Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapeutic induction of antigen-specific immune tolerance

Abstract

The development of therapeutic approaches for the induction of robust, long-lasting and antigen-specific immune tolerance remains an important unmet clinical need for the management of autoimmunity, allergy, organ transplantation and gene therapy. Recent breakthroughs in our understanding of immune tolerance mechanisms have opened new research avenues and therapeutic opportunities in this area. Here, we review mechanisms of immune tolerance and novel methods for its therapeutic induction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms and features in pro-inflammatory dendritic cells compared with tolerogenic dendritic cells.
Fig. 2: Approaches for the induction of antigen-specific immune tolerance.
Fig. 3: Mechanisms for the induction of antigen-specific immune tolerance.

Similar content being viewed by others

References

  1. Conrad, N. et al. Incidence, prevalence, and co-occurrence of autoimmune disorders over time and by age, sex, and socioeconomic status: a population-based cohort study of 22 million individuals in the UK. Lancet 401, 1878–1890 (2023).

    Article  PubMed  Google Scholar 

  2. Ramsdell, F., Lantz, T. & Fowlkes, B. J. A nondeletional mechanism of thymic self tolerance. Science 246, 1038–1041 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Owen, D. L., Sjaastad, L. E. & Farrar, M. A. Regulatory T cell development in the thymus. J. Immunol. 203, 2031–2041 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Anderson, M. S. et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 298, 1395–1401 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Takaba, H. et al. Fezf2 orchestrates a thymic program of self-antigen expression for immune tolerance. Cell 163, 975–987 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Michelson, D. A., Hase, K., Kaisho, T., Benoist, C. & Mathis, D. Thymic epithelial cells co-opt lineage-defining transcription factors to eliminate autoreactive T cells. Cell 185, 2542–2558 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Perry, J. S. A. et al. Transfer of cell-surface antigens by scavenger receptor CD36 promotes thymic regulatory T cell receptor repertoire development and allo-tolerance. Immunity 48, 1271 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zegarra-Ruiz, D. F. et al. Thymic development of gut-microbiota-specific T cells. Nature 594, 413–417 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wardemann, H. et al. Predominant autoantibody production by early human B cell precursors. Science 301, 1374–1377 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Halverson, R., Torres, R. M. & Pelanda, R. Receptor editing is the main mechanism of B cell tolerance toward membrane antigens. Nat. Immunol. 5, 645–650 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Nemazee, D. A. & Bürki, K. Clonal deletion of B lymphocytes in a transgenic mouse bearing anti-MHC class I antibody genes. Nature 337, 562–566 (1989).

    Article  CAS  PubMed  Google Scholar 

  12. Bouneaud, C., Kourilsky, P. & Bousso, P. Impact of negative selection on the T cell repertoire reactive to a self-peptide: a large fraction of T cell clones escapes clonal deletion. Immunity 13, 829–840 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Chen, L. & Flies, D. B. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat. Rev. Immunol. 13, 227–242 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sckisel, G. D. et al. Out-of-sequence signal 3 paralyzes primary CD4+ T-cell-dependent immunity. Immunity 43, 240–250 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Trefzer, A. et al. Dynamic adoption of anergy by antigen-exhausted CD4+ T cells. Cell Rep. 34, 108748 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Groux, H., Bigler, M., de Vries, J. E. & Roncarolo, M. G. Interleukin-10 induces a long-term antigen-specific anergic state in human CD4+ T cells. J. Exp. Med. 184, 19–29 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Greenwald, R. J., Boussiotis, V. A., Lorsbach, R. B., Abbas, A. K. & Sharpe, A. H. CTLA-4 regulates induction of anergy in vivo. Immunity 14, 145–155 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Goodnow, C. C. et al. Altered immunoglobulin expression and functional silencing of self-reactive B lymphocytes in transgenic mice. Nature 334, 676–682 (1988).

    Article  CAS  PubMed  Google Scholar 

  19. Bevington, S. L. et al. Chromatin priming renders T cell tolerance-associated genes sensitive to activation below the signaling threshold for immune response genes. Cell Rep. 31, 107748 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gauld, S. B., Benschop, R. J., Merrell, K. T. & Cambier, J. C. Maintenance of B cell anergy requires constant antigen receptor occupancy and signaling. Nat. Immunol. 6, 1160–1167 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Kalekar, L. A. et al. CD4+ T cell anergy prevents autoimmunity and generates regulatory T cell precursors. Nat. Immunol. 17, 304–314 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hong, S.-W. et al. Immune tolerance of food is mediated by layers of CD4+ T cell dysfunction. Nature 607, 762–768 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Davey, G. M. et al. Peripheral deletion of autoreactive CD8 T cells by cross presentation of self-antigen occurs by a Bcl-2-inhibitable pathway mediated by Bim. J. Exp. Med. 196, 947–955 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bouillet, P. et al. BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature 415, 922–926 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Dhein, J., Walczak, H., Bäumler, C., Debatin, K. M. & Krammer, P. H. Autocrine T-cell suicide mediated by APO-1/(Fas/CD95). Nature 373, 438–441 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Tartaglia, L. A., Ayres, T. M., Wong, G. H. & Goeddel, D. V. A novel domain within the 55 kd TNF receptor signals cell death. Cell 74, 845–853 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Sanmarco, L. M. et al. Gut-licensed IFNγ+ NK cells drive LAMP1+TRAIL+ anti-inflammatory astrocytes. Nature 590, 473–479 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen, X., Kang, R., Kroemer, G. & Tang, D. Ferroptosis in infection, inflammation, and immunity. J. Exp. Med. 218, e20210518 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kalkavan, H., Rühl, S., Shaw, J. J. P. & Green, D. R. Non-lethal outcomes of engaging regulated cell death pathways in cancer. Nat. Cancer 4, 795–806 (2023).

    Article  PubMed  Google Scholar 

  30. Legrand, A. J., Konstantinou, M., Goode, E. F. & Meier, P. The diversification of cell death and immunity: memento mori. Mol. Cell 76, 232–242 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Redmond, W. L., Marincek, B. C. & Sherman, L. A. Distinct requirements for deletion versus anergy during CD8 T cell peripheral tolerance in vivo. J. Immunol. 174, 2046–2053 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. ElTanbouly, M. A. et al. VISTA is a checkpoint regulator for naïve T cell quiescence and peripheral tolerance. Science 367, eaay0524 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Anderson, A. C., Joller, N. & Kuchroo, V. K. Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity 44, 989–1004 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sharpe, A. H. & Pauken, K. E. The diverse functions of the PD1 inhibitory pathway. Nat. Rev. Immunol. 18, 153–167 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Kim, H. J., Verbinnen, B., Tang, X., Lu, L. & Cantor, H. Inhibition of follicular T-helper cells by CD8+ regulatory T cells is essential for self tolerance. Nature 467, 328–332 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dart, R. J. et al. Conserved γδ T cell selection by BTNL proteins limits progression of human inflammatory bowel disease. Science 381, eadh0301 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Miyamoto, K., Miyake, S. & Yamamura, T. A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 413, 531–534 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Malchow, S. et al. Aire enforces immune tolerance by directing autoreactive T cells into the regulatory T cell lineage. Immunity 44, 1102–1113 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Arpaia, N. et al. A distinct function of regulatory T cells in tissue protection. Cell 162, 1078–1089 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sun, C. M. et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 204, 1775–1785 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ali, N. et al. Regulatory T cells in skin facilitate epithelial stem cell differentiation. Cell 169, 1119–1129 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Burzyn, D. et al. A special population of regulatory T cells potentiates muscle repair. Cell 155, 1282–1295 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vasanthakumar, A. et al. The transcriptional regulators IRF4, BATF and IL-33 orchestrate development and maintenance of adipose tissue-resident regulatory T cells. Nat. Immunol. 16, 276–285 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Li, C. et al. TCR transgenic mice reveal stepwise, multi-site acquisition of the distinctive fat-Treg phenotype. Cell 174, 285–299 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ohnmacht, C. et al. The microbiota regulates type 2 immunity through RORgammat+ T cells. Science 349, 989–993 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Hadis, U. et al. Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity 34, 237–246 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Munoz-Rojas, A. R. & Mathis, D. Tissue regulatory T cells: regulatory chameleons. Nat. Rev. Immunol. 21, 597–611 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Brown, C. C. & Rudensky, A. Y. Spatiotemporal regulation of peripheral T cell tolerance. Science 380, 472–478 (2023).

    Article  CAS  PubMed  Google Scholar 

  49. Groux, H. et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389, 737–742 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Awasthi, A. et al. A dominant function for interleukin 27 in generating interleukin 10-producing anti-inflammatory T cells. Nat. Immunol. 8, 1380–1389 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Levings, M. K. et al. IFN-alpha and IL-10 induce the differentiation of human type 1 T regulatory cells. J. Immunol. 166, 5530–5539 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Bollyky, P. L. et al. ECM components guide IL-10 producing regulatory T-cell (TR1) induction from effector memory T-cell precursors. Proc. Natl Acad. Sci. USA 108, 7938–7943 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Akbari, O. et al. Antigen-specific regulatory T cells develop via the ICOS-ICOS-ligand pathway and inhibit allergen-induced airway hyperreactivity. Nat. Med. 8, 1024–1032 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Wakkach, A., Cottrez, F. & Groux, H. Differentiation of regulatory T cells 1 is induced by CD2 costimulation. J. Immunol. 167, 3107–3113 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Sutavani, R. V. et al. CD55 costimulation induces differentiation of a discrete T regulatory type 1 cell population with a stable phenotype. J. Immunol. 191, 5895–5903 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Rothhammer, V. & Quintana, F. J. The aryl hydrocarbon receptor: an environmental sensor integrating immune responses in health and disease. Nat. Rev. Immunol. 19, 184–197 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Magnani, C. F. et al. Killing of myeloid APCs via HLA class I, CD2 and CD226 defines a novel mechanism of suppression by human Tr1 cells. Eur. J. Immunol. 41, 1652–1662 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Roncarolo, M. G., Gregori, S., Bacchetta, R., Battaglia, M. & Gagliani, N. The biology of T regulatory type 1 cells and their therapeutic application in immune-mediated diseases. Immunity 49, 1004–1019 (2018).

    Article  CAS  PubMed  Google Scholar 

  59. Mascanfroni, I. D. et al. Metabolic control of type 1 regulatory T cell differentiation by AHR and HIF1-α. Nat. Med. 21, 638–646 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Anderson, D. A.III, Dutertre, C. A., Ginhoux, F. & Murphy, K. M. Genetic models of human and mouse dendritic cell development and function. Nat. Rev. Immunol. 21, 101–115 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Cabeza-Cabrerizo, M., Cardoso, A., Minutti, C. M., Pereira da Costa, M. & Reis e Sousa, C. Dendritic cells revisited. Annu. Rev. Immunol. 39, 131–166 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Randolph, G. J., Beaulieu, S., Lebecque, S., Steinman, R. M. & Muller, W. A. Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking. Science 282, 480–483 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Bosteels, C. et al. Inflammatory type 2 cDCs acquire features of cDC1s and macrophages to orchestrate immunity to respiratory virus infection. Immunity 52, 1039–1056 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Villani, A.-C. et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356, eaah4573 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Brown, C. C. et al. Transcriptional basis of mouse and human dendritic cell heterogeneity. Cell 179, 846–863 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sun, T., Nguyen, A. & Gommerman, J. L. Dendritic cell subsets in intestinal immunity and inflammation. J. Immunol. 204, 1075–1083 (2020).

    Article  CAS  PubMed  Google Scholar 

  67. Reizis, B. Plasmacytoid dendritic cells: development, regulation, and function. Immunity 50, 37–50 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cella, M. et al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat. Med. 5, 919–923 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Alculumbre, S. G. et al. Diversification of human plasmacytoid predendritic cells in response to a single stimulus. Nat. Immunol. 19, 63–75 (2017).

    Article  PubMed  Google Scholar 

  70. Ito, T. et al. Plasmacytoid dendritic cells prime IL-10-producing T regulatory cells by inducible costimulator ligand. J. Exp. Med. 204, 105–115 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Diana, J. et al. Viral infection prevents diabetes by inducing regulatory T cells through NKT cell-plasmacytoid dendritic cell interplay. J. Exp. Med. 208, 729–745 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Munn, D. H. et al. Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J. Clin. Invest. 114, 280–290 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tian, Y. et al. Graft-versus-host disease depletes plasmacytoid dendritic cell progenitors to impair tolerance induction. J. Clin. Invest 131, e136774 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Uto, T. et al. Critical role of plasmacytoid dendritic cells in induction of oral tolerance. J. Allergy Clin. Immunol. 141, 2156–2167 (2018).

    Article  CAS  PubMed  Google Scholar 

  75. Granot, T. et al. Dendritic cells display subset and tissue-specific maturation dynamics over human life. Immunity 46, 504–515 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mrdjen, D. et al. High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 48, 380–395 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Mundt, S. et al. Conventional DCs sample and present myelin antigens in the healthy CNS and allow parenchymal T cell entry to initiate neuroinflammation. Sci. Immunol. 4, eaau8380 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Gallizioli, M. et al. Dendritic cells and microglia have non-redundant functions in the inflamed brain with protective effects of type 1 cDCs. Cell Rep. 33, 108291 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jongbloed, S. L. et al. Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J. Exp. Med. 207, 1247–1260 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hubert, M. et al. IFN-III is selectively produced by cDC1 and predicts good clinical outcome in breast cancer. Sci. Immunol. 5, eaav3942 (2020).

    Article  CAS  PubMed  Google Scholar 

  81. Liu, H. et al. TLR5 mediates CD172α+ intestinal lamina propria dendritic cell induction of Th17 cells. Sci. Rep. 6, 22040 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Scott, C. L. et al. CCR2+CD103 intestinal dendritic cells develop from DC-committed precursors and induce interleukin-17 production by T cells. Mucosal Immunol. 8, 327–339 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Joeris, T. et al. Intestinal cDC1 drive cross-tolerance to epithelial-derived antigen via induction of FoxP3+CD8+ Tregs. Sci. Immunol. 6, eabd3774 (2021).

