Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neural induction, the default model and embryonic stem cells

Key Points

  • Nervous system development has been the centre of attention for embryologists since Spemann and Mangold showed that the vertebrate nervous system can be induced by a region of the embryo termed the 'organizer'. Initially, neural-inducing signals of the organizer were thought to act in an instructive manner, but later experiments indicated a more indirect action — inhibition of the bone morphogenetic protein (BMP) pathway. This led to the 'default' model of neural induction, which proposes that in the absence of cell–cell signalling, ectodermal cells will adopt a neural fate.

  • An outstanding issue is whether BMP inhibition is required for neural induction, or whether other pathways are involved. The current evidence indicates that fibroblast growth factors (FGFs) and Wnts act as neural inducers, but whether these pathways can mediate neural induction independently of their effects on BMP signalling remains to be shown.

  • The strongest argument against the default model comes from the chick epiblast, where BMP inhibition by noggin- or chordin-producing cells is not sufficient to induce neural tissue in non-neural cells, whereas node grafts in this region result in neural tissue formation. However, it is plausible that the cell grafts do not inhibit the complete array of BMPs expressed in the gastrula ectoderm.

  • Genetic data from targeted mutations in the mouse and screens conducted in zebrafish have not revealed an essential requirement for any one gene in neural induction. Although genetic data has been used extensively to question the role of BMP inhibition, it can similarly be applied to other putative neural inducers. To show conclusively that BMP inhibition is not essential for neural induction, this pathway would have to be completely blocked within the ectodermal layer. More complicated genetic analyses, such as multiple knockouts or germ-layer-specific loss of function, will be required to address this issue.

  • Ultimately, we are interested in understanding whether the mechanisms that operate in model organisms also apply to the human species. Recent studies indicate that BMPs might regulate ectodermal fate decisions in mouse embryonic stem (ES) cells, and the isolation of human ES cells represents a new paradigm for studying the intricacies of neural induction in the context of human development.

Abstract

Neural induction represents the earliest step in the determination of ectodermal cell fates. In vertebrates, bone morphogenetic proteins (BMPs) act as signals of epidermal induction. The inhibition of the BMP signalling pathway in the ectoderm is the hallmark of neural-fate acquisition, and forms the basis of the default model of neural induction. BMP inhibition seems to take place through distinct mechanisms in different vertebrate species, including transcriptional regulation of BMP gene expression and clearance of BMP ligands by secreted inhibitors. Here, we discuss the role of fibroblast growth factors and Wnt proteins in neural induction and in the regulation of BMP signalling in the ectoderm of Xenopus laevis and chick embryos. In addition, we discuss evidence from mouse embryonic stem cells that supports the default model of neural induction and the role of BMP signalling in ectodermal fate determination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The default model of neural induction in Xenopus laevis.
Figure 2: BMP signalling and the specification of ectodermal fate.
Figure 3: Embryonic stem cells and the default model for neural induction.

Similar content being viewed by others

References

  1. Spemann, H. & Mangold, H. Über Induktion von Embryonanlagen durch Implantation artfremder Organisatoren. Wilhelm Roux Arch. Entw. Mech. Organ. 100, 599–638 (1924).

    Google Scholar 

  2. Hamburger V. Ontogeny of neuroembryology. J. Neurosci. 8, 3535–3540 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hemmati-Brivanlou, A. & Melton, D. A. A truncated activin receptor inhibits mesoderm induction and formation of axial structures in Xenopus embryos. Nature 359, 609–614 (1992).

    CAS  PubMed  Google Scholar 

  4. Hemmati-Brivanlou, A. & Melton, D. A. Inhibition of activin receptor signaling promotes neuralization in Xenopus. Cell 77, 273–281 (1994).Showed that a truncated activin receptor was able to directly neuralize Xenopus ectodermal explants. This represented the first insight into the molecular basis of vertebrate neural induction, and led to the hypothesis that neuralization might involve inhibitory mechanisms.

    CAS  PubMed  Google Scholar 

  5. Hemmati-Brivanlou, A., Kelly, O. G. & Melton, D. A. Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell 77, 283–295 (1994).

