W. A. Jr et al. The potential role of HMG-CoA reductase inhibitors in pediatric nephrotic syndrome. Ann. Pharmacother. 38, 2105–2114 (2004).

    Article  CAS  Google Scholar 

  45. Conlon, P. J. et al. Spectrum of disease in familial focal and segmental glomerulosclerosis. Kidney Int. 56, 1863–1871 (1999).

    Article  CAS  Google Scholar 

  46. Weber, S. et al. NPHS2 mutation analysis shows genetic heterogeneity of steroid-resistant nephrotic syndrome and low post-transplant recurrence. Kidney Int. 66, 571–579 (2004).

    Article  CAS  Google Scholar 

  47. Jungraithmayr, T. C. et al. Screening for NPHS2 mutations may help predict FSGS recurrence after transplantation. J. Am. Soc. Nephrol. 22, 579–585 (2011).

    Article  Google Scholar 

  48. Kuusniemi, A. M. et al. Plasma exchange and retransplantation in recurrent nephrosis of patients with congenital nephrotic syndrome of the Finnish type (NPHS1). Transplantation 83, 1316–1323 (2007).

    Article  Google Scholar 

  49. Winn, M. P. et al. Focal segmental glomerulosclerosis: a need for caution in live-related renal transplantation. Am. J. Kidney Dis. 33, 970–974 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of this manuscript.

Corresponding author

Correspondence to William E. Smoyer.

Ethics declarations

Competing interests

M. P. Winn declares an association with the following company: Athena Diagnostics (consultant). The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gbadegesin, R., Winn, M. & Smoyer, W. Genetic testing in nephrotic syndrome—challenges and opportunities. Nat Rev Nephrol 9, 179–184 (2013). https://doi.org/10.1038/nrneph.2012.286

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2012.286

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing