Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tolerance: an overview and perspectives

This article has been updated

Abstract

Self tolerance is dependent on mechanisms that operate on T cells and B cells from the earliest stages, that is, from when they first express anti-self-receptors in the primary lymphoid organs of the thymus and bone marrow, all the way through to when they engage with self antigens in the peripheral immune system and within tissues themselves. This continuum of checkpoints and fail-safes ensures that the risk of developing harmful autoimmune diseases remains very small. Certain tissues have a degree of privilege that allows them to mute the immune response against them by mechanisms that are also well represented in cancers. An understanding of the underlying mechanisms of self tolerance is hoped to spawn a new range of therapeutics designed to both reprogram the immune system to avoid long-term intense immunosuppression, and to override the immune system to achieve more effective immunity against cancers and persistent viral infections.

Key Points

  • The immune system is organized so that it is free to react to dangerous microbes while avoiding reactions to self

  • Self tolerance in lymphocytes is organized so that many self-reactive lymphocytes abort soon after they acquire their receptors for antigen

  • Such purging cannot guarantee that self-reactivity will not occur, and other fail-safes operate at numerous checkpoints in the immune response

  • T-regulatory cells and agents that prevent licensing of antigen-presenting dendritic cells are the most amenable to therapeutic exploitation

  • Tissues can adapt to protect themselves against immune attack and can interact with regulatory cells of the innate and adaptive immune systems to create microenvironments that are protected from immune damage

  • Therapeutic exploitation of tolerance mechanisms is constrained by a number of commercial and regulatory issues, so that only part of what we know can ever become drug-worthy

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inter-T-cell cooperation.
Figure 2: Decommissioning of dendritic cells is a mechanism by which TREG cells are thought to prevent cooperation and T-cell activation.
Figure 3: Factors that shape the engagement of T cells for immunity or tolerance.
Figure 4: Mechanisms by which TREG cells might interact with tissues to ensure their protection against immune damage.

Similar content being viewed by others

Change history

  • 03 September 2010

    In the version of this article initially published online, there was a mistake under the section T-regulatory cells. The errors have been corrected in all electronic versions of the text.

References

  1. Billingham, R. E., Brent, L. & Medawar, P. B. Actively acquired tolerance of foreign cells. Nature 172, 603–606 (1953).

    Article  CAS  PubMed  Google Scholar 

  2. Zinkernagel, R. M. On cross-priming of MHC class I-specific CTL: rule or exception? Eur. J. Immunol. 32, 2385–2392 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Miller, J. F., Morahan, G. & Allison, J. Immunological tolerance: new approaches using transgenic mice. Immunol. Today 10, 53–57 (1989).

    Article  CAS  PubMed  Google Scholar 

  4. Goodnow, C. C., Crosbie, J., Jorgensen, H., Brink, R. A. & Basten, A. Induction of self-tolerance in mature peripheral B lymphocytes. Nature 342, 385–391 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Teh, H. S., Kishi, H., Scott, B. & Von Boehmer, H. Deletion of autospecific T cells in T-cell receptor (TCR) transgenic mice spares cells with normal TCR levels and low levels of CD8 molecules. J. Exp. Med. 169, 795–806 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Schonrich, G. et al. Down-regulation of T cell receptors on self-reactive T cells as a novel mechanism for extrathymic tolerance induction. Cell 65, 293–304 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Evans, M. J. Potential for genetic manipulation of mammals. Mol. Biol. Med. 6, 557–565 (1989).

    CAS  PubMed  Google Scholar 

  8. Nelms, K. A. & Goodnow, C. C. Genome-wide ENU mutagenesis to reveal immune regulators. Immunity 15, 409–418 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Kohler, G. & Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497 (1975).

    Article  CAS  PubMed  Google Scholar 

  10. An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat. Genet. 17, 399–403 (1997).

  11. Nagamine, K. et al. Positional cloning of the APECED gene. Nat. Genet. 17, 393–398 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Klein, L., Klein, T., Ruther, U. & Kyewski, B. CD4 T cell tolerance to human C-reactive protein, an inducible serum protein, is mediated by medullary thymic epithelium. J. Exp. Med. 188, 5–16 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bennett, C. L. et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 27, 20–21 (2001).

    CAS  PubMed  Google Scholar 

  14. Wildin, R. S. et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat. Genet. 27, 18–20 (2001).

    CAS  PubMed  Google Scholar 

  15. Kappler, J. W., Roehm, N. & Marrack, P. T cell tolerance by clonal elimination in the thymus. Cell 49, 273–280 (1987).

    Article  CAS  PubMed  Google Scholar 

  16. Dyson, P. J., Knight, A. M., Fairchild, S., Simpson, E. & Tomonari, K. Genes encoding ligands for deletion of V beta 11 T cells cosegregate with mammary tumour virus genomes. Nature 349, 531–532 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Daniels, M. A. et al. Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling. Nature 444, 724–729 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Anderson, M. S. et al. The cellular mechanism of Aire control of T cell tolerance. Immunity 23, 227–239 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Nemazee, D. A. & Burki, K. Clonal deletion of B lymphocytes in a transgenic mouse bearing anti-MHC class I antibody genes. Nature 337, 562–566 (1989).

    Article  CAS  PubMed  Google Scholar 

  20. Casellas, R. et al. Contribution of receptor editing to the antibody repertoire. Science 291, 1541–1544 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Howie, D. et al. MS4A4B is a GITR-associated membrane adapter, expressed by regulatory T cells, which modulates T cell activation. J. Immunol. 183, 4197–4204 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Miller, J. F. & Mitchell, G. F. Cell to cell interaction in the immune response. I. Hemolysin-forming cells in neonatally thymectomized mice reconstituted with thymus or thoracic duct lymphocytes. J. Exp. Med. 128, 801–820 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Claman, H. N. & Chaperon, E. A. Immunologic complementation between thymus and marrow cells—a model for the two-cell theory of immunocompetence. Transplant. Rev. 1, 92–113 (1969).

    CAS  PubMed  Google Scholar 

  24. Metcalf, E. S. & Klinman, N. R. In vitro tolerance induction of neonatal murine B cells. J. Exp. Med. 143, 1327–1340 (1976).

    Article  CAS  PubMed  Google Scholar 

  25. Adams, E., Basten, A. & Goodnow, C. C. Intrinsic B-cell hyporesponsiveness accounts for self-tolerance in lysozyme/anti-lysozyme double-transgenic mice. Proc. Natl Acad. Sci. USA 87, 5687–5691 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mitchison, N. A. The carrier effect in the secondary response to hapten-protein conjugates. II. Cellular co-operation. Eur. J. Immunol. 1, 18–27 (1971).

    Article  CAS  PubMed  Google Scholar 

  27. Rajewsky, K. The carrier effect and cellular co-operation in the induction of antibodies. Proc. R. Soc. Lond. B Biol. Sci. 176, 385–392 (1971).

    Article  CAS  PubMed  Google Scholar 

  28. Ridge, J. P., Di Rosa, F. & Matzinger, P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393, 474–478 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Lenschow, D. J., Walunas, T. L. & Bluestone, J. A. CD28/B7 system of T cell co-stimulation. Annu. Rev. Immunol. 14, 233–258 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Xu, J. et al. Mice deficient for the CD40 ligand. Immunity 1, 423–431 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Janeway, C. A. Jr & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Benjamin, R. J. & Waldmann, H. Induction of tolerance by monoclonal antibody therapy. Nature 320, 449–451 (1986).

    Article  CAS  PubMed  Google Scholar 

  33. Gutstein, N. L., Seaman, W. E., Scott, J. H. & Wofsy, D. Induction of immune tolerance by administration of monoclonal antibody to L3T4. J. Immunol. 137, 1127–1132 (1986).

    CAS  PubMed  Google Scholar 

  34. Parker, D. C. et al. Survival of mouse pancreatic islet allografts in recipients treated with allogeneic small lymphocytes and antibody to CD40 ligand. Proc. Natl Acad. Sci. USA 92, 9560–9564 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Qin, S. X., Cobbold, S., Benjamin, R. & Waldmann, H. Induction of classical transplantation tolerance in the adult. J. Exp. Med. 169, 779–794 (1989).