    CAS  PubMed  Google Scholar 

  6. Smith, W. C. & Harland, R. M. Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 70, 829–840 (1992).

    CAS  PubMed  Google Scholar 

  7. Lamb, T. M. et al. Neural induction by the secreted polypeptide noggin. Science 262, 713–718 (1993).

    CAS  PubMed  Google Scholar 

  8. Sasai, Y., Lu, B., Steinbeisser, H. & De Robertis, E. M. Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus. Nature 376, 333–336 (1995).

    CAS  PubMed  Google Scholar 

  9. Piccolo, S., Sasai, Y., Lu, B. & De Robertis, E. M. Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86, 589–598 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ferguson, E. L. & Anderson, K. V. Decapentaplegic acts as a morphogen to organize dorsal–ventral pattern in the Drosophila embryo. Cell 71, 451–461 (1992).

    CAS  PubMed  Google Scholar 

  11. Wharton, K. A., Ray, R. P. & Gelbart, W. M. An activity gradient of decapentaplegic is necessary for the specification of dorsal pattern elements in the Drosophila embryo. Development 117, 807–822 (1993).

    CAS  PubMed  Google Scholar 

  12. Godsave, S. F. & Slack, J. M. Clonal analysis of mesoderm induction in Xenopus laevis. Dev. Biol. 134, 486–490 (1989).

    CAS  PubMed  Google Scholar 

  13. Grunz, H. & Tacke, L. Neural differentiation of Xenopus laevis ectoderm takes place after disaggregation and delayed reaggregation without inducer. Cell Differ. Dev. 28, 211–217 (1989).

    CAS  PubMed  Google Scholar 

  14. Sato, S. M. & Sargent, T. D. Development of neural inducing capacity in dissociated Xenopus embryos. Dev. Biol. 134, 263–266 (1989).

    CAS  PubMed  Google Scholar 

  15. Wilson, P. A. & Hemmati-Brivanlou, A. Induction of epidermis and inhibition of neural fate by Bmp-4. Nature 376, 331–333 (1995).Showed that BMP4 could inhibit neural induction and restore epidermal fates in dissociated Xenopus ectodermal explants, indicating that BMP genes might act in the ectoderm to repress neuralization. Also showed that the truncated activin receptor promotes neuralization by inhibiting recombinant BMP4 signalling in ectodermal explants.

    CAS  PubMed  Google Scholar 

  16. Yamashita, H. et al. Osteogenic protein-1 binds to activin type II receptors and induces certain activin-like effects. J. Cell Biol. 130, 217–226 (1995).

    CAS  PubMed  Google Scholar 

  17. Piccolo, S. et al. The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature 397, 707–710 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zimmerman, L. B., De Jesus-Escobar, J. M. & Harland, R. M. The Spemann organizer signal noggin binds and i nactivates bone morphogenetic protein 4. Cell 86, 599–606 (1996).

    CAS  PubMed  Google Scholar 

  19. Bouwmeester, T., Kim, S., Sasai, Y., Lu, B. & De Robertis, E. M. Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann's organizer. Nature 382, 595–601 (1996).

    CAS  PubMed  Google Scholar 

  20. Hansen, C. S., Marion, C. D., Steele, K., George, S. & Smith, W. C. Direct neural induction and selective inhibition of mesoderm and epidermis inducers by Xnr3. Development 124, 483–492 (1997).

    CAS  PubMed  Google Scholar 

  21. Harland, R. & Gerhart, J. Formation and function of Spemann's organizer. Annu. Rev. Cell Dev. Biol. 13, 611–667 (1997).

    CAS  PubMed  Google Scholar 

  22. Gritsman, K. et al. The EGF-CFC protein one-eyed pinhead is essential for nodal signaling. Cell 97, 121–132 (1999).

    CAS  PubMed  Google Scholar 

  23. Shimizu, T. et al. Cooperative roles of Bozozok/Dharma and Nodal-related proteins in the formation of the dorsal organizer in zebrafish. Mech. Dev. 91, 293–303 (2000).

    CAS  PubMed  Google Scholar 

  24. Klingensmith, J., Ang, S. L., Bachiller, D. & Rossant, J. Neural induction and patterning in the mouse in the absence of the node and its derivatives. Dev. Biol. 15, 535–549 (1999).