    Article  CAS  PubMed  Google Scholar 

  84. Akbari, O., DeKruyff, R. H. & Umetsu, D. T. Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen. Nat. Immunol. 2, 725–731 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Steinman, R. M. et al. Dendritic cell function in vivo during the steady state: a role in peripheral tolerance. Ann. N. Y. Acad. Sci. 987, 15–25 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Lutz, M. B. & Schuler, G. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol. 23, 445–449 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Ardouin, L. et al. Broad and largely concordant molecular changes characterize tolerogenic and immunogenic dendritic cell maturation in thymus and periphery. Immunity 45, 305–318 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Lutz, M. B., Backer, R. A. & Clausen, B. E. Revisiting current concepts on the tolerogenicity of steady-state dendritic cell subsets and their maturation stages. J. Immunol. 206, 1681–1689 (2021).

    Article  CAS  PubMed  Google Scholar 

  89. Baratin, M. et al. Homeostatic NF-kappaB signaling in steady-state migratory dendritic cells regulates immune homeostasis and tolerance. Immunity 42, 627–639 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Jiang, A. et al. Disruption of E-cadherin-mediated adhesion induces a functionally distinct pathway of dendritic cell maturation. Immunity 27, 610–624 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Kushwah, R. et al. Uptake of apoptotic DC converts immature DC into tolerogenic DC that induce differentiation of Foxp3+ Treg. Eur. J. Immunol. 40, 1022–1035 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Iberg, C. A. & Hawiger, D. Natural and induced tolerogenic dendritic cells. J. Immunol. 204, 733–744 (2020).

    Article  CAS  PubMed  Google Scholar 

  93. Gregori, S. et al. Differentiation of type 1 T regulatory cells (Tr1) by tolerogenic DC-10 requires the IL-10-dependent ILT4/HLA-G pathway. Blood 116, 935–944 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Coombes, J. L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β– and retinoic acid–dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Esterhazy, D. et al. Classical dendritic cells are required for dietary antigen-mediated induction of peripheral T(reg) cells and tolerance. Nat. Immunol. 17, 545–555 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Steinbrink, K., Wölfl, M., Jonuleit, H., Knop, J. & Enk, A. H. Induction of tolerance by IL-10-treated dendritic cells. J. Immunol. 159, 4772–4780 (1997).

    Article  CAS  PubMed  Google Scholar 

  97. Steinbrink, K., Graulich, E., Kubsch, S., Knop, J. & Enk, A. H. CD4+ and CD8+ anergic T cells induced by interleukin-10-treated human dendritic cells display antigen-specific suppressor activity. Blood 99, 2468–2476 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Avancini, D. et al. Aryl hydrocarbon receptor activity downstream of IL-10 signaling is required to promote regulatory functions in human dendritic cells. Cell Rep. 42, 112193 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Nguyen, N. T. et al. Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via a kynurenine-dependent mechanism. Proc. Natl Acad. Sci. USA 107, 19961–19966 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Li, Q., Harden, J. L., Anderson, C. D. & Egilmez, N. K. Tolerogenic phenotype of IFN-γ-induced IDO+ dendritic cells is maintained via an autocrine IDO-kynurenine/AhR-IDO loop. J. Immunol. 197, 962–970 (2016).

    Article  CAS  PubMed  Google Scholar 

  101. Hauben, E. et al. Activation of the aryl hydrocarbon receptor promotes allograft-specific tolerance through direct and dendritic cell-mediated effects on regulatory T cells. Blood 112, 1214–1222 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Yeste, A., Nadeau, M., Burns, E. J., Weiner, H. L. & Quintana, F. J. Nanoparticle-mediated codelivery of myelin antigen and a tolerogenic small molecule suppresses experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 109, 11270–11275 (2012). This work describes the co-administration of an antigen with a tolerogenic small molecule using nanoparticles to induce antigen-specfic tolerance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yeste, A. et al. Tolerogenic nanoparticles inhibit T cell-mediated autoimmunity through SOCS2. Sci. Signal. 9, ra61 (2016).

    Article  PubMed  Google Scholar 

  104. Kenison, J. E. et al. Tolerogenic nanoparticles suppress central nervous system inflammation. Proc. Natl Acad. Sci. USA 117, 32017–32028 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Quintana, F. J. et al. An endogenous aryl hydrocarbon receptor ligand acts on dendritic cells and T cells to suppress experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 107, 20768–20773 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ramalingam, R. et al. Dendritic cell-specific disruption of TGF-β receptor II leads to altered regulatory T cell phenotype and spontaneous multiorgan autoimmunity. J. Immunol. 189, 3878–3893 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Mascanfroni, I. D. et al. IL-27 acts on DCs to suppress the T cell response and autoimmunity by inducing expression of the immunoregulatory molecule CD39. Nat. Immunol. 14, 1054–1063 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Luo, Y. et al. Suppression of antigen-specific adaptive immunity by IL-37 via induction of tolerogenic dendritic cells. Proc. Natl Acad. Sci. USA 111, 15178–15183 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lutz, M. B. et al. Immature dendritic cells generated with low doses of GM-CSF in the absence of IL-4 are maturation resistant and prolong allograft survival in vivo. Eur. J. Immunol. 30, 1813–1822 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Guindi, C. et al. Differential role of NF-kappaB, ERK1/2 and AP-1 in modulating the immunoregulatory functions of bone marrow-derived dendritic cells from NOD mice. Cell Immunol. 272, 259–268 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Mazmanian, S. K., Round, J. L. & Kasper, D. L. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453, 620–625 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Mucida, D. et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317, 256–260 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Ferreira, G. B. et al. Vitamin D3 induces tolerance in human dendritic cells by activation of intracellular metabolic pathways. Cell Rep. 10, 711–725 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Anderson, A. E. et al. Differential regulation of naive and memory CD4+ T cells by alternatively activated dendritic cells. J. Leukoc. Biol. 84, 124–133 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sanmarco, L. M. et al. Lactate limits CNS autoimmunity by stabilizing HIF-1alpha in dendritic cells. Nature 620, 881–889 (2023). This work describes the engineering of bacteria to activate tolerogenic programmes in intestinal DCs and control CNS autoimmunity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Shinde, R. et al. Apoptotic cell-induced AhR activity is required for immunological tolerance and suppression of systemic lupus erythematosus in mice and humans. Nat. Immunol. 19, 571–582 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Pujol-Autonell, I. et al. Efferocytosis promotes suppressive effects on dendritic cells through prostaglandin E2 production in the context of autoimmunity. PLoS ONE 8, e63296 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wermeling, F. et al. Class A scavenger receptors regulate tolerance against apoptotic cells, and autoantibodies against these receptors are predictive of systemic lupus. J. Exp. Med. 204, 2259–2265 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hill, M. et al. Cell therapy with autologous tolerogenic dendritic cells induces allograft tolerance through interferon-gamma and Epstein-Barr virus-induced gene 3. Am. J. Transpl. 11, 2036–2045 (2011).

    Article  CAS  Google Scholar 

  120. Sawitzki, B. et al. Regulatory cell therapy in kidney transplantation (The ONE Study): a harmonised design and analysis of seven non-randomised, single-arm, phase 1/2A trials. Lancet 395, 1627–1639 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Moreau, A. et al. A Phase I/IIa study of autologous tolerogenic dendritic cells immunotherapy in kidney transplant recipients. Kidney Int. 103, 627–637 (2023).

    Article  CAS  PubMed  Google Scholar 

  122. Passeri, L. et al. Tolerogenic IL-10-engineered dendritic cell-based therapy to restore antigen-specific tolerance in T cell mediated diseases. J. Autoimmun. 138, 103051 (2023).