    Article  CAS  PubMed  Google Scholar 

  36. Miller, J. F., Morahan, G., Slattery, R. & Allison, J. Transgenic models of T-cell self tolerance and autoimmunity. Immunol. Rev. 118, 21–35 (1990).

    Article  CAS  PubMed  Google Scholar 

  37. Bonifaz, L. et al. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J. Exp. Med. 196, 1627–1638 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Thompson, A. G. & Thomas, R. Induction of immune tolerance by dendritic cells: implications for preventative and therapeutic immunotherapy of autoimmune disease. Immunol. Cell Biol. 80, 509–519 (2002).

    Article  PubMed  Google Scholar 

  39. Steinman, R. M., Hawiger, D. & Nussenzweig, M. C. Tolerogenic dendritic cells. Annu. Rev. Immunol. 21, 685–711 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Yates, S. F. et al. Induction of regulatory T cells and dominant tolerance by dendritic cells incapable of full activation. J. Immunol. 179, 967–976 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Botto, M. et al. Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat. Genet. 19, 56–59 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Mitchell, D. A. et al. C1q deficiency and autoimmunity: the effects of genetic background on disease expression. J. Immunol. 168, 2538–2543 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Goodnow, C. C., Sprent, J., Fazekas de St Groth, B. & Vinuesa, C. G. Cellular and genetic mechanisms of self tolerance and autoimmunity. Nature 435, 590–597 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Walunas, T. L. et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity 1, 405–413 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Sanchez-Fueyo, A. et al. Tim-3 inhibits T helper type 1-mediated auto- and alloimmune responses and promotes immunological tolerance. Nat. Immunol. 4, 1093–1101 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Keir, M. E., Butte, M. J., Freeman, G. J. & Sharpe, A. H. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 26, 677–704 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Francisco, L. M. et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J. Exp. Med. 206, 3015–3029 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Van den Herik-Oudijk, I. E., Capel, P. J., van der Bruggen, T. & Van de Winkel, J. G. Identification of signaling motifs within human Fc gamma RIIa and Fc gamma RIIb isoforms. Blood 85, 2202–2211 (1995).

    CAS  PubMed  Google Scholar 

  49. Daeron, M. et al. The same tyrosine-based inhibition motif, in the intracytoplasmic domain of Fc gamma RIIB, regulates negatively BCR-, TCR-, and FcR-dependent cell activation. Immunity 3, 635–646 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Crocker, P. R. Siglecs: sialic-acid-binding immunoglobulin-like lectins in cell-cell interactions and signalling. Curr. Opin. Struct. Biol. 12, 609–615 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Linsley, P. S. & Nadler, S. G. The clinical utility of inhibiting CD28-mediated co-stimulation. Immunol. Rev. 229, 307–321 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Kaneko, Y., Nimmerjahn, F. & Ravetch, J. V. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 313, 670–673 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Anthony, R. M., Wermeling, F., Karlsson, M. C. & Ravetch, J. V. Identification of a receptor required for the anti-inflammatory activity of IVIG. Proc. Natl Acad. Sci. USA 105, 19571–19578 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Duong, B. H. et al. Decoration of T-independent antigen with ligands for CD22 and Siglec-G can suppress immunity and induce B cell tolerance in vivo. J. Exp. Med. 207, 173–187, S171–S174 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sakaguchi, S., Takahashi, T. & Nishizuka, Y. Study on cellular events in post-thymectomy autoimmune oophoritis in mice. II. Requirement of Lyt-1 cells in normal female mice for the prevention of oophoritis. J. Exp. Med. 156, 1577–1586 (1982).

    Article  CAS  PubMed  Google Scholar 

  56. Kong, Y. M., Giraldo, A. A., Waldmann, H., Cobbold, S. P. & Fuller, B. E. Resistance to experimental autoimmune thyroiditis: L3T4+ cells as mediators of both thyroglobulin-activated and TSH-induced suppression. Clin. Immunol. Immunopathol. 51, 38–54 (1989).