    Google Scholar 

  25. Weinstein, D. C. et al. The winged-helix transcription factor HNF-3β is required for notochord development in the mouse embryo. Cell 78, 575–588 (1994).

    CAS  PubMed  Google Scholar 

  26. Ang, S. L. & Rossant, J. HNF-3β is essential for node and notochord formation in mouse development. Cell 78, 561–574 (1994).

    CAS  PubMed  Google Scholar 

  27. Streit, A. et al. Chordin regulates primitive streak development and the stability of induced neural cells, but is not sufficient for neural induction in the chick embryo. Development 125, 507–519 (1998).Chordin-expressing grafted cells were shown to induce a secondary axis in chick embryos. This work challenged the idea that BMP inhibitors from the node impart neural fates to the ectoderm in chick embryos.

    CAS  PubMed  Google Scholar 

  28. Streit, A., Berliner, A. J., Papnayotou, C., Sirulnik, A. & Stern, C. Initiation of neural induction by FGF signaling before gastrulation. Nature 406, 74–78 (2000).The authors report the identification of a gene ( cERNI ) that can be used as a marker to show that neural induction begins before gastrulation in the chick. They postulate that the node and its precursor cells act as an initial source of neural-fate-inducing signals before gastrulation.

    CAS  PubMed  Google Scholar 

  29. Wessely, O., Agius, E., Oelgeschlager, M., Pera, E. M. & DeRobertis, E. M. Neural induction in the absence of mesoderm: β-catenin dependent expression of secreted BMP antagonists at the blastula stage in Xenopus. Dev. Biol. 234, 161–173 (2001).Showed that the Wnt pathway can rescue the effects of UV irradiation and restore neural fates. Importantly, it showed that various BMP antagonists are expressed in the dorsal blastula ectoderm before organizer formation, indicating that the earliest events in neural induction might be modulated before gastrulation.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Nakao, A. et al. Identification of Smad7, a TGF-β-inducible antagonist of TGF-β signalling. Nature 389, 631–635 (1997).

    CAS  PubMed  Google Scholar 

  31. Casellas, R. & Brivanlou, A. H. Xenopus Smad7 inhibits both the activin and BMP pathways and acts as a neural inducer. Dev. Biol. 198, 1–12 (1998).

    CAS  PubMed  Google Scholar 

  32. Nakayama, T., Gardner, H., Berg, L. K. & Christian, J. L. Smad6 functions as an intracellular antagonist of some TGF-β family members during Xenopus embryogenesis. Genes Cells 3, 387–934 (1998).

    CAS  PubMed  Google Scholar 

  33. Hata, A., Lagna, G., Massague, J. & Hemmati-Brivanlou, A. Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor. Genes Dev. 12, 186–197 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kavsak, P. et al. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF-β receptor for degradation. Mol. Cell 6, 1365–1375 (2000).

    CAS  PubMed  Google Scholar 

  35. Ebisawa, T. et al. Smurf1 interacts with transforming growth factor-β type I receptor through Smad7 and induces receptor degradation. J. Biol. Chem. 276, 12477–12480 (2001).

    CAS  PubMed  Google Scholar 

  36. Massague, J. & Chen, Y. Controling TGF-β signaling. Genes Dev. 14, 627–644 (2000).

    CAS  PubMed  Google Scholar 

  37. Gamse, J. T. & Sive, H. Early anterior–posterior division of the presumptive neuroectoderm in Xenopus. Mech. Dev. 104, 21–36 (2001).

    CAS  PubMed  Google Scholar 

  38. Harland, R. M. Neural induction. Curr. Opin. Genet. Dev. 10, 357–362 (2000).

    CAS  PubMed  Google Scholar 

  39. Wilson, S. I. & Edlund, T. Neural induction: toward a unifying mechanism. Nature Neurosci. 4, 1161–1168 (2001).

    CAS  PubMed  Google Scholar 

  40. Wilson, P. A. & Hemmati-Brivanlou, A. Vertebrate neural induction: inducers, inhibitors, and a new synthesis. Neuron 18, 699–710 (1997).