    Article  CAS  PubMed  Google Scholar 

  123. Nikolic, T. et al. Safety and feasibility of intradermal injection with tolerogenic dendritic cells pulsed with proinsulin peptide-for type 1 diabetes. Lancet Diabetes Endocrinol. 8, 470–472 (2020).

    Article  CAS  PubMed  Google Scholar 

  124. Nikolic, T. et al. Tolerogenic dendritic cells pulsed with islet antigen induce long-term reduction in T-cell autoreactivity in type 1 diabetes patients. Front. Immunol. 13, 1054968 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Willekens, B. et al. Tolerogenic dendritic cell-based treatment for multiple sclerosis (MS): a harmonised study protocol for two phase I clinical trials comparing intradermal and intranodal cell administration. BMJ Open. 9, e030309 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Zahorchak, A. F. et al. Infusion of stably immature monocyte-derived dendritic cells plus CTLA4Ig modulates alloimmune reactivity in rhesus macaques. Transplantation 84, 196–206 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Falcon-Beas, C. et al. Dexamethasone turns tumor antigen-presenting cells into tolerogenic dendritic cells with T cell inhibitory functions. Immunobiology 224, 697–705 (2019).

    Article  CAS  PubMed  Google Scholar 

  128. Mainali, E. S., Kikuchi, T. & Tew, J. G. Dexamethasone inhibits maturation and alters function of monocyte-derived dendritic cells from cord blood. Pediatr. Res. 58, 125–131 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Kurochkina, Y. et al. SAT0212 The safety and tolerability of intra-articular injection of tolerogenic dendritic cells in patients with rheumatoid arthritis: the preliminary results. Ann. Rheum. Dis. 77, 966–967 (2018).

    Google Scholar 

  130. Florez-Grau, G., Zubizarreta, I., Cabezon, R., Villoslada, P. & Benitez-Ribas, D. Tolerogenic dendritic cells as a promising antigen-specific therapy in the treatment of multiple sclerosis and neuromyelitis optica from preclinical to clinical trials. Front. Immunol. 9, 1169 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Jauregui-Amezaga, A. et al. Intraperitoneal administration of autologous tolerogenic dendritic cells for refractory Crohn’s disease: a phase I study. J. Crohns Colitis 9, 1071–1078 (2015).

    Article  PubMed  Google Scholar 

  132. Follett, D. A., Battisto, J. R. & Bloom, B. R. Tolerance to a defined chemical hapten produced in adult guinea-pigs after thymectomy. Immunology 11, 73–76 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Miller, S. D., Wetzig, R. P. & Claman, H. N. The induction of cell-mediated immunity and tolerance with protein antigens coupled to syngeneic lymphoid cells. J. Exp. Med. 149, 758–773 (1979). This work describes the induction of immune tolerance after the administration of an antigen coupled to lymphocytes, putting forward an approach that was then mimicked with synthetic particle-based antigen delivery.

    Article  CAS  PubMed  Google Scholar 

  134. Gray, M., Miles, K., Salter, D., Gray, D. & Savill, J. Apoptotic cells protect mice from autoimmune inflammation by the induction of regulatory B cells. Proc. Natl Acad. Sci. USA 104, 14080–14085 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Watkins, E. A. et al. Persistent antigen exposure via the eryptotic pathway drives terminal T cell dysfunction. Sci. Immunol. 6, eabe1801 (2021).

    Article  CAS  PubMed  Google Scholar 

  136. Raposo, C. J. et al. Engineered RBCs encapsulating antigen induce multi-modal antigen-specific tolerance and protect against type 1 diabetes. Front. Immunol. 13, 869669 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Marek-Trzonkowska, N. et al. Therapy of type 1 diabetes with CD4+CD25highCD127-regulatory T cells prolongs survival of pancreatic islets—results of one year follow-up. Clin. Immunol. 153, 23–30 (2014).

    Article  CAS  PubMed  Google Scholar 

  138. Tang, Q. et al. Selective decrease of donor-reactive T(regs) after liver transplantation limits T(reg) therapy for promoting allograft tolerance in humans. Sci. Transl Med. 14, eabo2628 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Desreumaux, P. et al. Safety and efficacy of antigen-specific regulatory T-cell therapy for patients with refractory Crohn’s disease. Gastroenterology 143, 1207–1217 (2012).

    Article  CAS  PubMed  Google Scholar 

  140. Bluestone, J. A., McKenzie, B. S., Beilke, J. & Ramsdell, F. Opportunities for Treg cell therapy for the treatment of human disease. Front. Immunol. 14, 1166135 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Bluestone, J. A. et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci. Transl Med. 7, 315ra189 (2015). This work describes the transfer of human Treg cells for the treatment of autoimmunity, paving the way to other cell-based approaches using expanded or CAR-based Treg cells.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Boardman, D. A. et al. Expression of a chimeric antigen receptor specific for donor HLA class I enhances the potency of human regulatory T cells in preventing human skin transplant rejection. Am. J. Transpl. 17, 931–943 (2017).

    Article  CAS  Google Scholar 

  143. Arjomandnejad, M., Kopec, A. L. & Keeler, A. M. CAR-T regulatory (CAR-Treg) cells: engineering and applications. Biomedicines 10, 287 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Fransson, M. et al. CAR/FoxP3-engineered T regulatory cells target the CNS and suppress EAE upon intranasal delivery. J. Neuroinflammation 9, 112 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Bittner, S. et al. Biosensors for inflammation as a strategy to engineer regulatory T cells for cell therapy. Proc. Natl Acad. Sci. USA 119, e2208436119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zhang, A. H., Yoon, J., Kim, Y. C. & Scott, D. W. Targeting antigen-specific B cells using antigen-expressing transduced regulatory T cells. J. Immunol. 201, 1434–1441 (2018).

    Article  CAS  PubMed  Google Scholar 

  147. Kim, Y. C. et al. Engineered MBP-specific human Tregs ameliorate MOG-induced EAE through IL-2-triggered inhibition of effector T cells. J. Autoimmun. 92, 77–86 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Santra, S., Kaittanis, C., Grimm, J. & Perez, J. M. Drug/dye-loaded, multifunctional iron oxide nanoparticles for combined targeted cancer therapy and dual optical/magnetic resonance imaging. Small 5, 1862–1868 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Clemente-Casares, X. et al. Expanding antigen-specific regulatory networks to treat autoimmunity. Nature 530, 434–440 (2016).

    Article  CAS  PubMed  Google Scholar 

  150. Singha, S. et al. Peptide-MHC-based nanomedicines for autoimmunity function as T-cell receptor microclustering devices. Nat. Nanotechnol. 12, 701–710 (2017).

    Article  CAS  PubMed  Google Scholar 

  151. Umeshappa, C. S. et al. Liver-specific T regulatory type-1 cells program local neutrophils to suppress hepatic autoimmunity via CRAMP. Cell Rep. 34, 108919 (2021).

    Article  CAS  PubMed  Google Scholar 

  152. Chandrakala, V., Aruna, V. & Angajala, G. Review on metal nanoparticles as nanocarriers: current challenges and perspectives in drug delivery systems. Emergent Mater. 5, 1593–1615 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Andorko, J. I., Hess, K. L., Pineault, K. G. & Jewell, C. M. Intrinsic immunogenicity of rapidly-degradable polymers evolves during degradation. Acta Biomater. 32, 24–34 (2016).