    Article  CAS  PubMed  Google Scholar 

  57. Hall, B. M., Gurley, K. E., Pearce, N. W. & Dorsch, S. E. Specific unresponsiveness in rats with prolonged cardiac allograft survival after treatment with cyclosporine. II. Sequential changes in alloreactivity of T cell subsets. Transplantation 47, 1030–1033 (1989).

    Article  CAS  PubMed  Google Scholar 

  58. Qin, S. et al. “Infectious” transplantation tolerance. Science 259, 974–977 (1993).

    Article  CAS  PubMed  Google Scholar 

  59. Powrie, F. & Mason, D. OX-22high CD4+ T cells induce wasting disease with multiple organ pathology: prevention by the OX-22low subset. J. Exp. Med. 172, 1701–1708 (1990).

    Article  CAS  PubMed  Google Scholar 

  60. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).

    CAS  PubMed  Google Scholar 

  61. Suri-Payer, E., Amar, A. Z., Thornton, A. M. & Shevach, E. M. CD4+CD25+ T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells. J. Immunol. 160, 1212–1218 (1998).

    CAS  PubMed  Google Scholar 

  62. Kim, J. M., Rasmussen, J. P. & Rudensky, A. Y. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat. Immunol. 8, 191–197 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Chen, W. et al. Conversion of peripheral CD4+CD25-naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J. Exp. Med. 198, 1875–1886 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cobbold, S. P. et al. Induction of foxP3+ regulatory T cells in the periphery of T cell receptor transgenic mice tolerized to transplants. J. Immunol. 172, 6003–6010 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Sauer, S. et al. T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc. Natl Acad. Sci. USA 105, 7797–7802 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Haxhinasto, S., Mathis, D. & Benoist, C. The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. J. Exp. Med. 205, 565–574 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cobbold, S. P. et al. Infectious tolerance via the consumption of essential amino acids and mTOR signaling. Proc. Natl Acad. Sci. USA 106, 12055–12060 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Waldmann, H., Adams, E. & Cobbold, S. Reprogramming the immune system: co-receptor blockade as a paradigm for harnessing tolerance mechanisms. Immunol. Rev. 223, 361–370 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Davies, J. D., Leong, L. Y., Mellor, A., Cobbold, S. P. & Waldmann, H. T cell suppression in transplantation tolerance through linked recognition. J. Immunol. 156, 3602–3607 (1996).

    CAS  PubMed  Google Scholar 

  70. Chai, J. G., James, E., Dewchand, H., Simpson, E. & Scott, D. Transplantation tolerance induced by intranasal administration of HY peptides. Blood 103, 3951–3959 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Graca, L., Cobbold, S. P. & Waldmann, H. Identification of regulatory T cells in tolerated allografts. J. Exp. Med. 195, 1641–1646 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lin, C. Y., Graca, L., Cobbold, S. P. & Waldmann, H. Dominant transplantation tolerance impairs CD8+ T cell function but not expansion. Nat. Immunol. 3, 1208–1213 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Apostolou, I. & von Boehmer, H. In vivo instruction of suppressor commitment in naive T cells. J. Exp. Med. 199, 1401–1408 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gabrysova, L. & Wraith, D. C. Antigenic strength controls the generation of antigen-specific IL-10-secreting T regulatory cells. Eur. J. Immunol. 40, 1386–1395 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Streilein, J. W., Masli, S., Takeuchi, M. & Kezuka, T. The eye's view of antigen presentation. Hum. Immunol. 63, 435–443 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Russell, P. S., Chase, C. M., Colvin, R. B. & Plate, J. M. Kidney transplants in mice. An analysis of the immune status of mice bearing long-term, H-2 incompatible transplants. J. Exp. Med. 147, 1449–1468 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Calne, R. Y. et al. Induction of immunological tolerance by porcine liver allografts. Nature 223, 472–476 (1969).