    CAS  PubMed  Google Scholar 

  41. Wilson, S. I., Graziano, E., Harland, R., Jessell, T. M. & Edlund, T. An early requirement for FGF signalling in the acquisition of neural cell fate in the chick embryo. Curr. Biol. 10, 421–429 (2000).The authors developed an in vitro system using chick epiblast explants to show that there is an early effect on neural formation before the morphological formation of the node. They postulate that FGF signalling is required for neural generation in epiblast cells.

    CAS  PubMed  Google Scholar 

  42. Wilson, S. I. et al. The status of Wnt signalling regulates neural and epidermal fates in the chick embryo. Nature 411, 325–330 (2001).Established a link between Wnt signalling levels in chick epiblast, FGF signalling and BMP inhibition in neural induction. The authors claim that two distinct biochemical mechanisms that are regulated by Wnt signals might function downstream of FGF signalling during neural induction.

    CAS  PubMed  Google Scholar 

  43. Weinstein, D. C. & Hemmati-Brivanlou, A. Neural induction. Annu. Rev. Cell Dev. Biol. 15, 411–433 (1999).

    CAS  PubMed  Google Scholar 

  44. Wilson, P. A., Lagna, G., Suzuki, A. & Hemmati-Brivanlou, A. Concentration-dependent patterning of the Xenopus ectoderm by BMP4 and its signal transducer Smad1. Development 124, 3177–3184 (1997).

    CAS  PubMed  Google Scholar 

  45. Malacinski, G. M., Brothers, A. J. & Chung, H. M. Disruption of components of the neural induction system of the amphibian egg with ultraviolet irradiation. Dev. Biol. 56, 24–39 (1975).

    Google Scholar 

  46. Kengaku, M. & Okamoto, H. Basic fibroblast growth factor induces differentiation of neural tube and neural crest lineages of cultured ectoderm cells from Xenopus gastrula. Development 119, 1067–1078 (1993).

    CAS  PubMed  Google Scholar 

  47. Lamb, T. M. & Harland, R. M. Fibroblast growth factor is a direct neural inducer, which combined with noggin generates anterior–posterior pattern. Development 121, 3627–3636 (1995).

    CAS  PubMed  Google Scholar 

  48. Launay, C., Fromentoux, V., Shi, D. & Boucaut, J.-C. A truncated FGF receptor blocks neural induction by endogenous Xenopus inducers. Development 122, 869–880 (1996).

    CAS  PubMed  Google Scholar 

  49. Gammill, L. S. & Sive, H. Coincidence of otx2 and BMP4 signaling correlates with Xenopus cement gland formation. Mech. Dev. 92, 217–226 (2000).

    CAS  PubMed  Google Scholar 

  50. Cox, W. G. & Hemmati-Brivanlou, A. Caudalization of neural fate by tissue recombination and bFGF. Development 121, 4349–4358 (1995).

    CAS  PubMed  Google Scholar 

  51. Baker, J. C., Beddington, R. S. P. & Harland, R. M. Wnt signaling in Xenopus embryos inhibits Bmp4 expression and activates neural development. Genes Dev. 13, 3149–3159 (1999).This work showed that Wnt signalling in Xenopus ectoderm induces neural tissue. It is postulated to act at blastula stages, partly through the transcriptional downregulation of Bmp4 expression in the ectoderm, thereby sensitizing the ectoderm to BMP antagonists produced by the organizer during gastrulation.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Gomez-Skarmeta, J. L., de la Calle-Mustienes, E. & Modolell, J. The Wnt-activated Xiro1 gene encodes a repressor that is essential for neural development and downregulates Bmp4. Development 128, 551–560 (2001).

    CAS  PubMed  Google Scholar 

  53. Pera, E. M., Wessely, O., Li, S.-Y. & DeRobertis, E. M. Neural and head induction by insulin-like growth factor signals. Dev. Cell 1, 655–665 (2001).Showed that IGF and IGF-binding protein act as neural inducers in Xenopus ectodermal explants, and that they promote dorsoanterior fates in injected embryos. A dominant-negative IGF receptor blocked noggin-mediated neural induction, indicating that instructive signals might act downstream of BMP antagonists to induce neural fates in Xenopus.