    Article  CAS  PubMed  Google Scholar 

  154. Jamison, B. L. et al. Nanoparticles containing an insulin-ChgA hybrid peptide protect from transfer of autoimmune diabetes by shifting the balance between effector T cells and regulatory T cells. J. Immunol. 203, 48–57 (2019).

    Article  CAS  PubMed  Google Scholar 

  155. Prasad, S. et al. Tolerogenic Ag-PLG nanoparticles induce Tregs to suppress activated diabetogenic CD4 and CD8 T cells. J. Autoimmun. 89, 112–124 (2018).

    Article  CAS  PubMed  Google Scholar 

  156. Hunter, Z. et al. A biodegradable nanoparticle platform for the induction of antigen-specific immune tolerance for treatment of autoimmune disease. ACS Nano 8, 2148–2160 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Casey, L. M. et al. Nanoparticle dose and antigen loading attenuate antigen-specific T-cell responses. Biotechnol. Bioeng. 120, 284–296 (2023).

    Article  CAS  PubMed  Google Scholar 

  158. Hess, K. L. et al. Engineering immunological tolerance using quantum dots to tune the density of self-antigen display. Adv. Funct. Mater. 27, 1700290 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Kelly, C. P. et al. TAK-101 nanoparticles induce gluten-specific tolerance in celiac disease: a randomized, double-blind, placebo-controlled study. Gastroenterology 161, 66–80 (2021).

    Article  CAS  PubMed  Google Scholar 

  160. Allen, R. P., Bolandparvaz, A., Ma, J. A., Manickam, V. A. & Lewis, J. S. Latent, immunosuppressive nature of poly(lactic-co-glycolic acid) microparticles. ACS Biomater. Sci. Eng. 4, 900–918 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Sharp, F. A. et al. Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc. Natl Acad. Sci. USA 106, 870–875 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ma, S. et al. The pro-inflammatory response of macrophages regulated by acid degradation products of poly(lactide-co-glycolide) nanoparticles. Eng. Life Sci. 21, 709–720 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Min, Y. et al. Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy. Nat. Nanotechnol. 12, 877–882 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wilson, K. L. et al. Biodegradable PLGA-b-PEG nanoparticles induce T helper 2 (Th2) immune responses and sustained antibody titers via TLR9 stimulation. Vaccines 8, 261 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Puglia, C. & Bonina, F. Lipid nanoparticles as novel delivery systems for cosmetics and dermal pharmaceuticals. Expert. Opin. Drug Deliv. 9, 429–441 (2012).

    Article  CAS  PubMed  Google Scholar 

  166. Orlowski, R. Z. et al. Randomized phase III study of pegylated liposomal doxorubicin plus bortezomib compared with bortezomib alone in relapsed or refractory multiple myeloma: combination therapy improves time to progression. J. Clin. Oncol. 25, 3892–3901 (2007).

    Article  CAS  PubMed  Google Scholar 

  167. Jackson, L. A. et al. An mRNA vaccine against SARS-CoV-2—preliminary report. N. Engl. J. Med. 383, 1920–1931 (2020).

    Article  CAS  PubMed  Google Scholar 

  168. Mulligan, M. J. et al. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature 586, 589–593 (2020).

    Article  CAS  PubMed  Google Scholar 

  169. Qiu, M., Li, Y., Bloomer, H. & Xu, Q. Developing biodegradable lipid nanoparticles for intracellular mRNA delivery and genome editing. Acc. Chem. Res. 54, 4001–4011 (2021).

    Article  CAS  PubMed  Google Scholar 

  170. Du, Z., Munye, M. M., Tagalakis, A. D., Manunta, M. D. I. & Hart, S. L. The role of the helper lipid on the DNA transfection efficiency of lipopolyplex formulations. Sci. Rep. 4, 7107 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Bosteels, V. et al. LXR signaling controls homeostatic dendritic cell maturation. Sci. Immunol. 8, eadd3955 (2023).

    Article  CAS  PubMed  Google Scholar 

  172. Almenara-Fuentes, L. et al. A new platform for autoimmune diseases. Inducing tolerance with liposomes encapsulating autoantigens. Nanomedicine 48, 102635 (2023).

    Article  CAS  PubMed  Google Scholar 

  173. Benne, N. et al. Anionic 1,2-distearoyl-sn-glycero-3-phosphoglycerol (DSPG) liposomes induce antigen-specific regulatory T cells and prevent atherosclerosis in mice. J. Control. Rel. 291, 135–146 (2018).

    Article  CAS  Google Scholar 

  174. Pujol-Autonell, I. et al. Liposome-based immunotherapy against autoimmune diseases: therapeutic effect on multiple sclerosis. Nanomedicine 12, 1231–1242 (2017).

    Article  CAS  PubMed  Google Scholar 

  175. Pujol-Autonell, I. et al. Use of autoantigen-loaded phosphatidylserine-liposomes to arrest autoimmunity in type 1 diabetes. PLoS ONE 10, e0127057 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Sonigra, A. Randomized phase I trial of antigen-specific tolerizing immunotherapy with peptide/calcitriol liposomes in ACPA+ rheumatoid arthritis. JCI Insight 7, e160964 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  177. López-Sagaseta, J., Malito, E., Rappuoli, R. & Bottomley, M. J. Self-assembling protein nanoparticles in the design of vaccines. Comput. Struct. Biotechnol. J. 14, 58–68 (2016).

    Article  PubMed  Google Scholar 

  178. Casey, L. M. et al. Cargo-less nanoparticles program innate immune cell responses to Toll-like receptor activation. Biomaterials 218, 119333 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Truong, N., Black, S. K., Shaw, J., Scotland, B. L. & Pearson, R. M. Microfluidic-generated immunomodulatory nanoparticles and formulation-dependent effects on lipopolysaccharide-induced macrophage inflammation. AAPS J. 24, 6 (2021).

    Article  PubMed  Google Scholar 

  180. Ramos, G. C. et al. Apoptotic mimicry: phosphatidylserine liposomes reduce inflammation through activation of peroxisome proliferator-activated receptors (PPARs) in vivo. Br. J. Pharmacol. 151, 844–850 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Hosseini, H. et al. Phosphatidylserine liposomes mimic apoptotic cells to attenuate atherosclerosis by expanding polyreactive IgM producing B1a lymphocytes. Cardiovasc. Res. 106, 443–452 (2015).

    Article  CAS  PubMed  Google Scholar 

  182. McCarthy, D. P. et al. An antigen-encapsulating nanoparticle platform for TH1/17 immune tolerance therapy. Nanomedicine 13, 191–200 (2017).

    Article  CAS  PubMed  Google Scholar 

  183. Longmire, M., Choyke, P. L. & Kobayashi, H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine 3, 703–717 (2008).

    Article  CAS  PubMed  Google Scholar 

  184. Tatur, S., Maccarini, M., Barker, R., Nelson, A. & Fragneto, G. Effect of functionalized gold nanoparticles on floating lipid bilayers. Langmuir 29, 6606–6614 (2013).