    Article  CAS  PubMed  Google Scholar 

  78. Robertson, N. J. et al. Embryonic stem cell-derived tissues are immunogenic but their inherent immune privilege promotes the induction of tolerance. Proc. Natl Acad. Sci. USA 104, 20920–20925 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Driessens, G., Kline, J. & Gajewski, T. F. Co-stimulatory and co-inhibitory receptors in anti-tumor immunity. Immunol. Rev. 229, 126–144 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Frey, A. B. Myeloid suppressor cells regulate the adaptive immune response to cancer. J. Clin. Invest. 116, 2587–2590 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gajewski, T. F. et al. Immune resistance orchestrated by the tumor microenvironment. Immunol. Rev. 213, 131–145 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Gajewski, T. F. Failure at the effector phase: immune barriers at the level of the melanoma tumor microenvironment. Clin. Cancer Res. 13, 5256–5261 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Rakhmilevich, A. L., North, R. J. & Dye, E. S. Presence of CD4+ T suppressor cells in mice rendered unresponsive to tumor antigens by intravenous injection of irradiated tumor cells. Int. J. Cancer 55, 338–343 (1993).

    Article  CAS  PubMed  Google Scholar 

  84. Curiel, T. J. Regulatory T cells and treatment of cancer. Curr. Opin. Immunol. 20, 241–246 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bronte, V. & Zanovello, P. Regulation of immune responses by L-arginine metabolism. Nat. Rev. Immunol. 5, 641–654 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Zea, A. H. et al. Decreased expression of CD3zeta and nuclear transcription factor kappa B in patients with pulmonary tuberculosis: potential mechanisms and reversibility with treatment. J. Infect. Dis. 194, 1385–1393 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Viola, A. & Bronte, V. Metabolic mechanisms of cancer-induced inhibition of immune responses. Semin. Cancer Biol. 17, 309–316 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Zhang, L., Gajewski, T. F. & Kline, J. PD-1/PD-L1 interactions inhibit antitumor immune responses in a murine acute myeloid leukemia model. Blood 114, 1545–1552 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhou, X. et al. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat. Immunol. 10, 1000–1007 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Herold, K. C. et al. A single course of anti-CD3 monoclonal antibody hOKT3gamma1(Ala-Ala) results in improvement in C-peptide responses and clinical parameters for at least 2 years after onset of type 1 diabetes. Diabetes 54, 1763–1769 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Keymeulen, B. et al. Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N. Engl. J. Med. 352, 2598–2608 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Coles, A. J. et al. The window of therapeutic opportunity in multiple sclerosis: evidence from monoclonal antibody therapy. J. Neurol. 253, 98–108 (2006).

    Article  PubMed  Google Scholar 

  93. Coles, A. J. et al. Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. N. Engl. J. Med. 359, 1786–1801 (2008).

    Article  PubMed  Google Scholar 

  94. Kawai, T. et al. HLA-mismatched renal transplantation without maintenance immunosuppression. N. Engl. J. Med. 358, 353–361 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Peggs, K. S., Quezada, S. A., Korman, A. J. & Allison, J. P. Principles and use of anti-CTLA4 antibody in human cancer immunotherapy. Curr. Opin. Immunol. 18, 206–213 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Shimizu, J., Yamazaki, S., Takahashi, T., Ishida, Y. & Sakaguchi, S. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat. Immunol. 3, 135–142 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Tone, M. et al. Mouse glucocorticoid-induced tumor necrosis factor receptor ligand is co-stimulatory for T cells. Proc. Natl Acad. Sci. USA 100, 15059–15064 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lu, L. F. et al. Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 442, 997–1002 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Waldmann, H. Immunology: protection and privilege. Nature 442, 987–988 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. de Vries, V. C. et al. Mast cell degranulation breaks peripheral tolerance. Am. J. Transplant. 9, 2270–2280 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Naesens, M. & Sarwal, M. M. Molecular diagnostics in transplantation. Nat. Rev. Nephrol. doi: 10.1038/nrneph.2010.113.

    Article  CAS  PubMed  Google Scholar 

  102. Hernandez-Fuentes, M. P. & Lechler, R. I. A 'biomarker signature' for tolerance in transplantation. Nat. Rev. Nephrol. doi: 10.1038/nrneph.2010.112.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

H. Waldmann is a co-founder and board member of Tolerx.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waldmann, H. Tolerance: an overview and perspectives. Nat Rev Nephrol 6, 569–576 (2010). https://doi.org/10.1038/nrneph.2010.108

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2010.108

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research