    CAS  PubMed  Google Scholar 

  54. Bohni, R. et al. Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1-4. Cell 97, 865–875 (1999).

    CAS  PubMed  Google Scholar 

  55. Verdu, J., Buratovich, M. A., Wilder, E. L. & Birnbaum, M. J. Cell autonomous regulation of cell and organ growth in Drosophila by Akt/PKB. Nature Cell Biol. 1, 500–506 (1999).

    CAS  PubMed  Google Scholar 

  56. Dudley A. T. & Robertson E. J. Overlapping expression domains of bone morphogenetic protein family members potentially account for limited tissue defects in BMP7 deficient embryos. Dev. Dyn. 208, 349–362 (1997).

    CAS  PubMed  Google Scholar 

  57. Matzuk, M. M. et al. Multiple defects and perinatal death in mice deficient in follistatin. Nature 374, 360–363 (1995).

    CAS  PubMed  Google Scholar 

  58. McMahon, J. A. et al. Noggin-mediated antagonism of BMP signaling is required for growth and patterning of neural tube and somite. Genes Dev. 12, 1438–1452 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Simpson, E. H. et al. The mouse Cer1 (Cerberus related or homologue) gene is not required for anterior pattern formation. Dev. Biol. 213, 202–206 (1999).

    CAS  PubMed  Google Scholar 

  60. Bachiller, D. et al. The organizer factors chordin and noggin are required for mouse forebrain development. Nature 403, 658–661 (2000).The first evidence for the role of secreted BMP antagonists in anterior neural development in mammals. Although neural induction is not eliminated in double homozygotes for chordin and noggin, prosencephalic maintenance and development is severely impaired.

    CAS  PubMed  Google Scholar 

  61. Thomas, P. & Beddington, R. Anterior primitive endoderm may be responsible for patterning the anterior neural plate in the mouse embryo. Curr. Biol. 6, 1487–1496 (1996).

    CAS  PubMed  Google Scholar 

  62. Schulte-Merker, S., Lee, K. J., McMahon, A. P. & Hammerschmidt, M. The zebrafish organizer requires chordino. Nature 387, 862–863 (1997).

    CAS  PubMed  Google Scholar 

  63. Nguyen, V. H. et al. Ventral and lateral regions of the zebrafish gastrula, including the neural crest progenitors, are established by a bmp2/swirl pathway of genes. Dev. Biol. 199, 93–110 (1998).

    CAS  PubMed  Google Scholar 

  64. Kishimoto, Y., Lee, K. H., Zon, L., Hammerschmidt, M. & Schulte-Merker, S. The molecular nature of zebrafish swirl: BMP2 function is essential during early dorsoventral patterning. Development 124, 4457–4466 (1997).

    CAS  PubMed  Google Scholar 

  65. Dick, A. et al. Essential role of Bmp7 (snailhouse) and its prodomain in dorsoventral patterning of the zebrafish embryo. Development 127, 343–354 (2000).

    CAS  PubMed  Google Scholar 

  66. Schmid, B. et al. Equivalent genetic roles for bmp7/snailhouse and bmp2b/swirl in dorsoventral pattern formation. Development 127, 957–967 (2000).

    CAS  PubMed  Google Scholar 

  67. Gonzalez, E. M. et al. Head and trunk in zebrafish arise via coinhibition of BMP signaling by bozozok and chordin. Genes Dev. 14, 3087–3092 (2000).Zebrafish double mutants for chordin and bozozok showed synergistic elimination of head and trunk structures. Chordin blocks BMP activity extracellularly and bozozok is a homeobox gene that acts to repress bmp2 and wnt expression. The genetic inactivation of BMP signalling suppressed the defects of the chordino/bozozok double mutant. The phenotype of this double homozygote showed the combined effect of blocking BMP signalling intra- and extracellularly in neural generation.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Fekany K. et al. The zebrafish bozozok locus encodes Dharma, a homeodomain protein essential for induction of gastrula organizer and dorsoanterior embryonic structures. Development 126, 1427–1438 (1999).