    Article  CAS  PubMed  Google Scholar 

  185. Platel, A. et al. Influence of the surface charge of PLGA nanoparticles on their in vitro genotoxicity, cytotoxicity, ROS production and endocytosis. J. Appl. Toxicol. 36, 434–444 (2016).

    Article  CAS  PubMed  Google Scholar 

  186. Vangasseri, D. P. et al. Immunostimulation of dendritic cells by cationic liposomes. Mol. Membr. Biol. 23, 385–395 (2006).

    Article  CAS  PubMed  Google Scholar 

  187. Sato, Y., Hatakeyama, H., Hyodo, M. & Harashima, H. Relationship between the physicochemical properties of lipid nanoparticles and the quality of siRNA delivery to liver cells. Mol. Ther. 24, 788–795 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Hoshyar, N., Gray, S., Han, H. & Bao, G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine 11, 673–692 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Bacher, P. et al. Regulatory T cell specificity directs tolerance versus allergy against aeroantigens in humans. Cell 167, 1067–1078 (2016).

    Article  CAS  PubMed  Google Scholar 

  190. Mant, A., Chinnery, F., Elliott, T. & Williams, A. P. The pathway of cross-presentation is influenced by the particle size of phagocytosed antigen. Immunology 136, 163–175 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Benne, N., van Duijn, J., Kuiper, J., Jiskoot, W. & Slutter, B. Orchestrating immune responses: how size, shape and rigidity affect the immunogenicity of particulate vaccines. J. Control. Rel. 234, 124–134 (2016).

    Article  CAS  Google Scholar 

  192. Li, P. Y. et al. PEGylation enables subcutaneously administered nanoparticles to induce antigen-specific immune tolerance. J. Control. Rel. 331, 164–175 (2021).

    Article  CAS  Google Scholar 

  193. Pishesha, N. et al. Induction of antigen-specific tolerance by nanobody-antigen adducts that target class-II major histocompatibility complexes. Nat. Biomed. Eng. 5, 1389–1401 (2021).

    Article  CAS  PubMed  Google Scholar 

  194. Casey, L. M. et al. Mechanistic contributions of Kupffer cells and liver sinusoidal endothelial cells in nanoparticle-induced antigen-specific immune tolerance. Biomaterials 283, 121457 (2022).

    Article  CAS  PubMed  Google Scholar 

  195. Chieppa, M. et al. Cross-linking of the mannose receptor on monocyte-derived dendritic cells activates an anti-inflammatory immunosuppressive program. J. Immunol. 171, 4552–4560 (2003).

    Article  CAS  PubMed  Google Scholar 

  196. Kel, J. et al. Soluble mannosylated myelin peptide inhibits the encephalitogenicity of autoreactive T cells during experimental autoimmune encephalomyelitis. Am. J. Pathol. 170, 272–280 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Lomakin, Y. et al. Administration of myelin basic protein peptides encapsulated in mannosylated liposomes normalizes level of serum TNF-α and IL-2 and chemoattractants CCL2 and CCL4 in multiple sclerosis patients. Mediators Inflamm. 2016, 2847232 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Tsai, S. et al. Reversal of autoimmunity by boosting memory-like autoregulatory T cells. Immunity 32, 568–580 (2010).

    Article  CAS  PubMed  Google Scholar 

  199. Bernstein, D. I. et al. Twelve-year survey of fatal reactions to allergen injections and skin testing: 1990-2001. J. Allergy Clin. Immunol. 113, 1129–1136 (2004).

    Article  PubMed  Google Scholar 

  200. Kappos, L. et al. Induction of a non-encephalitogenic type 2 T helper-cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo-controlled, randomized phase II trial. The altered peptide ligand in relapsing MS study group. Nat. Med. 6, 1176–1182 (2000).

    Article  CAS  PubMed  Google Scholar 

  201. Bielekova, B. et al. Encephalitogenic potential of the myelin basic protein peptide (amino acids 83-99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nat. Med. 6, 1167–1175 (2000).

    Article  CAS  PubMed  Google Scholar 

  202. Maldonado, R. A. et al. Polymeric synthetic nanoparticles for the induction of antigen-specific immunological tolerance. Proc. Natl Acad. Sci. USA 112, E156–E165 (2015).

    Article  CAS  PubMed  Google Scholar 

  203. Capini, C. et al. Antigen-specific suppression of inflammatory arthritis using liposomes. J. Immunol. 182, 3556–3565 (2009).

    Article  CAS  PubMed  Google Scholar 

  204. Quintana, F. J. & Sherr, D. H. Aryl hydrocarbon receptor control of adaptive immunity. Pharmacol. Rev. 65, 1148–1161 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Cappellano, G. et al. Subcutaneous inverse vaccination with PLGA particles loaded with a MOG peptide and IL-10 decreases the severity of experimental autoimmune encephalomyelitis. Vaccine 32, 5681–5689 (2014).

    Article  CAS  PubMed  Google Scholar 

  206. Galea, R. et al. PD-L1- and calcitriol-dependent liposomal antigen-specific regulation of systemic inflammatory autoimmune disease. JCI Insight 4, e126025 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Li, C. et al. Nanoemulsions target to ectopic lymphoids in inflamed joints to restore immune tolerance in rheumatoid arthritis. Nano Lett. 21, 2551–2561 (2021).

    Article  PubMed  Google Scholar 

  208. Pang, L., Macauley, M. S., Arlian, B. M., Nycholat, C. M. & Paulson, J. C. Encapsulating an immunosuppressant enhances tolerance induction by Siglec-engaging tolerogenic liposomes. Chembiochem 18, 1226–1233 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Burke, J. A. et al. Subcutaneous nanotherapy repurposes the immunosuppressive mechanism of rapamycin to enhance allogeneic islet graft viability. Nat. Nanotechnol. 17, 319–330 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Lewis, J. S. et al. Dual-sized microparticle system for generating suppressive dendritic cells prevents and reverses type 1 diabetes in the nonobese diabetic mouse model. ACS Biomater. Sci. Eng. 5, 2631–2646 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Kwiatkowski, A. J. et al. Treatment with an antigen-specific dual microparticle system reverses advanced multiple sclerosis in mice. Proc. Natl Acad. Sci. USA 119, e2205417119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Allen, R., Chizari, S., Ma, J. A., Raychaudhuri, S. & Lewis, J. S. Combinatorial, microparticle-based delivery of immune modulators reprograms the dendritic cell phenotype and promotes remission of collagen-induced arthritis in mice. ACS Appl. Bio Mater. 2, 2388–2404 (2019).

    Article  CAS  PubMed  Google Scholar 

  213. Chen, X. et al. Restoring immunological tolerance in established experimental arthritis by combinatorial citrullinated peptides and immunomodulatory signals. Nano Today 41, 101307 (2021).

    Article  CAS  Google Scholar 

  214. Bergot, A.-S. et al. Regulatory T cells induced by single-peptide liposome immunotherapy suppress islet-specific T cell responses to multiple antigens and protect from autoimmune diabetes. J. Immunol. 204, 1787–1797 (2020).

    Article  CAS  PubMed  Google Scholar 

  215. Kulkarni, J. A. et al. The current landscape of nucleic acid therapeutics. Nat. Nanotechnol. 16, 630–643 (2021).

    Article  CAS  PubMed  Google Scholar 

  216. Wang, D., Tai, P. W. L. & Gao, G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 18, 358–378 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Akbarpour, M. et al. Insulin B chain 9-23 gene transfer to hepatocytes protects from type 1 diabetes by inducing Ag-specific FoxP3+ Tregs. Sci. Transl Med. 7, 289ra281 (2015).

    Article  Google Scholar 

  218. Siatskas, C. et al. Thymic gene transfer of myelin oligodendrocyte glycoprotein ameliorates the onset but not the progression of autoimmune demyelination. Mol. Ther. 20, 1349–1359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Keeler, G. D. et al. Induction of antigen-specific tolerance by hepatic AAV immunotherapy regardless of T cell epitope usage or mouse strain background. Mol. Ther. Methods Clin. Dev. 28, 177–189 (2023).

    Article  CAS  PubMed  Google Scholar 

  220. Zampieri, R. et al. Prevention and treatment of autoimmune diseases with plant virus nanoparticles. Sci. Adv. 6, eaaz0295 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Waisman, A. et al. Suppressive vaccination with DNA encoding a variable region gene of the T–cell receptor prevents autoimmune encephalomyelitis and activates Th2 immunity. Nat. Med. 2, 899–905 (1996). This work describes the use of DNA vaccines to induce antigen-specific tolerance, paving the way for other nucleic-based approaches for the treatment of allergy and autoimmunity.

    Article  CAS  PubMed  Google Scholar 

  222. Liu, A. et al. DNA vaccination with Hsp70 protects against systemic lupus erythematosus in (NZB × NZW)F1 mice. Arthritis Rheumatol. 72, 997–1002 (2020).

    Article  CAS  PubMed  Google Scholar 

  223. Quintana, F. J., Carmi, P. & Cohen, I. R. DNA vaccination with heat shock protein 60 inhibits cyclophosphamide-accelerated diabetes. J. Immunol. 169, 6030–6035 (2002).

    Article  CAS  PubMed  Google Scholar 

  224. Quintana, F. J., Carmi, P., Mor, F. & Cohen, I. R. Inhibition of adjuvant arthritis by a DNA vaccine encoding human heat shock protein 60. J. Immunol. 169, 3422–3428 (2002).

    Article  CAS  PubMed  Google Scholar 

  225. Quintana, F. J., Carmi, P., Mor, F. & Cohen, I. R. DNA fragments of the human 60-kDa heat shock protein (HSP60) vaccinate against adjuvant arthritis: identification of a regulatory HSP60 peptide. J. Immunol. 171, 3533–3541 (2003).

    Article  CAS  PubMed  Google Scholar 

  226. Bar-Or, A. et al. Induction of antigen-specific tolerance in multiple sclerosis after immunization with DNA encoding myelin basic protein in a randomized, placebo-controlled phase 1/2 trial. Arch. Neurol. 64, 1407–1415 (2007).

    Article  PubMed  Google Scholar 

  227. Garren, H. et al. Phase 2 trial of a DNA vaccine encoding myelin basic protein for multiple sclerosis. Ann. Neurol. 63, 611–620 (2008).

    Article  CAS  PubMed  Google Scholar 

  228. Roep, B. O. et al. Plasmid-encoded proinsulin preserves C-peptide while specifically reducing proinsulin-specific CD8+ T cells in type 1 diabetes. Sci. Transl Med. 5, 191ra182 (2013).

    Article  Google Scholar 

  229. Garren, H. et al. Combination of gene delivery and DNA vaccination to protect from and reverse Th1 autoimmune disease via deviation to the Th2 pathway. Immunity 15, 15–22 (2001).

    Article  CAS  PubMed  Google Scholar 

  230. Wadhwa, A., Aljabbari, A., Lokras, A., Foged, C. & Thakur, A. Opportunities and challenges in the delivery of mRNA-based vaccines. Pharm 12, 102 (2020).

    CAS  Google Scholar 

  231. Mrak, D. et al. Heterologous vector versus homologous mRNA COVID-19 booster vaccination in non-seroconverted immunosuppressed patients: a randomized controlled trial. Nat. Commun. 13, 5362 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Kranz, L. M. et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 534, 396–401 (2016).

    Article  PubMed  Google Scholar 

  233. Kreiter, S. et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520, 692–696 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Rojas, L. A. et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature 618, 144–150 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Sahin, U. et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature 585, 107–112 (2020).

    Article  CAS  PubMed  Google Scholar 

  236. Karikó, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23, 165–175 (2005).

    Article  PubMed  Google Scholar 

  237. Krienke, C. et al. A noninflammatory mRNA vaccine for treatment of experimental autoimmune encephalomyelitis. Science 371, 145–153 (2021). This work describes the use of modified mRNA vaccines to induce antigen-specific tolerance in experimental autoimmunity.

    Article  CAS  PubMed  Google Scholar 

  238. Fishman, S. et al. Adoptive transfer of mRNA-transfected T cells redirected against diabetogenic CD8 T cells can prevent diabetes. Mol. Ther. 25, 456–464 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Perez, S. et al. Selective immunotargeting of diabetogenic CD4 T cells by genetically redirected T cells. Immunology 143, 609–617 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Smith, T. J. & Hegedüs, L. Graves’ disease. N. Engl. J. Med. 375, 1552–1565 (2016).

    Article  PubMed  Google Scholar 

  241. Robinson, W. H. et al. Autoantigen microarrays for multiplex characterization of autoantibody responses. Nat. Med. 8, 295–301 (2002).

    Article  CAS  PubMed  Google Scholar 

  242. Quintana, F. J. et al. Functional immunomics: microarray analysis of IgG autoantibody repertoires predicts the future response of mice to induced diabetes. Proc. Natl Acad. Sci. USA 101, 14615–14621 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Bashford-Rogers, R. J. M. et al. Analysis of the B cell receptor repertoire in six immune-mediated diseases. Nature 574, 122–126 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Dash, P. et al. Quantifiable predictive features define epitope-specific T cell receptor repertoires. Nature 547, 89–93 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Bentzen, A. K. et al. Large-scale detection of antigen-specific T cells using peptide-MHC-I multimers labeled with DNA barcodes. Nat. Biotechnol. 34, 1037–1045 (2016).

    Article  CAS  PubMed  Google Scholar 

  246. Sulzer, D. et al. T cells from patients with Parkinson’s disease recognize α-synuclein peptides. Nature 546, 656–661 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Xu, P. et al. Prognostic accuracy of immunologic and metabolic markers for type 1 diabetes in a high-risk population: receiver operating characteristic analysis. Diabetes Care 35, 1975–1980 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Wheeler, M. A. et al. Droplet-based forward genetic screening of astrocyte-microglia cross-talk. Science 379, 1023–1030 (2023). This work describes a novel platform that enables the identification of candidate mechanisms of DC–T cell communication to be targeted with novel tolerogenic approaches.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Clark, I. C. et al. Barcoded viral tracing of single-cell interactions in central nervous system inflammation. Science 372, eabf1230 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Pasqual, G. et al. Monitoring T cell-dendritic cell interactions in vivo by intercellular enzymatic labelling. Nature 553, 496–500 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. LaFleur, M. W. et al. A CRISPR-Cas9 delivery system for in vivo screening of genes in the immune system. Nat. Commun. 10, 1668 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  252. Sanmarco, L. M. et al. Identification of environmental factors that promote intestinal inflammation. Nature 611, 801–809 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Akagbosu, B. et al. Novel antigen-presenting cell imparts T(reg)-dependent tolerance to gut microbiota. Nature 610, 752–760 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Kedmi, R. et al. A RORγt+ cell instructs gut microbiota-specific T(reg) cell differentiation. Nature 610, 737–743 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Lyu, M. et al. ILC3s select microbiota-specific regulatory T cells to establish tolerance in the gut. Nature 610, 744–751 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Au, K. M., Tisch, R. & Wang, A. Z. Immune checkpoint ligand bioengineered schwann cells as antigen-specific therapy for experimental autoimmune encephalomyelitis. Adv. Mater. 34, e2107392 (2022).

    Article  PubMed  Google Scholar 

  257. Podojil, J. R. et al. Tolerogenic immune-modifying nanoparticles encapsulating multiple recombinant pancreatic β cell proteins prevent onset and progression of type 1 diabetes in nonobese diabetic mice. J. Immunol. 209, 465–475 (2022).

    Article  CAS  PubMed  Google Scholar 

  258. Chen, X. et al. Modular immune-homeostatic microparticles promote immune tolerance in mouse autoimmune models. Sci. Transl Med. 13, eaaw9668 (2021).

    Article  CAS  PubMed  Google Scholar 

  259. Umeshappa, C. S. et al. Ubiquitous antigen-specific T regulatory type 1 cells variably suppress hepatic and extrahepatic autoimmunity. J. Clin. Invest. 130, 1823–1829 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Umeshappa, C. S. et al. Suppression of a broad spectrum of liver autoimmune pathologies by single peptide-MHC-based nanomedicines. Nat. Commun. 10, 2150 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  261. Huang, L. et al. Engineering DNA nanoparticles as immunomodulatory reagents that activate regulatory T cells. J. Immunol. 188, 4913–4920 (2012).

    Article  CAS  PubMed  Google Scholar 

  262. Wegmann, K. W., Wagner, C. R., Whitham, R. H. & Hinrichs, D. J. Synthetic peptide dendrimers block the development and expression of experimental allergic encephalomyelitis. J. Immunol. 181, 3301–3309 (2008).

    Article  CAS  PubMed  Google Scholar 

  263. Carambia, A. et al. Nanoparticle-based autoantigen delivery to Treg-inducing liver sinusoidal endothelial cells enables control of autoimmunity in mice. J. Hepatol. 62, 1349–1356 (2015).

    Article  CAS  PubMed  Google Scholar 

  264. Wang, H. et al. Dual peptide nanoparticle platform for enhanced antigen-specific immune tolerance for the treatment of experimental autoimmune encephalomyelitis. Biomater. Sci. 10, 3878–3891 (2022).

    Article  CAS  PubMed  Google Scholar 

  265. De Groot, A. S. et al. Therapeutic administration of Tregitope-human albumin fusion with insulin peptides to promote antigen-specific adaptive tolerance induction. Sci. Rep. 9, 16103 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  266. Luo, Y.-L. et al. An all-in-one nanomedicine consisting of CRISPR-Cas9 and an autoantigen peptide for restoring specific immune tolerance. ACS Appl. Mater. Interfaces 12, 48259–48271 (2020).

    Article  CAS  PubMed  Google Scholar 

  267. Peine, K. J. et al. Treatment of experimental autoimmune encephalomyelitis by codelivery of disease associated peptide and dexamethasone in acetalated dextran microparticles. Mol. Pharm. 11, 828–835 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Macauley, M. S. et al. Antigenic liposomes displaying CD22 ligands induce antigen-specific B cell apoptosis. J. Clin. Invest. 123, 3074–3083 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Medaer, R., Stinissen, P., Truyen, L., Raus, J. & Zhang, J. Depletion of myelin-basic-protein autoreactive T cells by T-cell vaccination: pilot trial in multiple sclerosis. Lancet 346, 807–808 (1995).

    Article  CAS  PubMed  Google Scholar 

  270. Walczak, A., Siger, M., Ciach, A., Szczepanik, M. & Selmaj, K. Transdermal application of myelin peptides in multiple sclerosis treatment. JAMA Neurol. 70, 1105–1109 (2013).

    Article  PubMed  Google Scholar 

  271. Juryńczyk, M. et al. Immune regulation of multiple sclerosis by transdermally applied myelin peptides. Ann. Neurol. 68, 593–601 (2010).

    Article  PubMed  Google Scholar 

  272. Wolinsky, J. S. et al. United States open-label glatiramer acetate extension trial for relapsing multiple sclerosis: MRI and clinical correlates. Multiple Sclerosis Study Group and the MRI Analysis Center. Mult. Scler. 7, 33–41 (2001).

    Article  CAS  PubMed  Google Scholar 

  273. Kavanaugh, A. et al. Allele and antigen-specific treatment of rheumatoid arthritis: a double blind, placebo controlled phase 1 trial. J. Rheumatol. 30, 449–454 (2003).

    CAS  PubMed  Google Scholar 

  274. Francisco, L. M. et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J. Exp. Med. 206, 3015–3029 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Jones, A. et al. Immunomodulatory functions of BTLA and HVEM govern induction of extrathymic regulatory T cells and tolerance by dendritic cells. Immunity 45, 1066–1077 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Henderson, J. G., Opejin, A., Jones, A., Gross, C. & Hawiger, D. CD5 instructs extrathymic regulatory T cell development in response to self and tolerizing antigens. Immunity 42, 471–483 (2015).

    Article  CAS  PubMed  Google Scholar 

  277. Schnell, A., Littman, D. R. & Kuchroo, V. K. TH17 cell heterogeneity and its role in tissue inflammation. Nat. Immunol. 24, 19–29 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Chaudhry, A. et al. Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity 34, 566–578 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Apetoh, L. et al. The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27. Nat. Immunol. 11, 854–861 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Gandhi, R. et al. Activation of the aryl hydrocarbon receptor induces human type 1 regulatory T cell-like and Foxp3+ regulatory T cells. Nat. Immunol. 11, 846–853 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Do, J. et al. Treg-specific IL-27Rα deletion uncovers a key role for IL-27 in Treg function to control autoimmunity. Proc. Natl Acad. Sci. USA 114, 10190–10195 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research in the Quintana lab was supported by grants NS102807, ES02530, ES029136, AI126880 from the NIH; RG4111A1 andJF2161-A-5 from the NMSS; and PA-1604-08459 from the International Progressive MS Alliance. During the writing of this article, J.E.K. was supported by a T32 Cancer Neuroscience training grant (T32CA27386); N.A.S. was supported by funding from the Boehringer Ingelheim Fonds.

Author information

Authors and Affiliations

Authors

Contributions

J.E.K. and N.A.S. contributed equally to all aspects of the article. All authors contributed to the writing and editing of the manuscript.

Corresponding author

Correspondence to Francisco J. Quintana.

Ethics declarations

Competing interests

F.J.Q. is the Scientific Founder of AnTolRx, a company developing novel therapies for inflammatory disorders. The other authors have no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kenison, J.E., Stevens, N.A. & Quintana, F.J. Therapeutic induction of antigen-specific immune tolerance. Nat Rev Immunol 24, 338–357 (2024). https://doi.org/10.1038/s41577-023-00970-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-023-00970-x

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research