    CAS  PubMed  Google Scholar 

  69. Koos, D. S. & Ho, R. K. The nieuwkoid/dharma homeobox gene is essential for bmp2b repression in the zebrafish pregastrula. Dev. Biol. 215, 190–207 (1999).

    CAS  PubMed  Google Scholar 

  70. Hammerschmidt, M. et al. Mutations affecting morphogenesis during gastrulation and tail formation in the zebrafish, Danio rerio. Development 123, 143–151 (1996).

    CAS  PubMed  Google Scholar 

  71. Miller-Bertoglio, V. et al. Maternal and zygotic activity of the zebrafish ogon locus antagonizes BMP signaling. Dev. Biol. 214, 72–86 (1999).

    CAS  PubMed  Google Scholar 

  72. Winnier, G., Blessing, M., Labosky, P. A. & Hogan, B. L. M. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev. 9, 2105–2116 (1995).

    CAS  PubMed  Google Scholar 

  73. Zhang, H. & Bradley, A. Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 122, 2977–2986 (1996).

    CAS  PubMed  Google Scholar 

  74. Dudley, A. T., Lyons, K. M. & Robertson, E. J. A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev. 9, 2795–2807 (1995).

    CAS  PubMed  Google Scholar 

  75. Luo, G. et al. BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning. Genes Dev. 9, 2808–2820 (1995).

    CAS  PubMed  Google Scholar 

  76. Chang, H. et al. Smad5 knockout mice die at mid-gestation due to multiple embryonic and extraembryonic defects. Development 126, 1631–1642 (1999).

    CAS  PubMed  Google Scholar 

  77. Tremblay, K. D., Dunn, N. R. & Robertson, E. J. Mouse embryos lacking Smad1 signals display defects in extra-embryonic tissues and germ cell formation. Development 128, 3609–3621 (2001).

    CAS  PubMed  Google Scholar 

  78. Sirard, C. et al. The tumor suppressor gene Smad4/dpc4 is required for gastrulation and later for anterior development of the mouse embryo. Genes Dev. 12, 107–119 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Weinstein, M., Yang, X. & Deng, C.-X. Functions of mammalian Smad genes as revealed by targeted gene disruption in mice. Cytokine Growth Factor Rev. 11, 49–58 (2000).

    CAS  PubMed  Google Scholar 

  80. Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    CAS  PubMed  Google Scholar 

  81. Schuldiner, M., Yanuka, O., Itskovitz-Eldor, J., Melton, D. A. & Benvenisty, N. From the cover: effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc. Natl Acad. Sci. USA 97, 11307–11312 (2000).The first attempt to use exogenous growth factors to mediate the determination of cell fates in human ES cells. It highlighted the conservation of molecular pathways during vertebrate embryogenesis, and indicated pathways that might be used during embryogenesis to direct the differentiation of human ES cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Hemmati-Brivanlou, A. & Melton, D. A. Vertebrate embryonic cells will become nerve cells unless told otherwise. Cell 88, 13–17 (1997).

    CAS  PubMed  Google Scholar 

  83. Tropepe, V. et al. Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 30, 65–78 (2001).The first attempt to address the mechanisms that underlie the generation of neural tissue from mouse ES cells. Importantly, it shows that neural stem cell colonies can arise from ES cells grown at a low density in a serum-free and feeder-layer-free system. This indicates that a default pathway might also operate in mammalian cells during neural generation.

    CAS  PubMed  Google Scholar 

  84. Tropepe, V. et al. Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. Dev. Biol. 208, 166–188 (1999).

    CAS  PubMed  Google Scholar 

  85. Ciruna, B. G., Schwartz, L., Harpal, K., Yamaguchi, T. P. & Rossant, J. Chimeric analysis of fibroblast growth factor receptor-1 (Fgfr1) function: a role for FGFR1 in morphogenetic movement through the primitive streak. Development 124, 2829–2841 (1997).

    CAS  PubMed  Google Scholar 

  86. Taupin, P. et al. FGF-2-responsive neural stem cell proliferation requires CCg, a novel autocrine/paracrine cofactor. Neuron 28, 385–397 (2000).

    CAS  PubMed  Google Scholar 

  87. Reubinoff, B. E. et al. Neural progenitors from human embryonic stem cells. Nature Biotechnol. 19, 1134–1140 (2001).

    CAS  Google Scholar 

  88. Zhang, S., Wernig, M., Duncan, I. D., Brustle, O. & Thomson, J. A. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nature Biotechnol. 19, 1129–1133 (2001).

    CAS  Google Scholar 

  89. Elefanty, A. G., Robb, L., Bimer, R. & Begley, C. G. Hematopoietic-specific genes are not induced during the in vitro differentiation of scl-null embryonic stem cells. Blood 90, 1435–1447 (1997).

    CAS  PubMed  Google Scholar 

  90. Mukhopadhyay, M. et al. Dickkopf1 is required for embryonic head induction and limb morphogenesis in the mouse. Dev. Cell 1, 423–434 (2001).

    CAS  PubMed  Google Scholar 

  91. LeSueur, J. A. & Graff, J. M. Spemann organizer activity of Smad10. Development 126, 137–146 (1999).

    CAS  PubMed  Google Scholar 

  92. Howell, M. et al. Xenopus Smad4β is the co-Smad component of developmentally regulated transcription factor complexes responsible for induction of early mesodermal genes. Dev. Biol. 214, 354–369 (1999).

    CAS  PubMed  Google Scholar 

  93. Björklund, L. M. et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc. Natl Acad. Sci. USA 10, 1073–1079 (2002).

    Google Scholar 

  94. Kawasaki, H. et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 28, 31–40 (2000).This work identified a stromal-cell-associated activity, SDIA, that is able to induce neural differentiation of mouse stem cells. The induction of neural fates by SDIA was blocked by recombinant BMP, indicating that BMP signalling might also regulate ectodermal fate decisions in mammals and in ES cells.

    CAS  PubMed  Google Scholar 

  95. Servetnick, M. & Grainger, R. M. Changes in neural and lens competence in Xenopus ectoderm: evidence for an autonomous developmental timer. Development 112, 177–188 (1991).

    CAS  PubMed  Google Scholar 

  96. Lim, D. A. et al. Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 28, 713–726 (2000).

    CAS  PubMed  Google Scholar 

  97. Gross, R. E. et al. Bone morphogenetic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells. Neuron 17, 595–606 (1996).

    CAS  PubMed  Google Scholar 

  98. Gage, F. H. Mammalian neural stem cells. Science 287, 1433–1438 (2000).

    CAS  PubMed  Google Scholar 

  99. Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999).

    CAS  PubMed  Google Scholar 

  100. Tropepe, V. et al. Retinal stem cells in the adult mammalian eye. Science 287, 2032–2036 (2000).

    CAS  PubMed  Google Scholar 

  101. Kornblum, H. I. & Geschwind, D. H. Molecular markers in CNS stem cell research: hitting a moving target. Nature Rev. Neurosci. 2, 843–846 (2001).

    CAS  Google Scholar 

  102. Chen, Z-F., Paquette, A. J. & Anderson, D. J. NRSF/REST is required in vivo for repression of multiple neuronal target genes during embryogenesis. Nature Genet. 20, 136–142 (1998).

    CAS  PubMed  Google Scholar 

  103. Huang, Y., Myers, S. J. & Dingledine, R. Transcriptional repression by REST: recruitment of Sin3A and histone deacetylase to neuronal genes. Nature Neurosci. 2, 867–872 (1999).

    CAS  PubMed  Google Scholar 

  104. Jepsen, K. et al. Combinatorial roles of the nuclear receptor corepressor in transcription and development. Cell 102, 753–763 (2000).

    CAS  PubMed  Google Scholar 

  105. Kinoshita, M., Hatada, S., Asashima, M. & Noda, M. HMG-X, a Xenopus gene encoding an HMG1 homolog, is abundantly expressed in the developing nervous system. FEBS Lett. 352, 191–196 (1994).

    CAS  PubMed  Google Scholar 

  106. Schier, A. F. & Shen, M. M. Nodal signalling in vertebrate development. Nature 403, 385–389 (2000).

    CAS  PubMed  Google Scholar 

  107. Muñoz-Sanjuán, I. & Brivanlou, A. H. Early posterior/ventral fate specification in the vertebrate embryo. Dev. Biol. 237, 1–17 (2001).

    PubMed  Google Scholar 

  108. Chang, C. et al. Twisted gastrulation can function as a BMP antagonist. Nature 410, 483–487 (2001).

    CAS  PubMed  Google Scholar 

  109. Zhu, H., Kavsak, P., Abdollah, S., Wrana, J. L. & Thomsen, G. H. A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature 400, 687–693 (1999).

    CAS  PubMed  Google Scholar 

  110. Wang, W., Mariani, F. V., Harland, R. M. & Luo, K. Ski represses bone morphogenetic protein signaling in Xenopus and mammalian cells. Proc. Natl Acad. Sci. USA 97, 14394–14399 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Nomura, T. et al. Ski is a component of the histone deacetylase complex required for transcriptional repression by Mad and thyroid hormone receptor. Genes Dev. 13, 412–423 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank P. Bhanot and E. Bell for helpful comments on the manuscript, and D. Benyaklef for the figure in box 1. This work was funded by a Helen Hay Whitney Foundation Fellowship to I.M.-S. and a National Institutes of Health grant to A.H.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali H. Brivanlou.

Related links

Related links

DATABASES

FlyBase

dpp

sog

GenBank

activin receptor

BMP2

BMP4

BMP7

bozozok

cerberus

chordin

FGF2

FGF3

follistatin

GDF

HMG-X

noggin

OAZ

Ski

Smad1

Smad2

Smad4

Smad6

Smad7

Smad10

Smurf1

Smurf2

TGF-β

TSG

Wnt

Xnr3

LocusLink

Bmp2

Bmp4

Bmp7

BMPRs

cerberus 1

chordin

cystatin C

FGF2

FGFR

follistatin

HNF3-β

LIF

nestin

noggin

REST

Smad1

Smad4

Smad5

Smad6

Smad7

sonic hedgehog

TGF-β

Wnt

FURTHER INFORMATION

Brivanlou's lab

Encyclopedia of Life Sciences

BMP antagonists and neural induction

bone morphogenetic proteins and their receptors

cleavage and gastrulation in avian embryos

cleavage and gastrulation in mouse embryos

cleavage and gastrulation in Xenopus laevis embryos

mammalian embryo: Wnt signalling

signal transduction pathways in development: Wnts and their receptors

Spemann, Hans

Xenopus embryo: neural induction

Glossary

BLASTULA

An embryo before the gastrulation stage, consisting of a hollow ball of epithelial cells that surround a fluid-filled cavity.

DOMINANT NEGATIVE

Describes a mutant molecule that can form a heteromeric complex with the normal molecule, knocking out the activity of the entire complex.

CERBERUS

A secreted inhibitor of BMP, nodal and Wnt that has been implicated in head formation and anterior neural patterning.

NODAL

A ligand of the transforming growth factor-β family, secreted by the organizer, that signals through the Smad signal-transduction pathway.

MESENDODERM

Embryonic tissue that gives rise both to mesoderm and endoderm.

GASTRULATION

The process by which the embryo becomes regionalized into three layers: ectoderm, mesoderm and endoderm.

EPIBLAST

The outer layer of a blastula, which gives rise to the ectoderm after gastrulation.

PRE-STREAK

The earliest stage of gastrulation, before the appearance of the primitive streak.

CORTICAL ROTATION

Rotation of the cortex of the fertilized amphibian egg by 30° relative to the cytoplasm. It results in the displacement towards the equator, and subsequent activation, of factors that trigger the development of the organizer.

CEMENT GLAND

An amphibian organ that is situated anterior to the neural plate. Its development is sensitive to low levels of BMP signals.

ANTERIOR VISCERAL ENDODERM

An extra-embryonic organizing region in the mammalian embryo that is required for the induction of head structures.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muñoz-Sanjuán, I., Brivanlou, A. Neural induction, the default model and embryonic stem cells. Nat Rev Neurosci 3, 271–280 (2002). https://doi.org/10.1038/nrn786

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn786

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing