Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Proliferation control in neural stem and progenitor cells

Key Points

  • Unlike in other organs, changes in cell numbers in the brain cannot be compensated by changes in cell size. This explains why the brain is particularly sensitive to defects in cell division and requires specific proliferation control mechanisms.

  • Drosophila melanogaster neural stem cells and mammalian cortical progenitors have emerged as the key model systems to study proliferation control in the brain.

  • In D. melanogaster, the segregating determinants NUMB, Prospero (PROS) and Brain tumour (BRAT) establish differential proliferation control in the two daughter cells of neural progenitors. In mammals, the asymmetric inheritance of apical and basal processes, asymmetry between the two centrosomes and interactions between the daughter cells through Notch signalling act redundantly to establish unequal cell fates.

  • D. melanogaster neural stem cells pass through distinct temporal stages, starting with their activation by insulin receptor signalling through the expression of a temporal transcription factor cascade to a switch in metabolic activity that ultimately triggers their shrinkage and differentiation.

  • In mammals, homologues of the D. melanogaster temporal cascade seem to act in conjunction with distinct events, such as the switch from neurogenesis to gliogenesis, which is dependent on the JAK–STAT (Janus kinase–signal transducer and activation of transcription) and Notch pathways.

  • Metabolic regulation plays a crucial role in proliferation control in both D. melanogaster neural stem cells and in adult mammalian neurogenesis.

  • Defects in proliferation control can lead to diseases such as microcephaly or megalencephaly.

Abstract

Neural circuit function can be drastically affected by variations in the number of cells that are produced during development or by a reduction in adult cell number owing to disease. For this reason, unique cell cycle and cell growth control mechanisms operate in the developing and adult brain. In Drosophila melanogaster and in mammalian neural stem and progenitor cells, these mechanisms are intricately coordinated with the developmental age and the nutritional, metabolic and hormonal state of the animal. Defects in neural stem cell proliferation that result in the generation of incorrect cell numbers or defects in neural stem cell differentiation can cause microcephaly or megalencephaly.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Drosophila melanogaster and mouse neural stem cell lineages.
Figure 2: Asymmetric cell division in the mammalian neocortex.
Figure 3: Metabolic regulation of Drosophila melanogaster neurogenesis.
Figure 4: Metabolic regulation of neural stem cell fate and proliferation.

References

  1. Neufeld, T. P., de la Cruz, A. F., Johnston, L. A. & Edgar, B. A. Coordination of growth and cell division in the Drosophila wing. Cell 93, 1183–1193 (1998). This paper shows that cell division and cell size/growth are coordinated and that changes in cell division rates are offset by changes in cell size, ensuring constant overall organ size.

    CAS  PubMed  Google Scholar 

  2. Lanet, E., Gould, A. P. & Maurange, C. Protection of neuronal diversity at the expense of neuronal numbers during nutrient restriction in the Drosophila visual system. Cell Rep. 3, 587–594 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Janssens, D. H. et al. Earmuff restricts progenitor cell potential by attenuating the competence to respond to self-renewal factors. Development 141, 1036–1046 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Gao, P. et al. Deterministic progenitor behavior and unitary production of neurons in the neocortex. Cell 159, 775–788 (2014). This paper provides the most detailed analysis of neuronal lineages in the developing mouse cortex.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang, Y. C. et al. Drosophila intermediate neural progenitors produce lineage-dependent related series of diverse neurons. Development 141, 253–258 (2014).

    PubMed  PubMed Central  Google Scholar 

  6. Ming, G. L. & Song, H. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70, 687–702 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Homem, C. C. & Knoblich, J. A. Drosophila neuroblasts: a model for stem cell biology. Development 139, 4297–4310 (2012).

    CAS  PubMed  Google Scholar 

  8. Chang, K. C., Wang, C. & Wang, H. Balancing self-renewal and differentiation by asymmetric division: Insights from brain tumor suppressors in Drosophila neural stem cells. Bioessays 34, 301–310 (2012).

    PubMed  Google Scholar 

  9. Xie, Y. et al. The Drosophila Sp8 transcription factor Buttonhead prevents premature differentiation of intermediate neural progenitors. eLife 3, e03596 (2014).

    PubMed Central  Google Scholar 

  10. Zhu, S., Barshow, S., Wildonger, J., Jan, L. Y. & Jan, Y. N. Ets transcription factor Pointed promotes the generation of intermediate neural progenitors in Drosophila larval brains. Proc. Natl Acad. Sci. USA 108, 20615–20620 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Komori, H., Xiao, Q., Janssens, D. H., Dou, Y. & Lee, C. Y. Trithorax maintains the functional heterogeneity of neural stem cells through the transcription factor Buttonhead. eLife 3, e03502 (2014).

    PubMed Central  Google Scholar 

  12. Xiao, Q., Komori, H. & Lee, C. Y. klumpfuss distinguishes stem cells from progenitor cells during asymmetric neuroblast division. Development 139, 2670–2680 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bowman, S. K. et al. The tumor suppressors Brat and Numb regulate transit-amplifying neuroblast lineages in Drosophila. Dev. Cell 14, 535–546 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang, H. et al. Aurora-A acts as a tumor suppressor and regulates self-renewal of Drosophila neuroblasts. Genes Dev. 20, 3453–3463 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Almeida, M. S. & Bray, S. J. Regulation of post-embryonic neuroblasts by Drosophila Grainyhead. Mech. Dev. 122, 1282–1293 (2005).

    CAS  PubMed  Google Scholar 

  16. Berger, C. et al. FACS purification and transcriptome analysis of Drosophila neural stem cells reveals a role for Klumpfuss in self-renewal. Cell Rep. 2, 407–418 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Zacharioudaki, E. & Magadi, S. S. & Delidakis, C. bHLH-O proteins are crucial for Drosophila neuroblast self-renewal and mediate Notch-induced overproliferation. Development 139, 1258–1269 (2012).

    CAS  PubMed  Google Scholar 

  18. San-Juán, B. P. & Baonza, A. The bHLH factor deadpan is a direct target of Notch signaling and regulates neuroblast self-renewal in Drosophila. Dev. Biol. 352, 70–82 (2011).

    PubMed  Google Scholar 

  19. Song, Y. & Lu, B. Regulation of cell growth by Notch signaling and its differential requirement in normal versus tumor-forming stem cells in Drosophila. Genes Dev. 25, 2644–2658 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Schweisguth, F. Notch signaling activity. Curr. Biol. 14, R129–R138 (2004).

    CAS  PubMed  Google Scholar 

  21. Couturier, L., Vodovar, N. & Schweisguth, F. Endocytosis by Numb breaks Notch symmetry at cytokinesis. Nat. Cell Biol. 14, 131–139 (2012).

    CAS  PubMed  Google Scholar 

  22. Harris, R. E., Pargett, M., Sutcliffe, C., Umulis, D. & Ashe, H. L. Brat promotes stem cell differentiation via control of a bistable switch that restricts BMP signaling. Dev. Cell 20, 72–83 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Marchetti, G., Reichardt, I., Knoblich, J. A. & Besse, F. The TRIM-NHL protein Brat promotes axon maintenance by repressing src64B expression. J. Neurosci. 34, 13855–13864 (2014).

    PubMed  PubMed Central  Google Scholar 

  24. Weng, M., Golden, K. L. & Lee, C. Y. dFezf/Earmuff maintains the restricted developmental potential of intermediate neural progenitors in Drosophila. Dev. Cell 18, 126–135 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Koe, C. T. et al. The Brm–HDAC3–Erm repressor complex suppresses dedifferentiation in Drosophila type II neuroblast lineages. eLife 3, e01906 (2014).

    PubMed  PubMed Central  Google Scholar 

  26. Eroglu, E. et al. SWI/SNF complex prevents lineage reversion and induces temporal patterning in neural stem cells. Cell 156, 1259–1273 (2014).

    CAS  PubMed  Google Scholar 

  27. Mori, T., Buffo, A. & Gotz, M. The novel roles of glial cells revisited: the contribution of radial glia and astrocytes to neurogenesis. Curr. Top. Dev. Biol. 69, 67–99 (2005).

    CAS  PubMed  Google Scholar 

  28. Gotz, M. & Huttner, W. B. The cell biology of neurogenesis. Nat. Rev. Mol. Cell. Biol. 6, 777–788 (2005).

    PubMed  Google Scholar 

  29. Noctor, S. C., Martínez-Cerdeño, V., Ivic, L. & Kriegstein, A. R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat. Neurosci. 7, 136–144 (2004).

    CAS  PubMed  Google Scholar 

  30. Pontious, A., Kowalczyk, T., Englund, C. & Hevner, R. F. Role of intermediate progenitor cells in cerebral cortex development. Dev. Neurosci. 30, 24–32 (2008).

    CAS  PubMed  Google Scholar 

  31. Gal, J. S. et al. Molecular and morphological heterogeneity of neural precursors in the mouse neocortical proliferative zones. J. Neurosci. 26, 1045–1056 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Stancik, E. K., Navarro-Quiroga, I., Sellke, R. & Haydar, T. F. Heterogeneity in ventricular zone neural precursors contributes to neuronal fate diversity in the postnatal neocortex. J. Neurosci. 30, 7028–7036 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Hansen, D. V., Lui, J. H., Parker, P. R. & Kriegstein, A. R. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464, 554–561 (2010). This paper describes a novel type of progenitor in the outer SVZ of the developing human cortex — the oRG cell.

    CAS  PubMed  Google Scholar 

  34. Reillo, I., de Juan Romero, C., García-Cabezas, M. A. & Borrell, V. A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex. Cereb. Cortex 21, 1674–1694 (2011). This paper provides a detailed characterization of oRG cells in the developing ferret brain.

    PubMed  Google Scholar 

  35. Kelava, I. et al. Abundant occurrence of basal radial glia in the subventricular zone of embryonic neocortex of a lissencephalic primate, the common marmoset Callithrix jacchus. Cereb. Cortex 22, 469–481 (2012).

    PubMed  Google Scholar 

  36. Betizeau, M. et al. Precursor diversity and complexity of lineage relationships in the outer subventricular zone of the primate. Neuron 80, 442–457 (2013).

    CAS  PubMed  Google Scholar 

  37. Chenn, A. & McConnell, S. K. Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis. Cell 82, 631–641 (1995).

    CAS  PubMed  Google Scholar 

  38. Zhong, W., Feder, J. N., Jiang, M. M., Jan, L. Y. & Jan, Y. N. Asymmetric localization of a mammalian numb homolog during mouse cortical neurogenesis. Neuron 17, 43–53 (1996).

    CAS  PubMed  Google Scholar 

  39. Kosodo, Y. et al. Asymmetric distribution of the apical plasma membrane during neurogenic divisions of mammalian neuroepithelial cells. EMBO J. 23, 2314–2324 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Izumi, Y., Ohta, N., Hisata, K., Raabe, T. & Matsuzaki, F. Drosophila Pins-binding protein Mud regulates spindle-polarity coupling and centrosome organization. Nat. Cell Biol. 8, 586–593 (2006).

    CAS  PubMed  Google Scholar 

  41. Postiglione, M. P. et al. Mouse inscuteable induces apical-basal spindle orientation to facilitate intermediate progenitor generation in the developing neocortex. Neuron 72, 269–284 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Morin, X., Jaouen, F. & Durbec, P. Control of planar divisions by the G-protein regulator LGN maintains progenitors in the chick neuroepithelium. Nat. Neurosci. 10, 1440–1448 (2007).

    CAS  PubMed  Google Scholar 

  43. Konno, D. et al. Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis. Nat. Cell Biol. 10, 93–101 (2008).

    CAS  PubMed  Google Scholar 

  44. Yu, F. et al. A mouse homologue of Drosophila pins can asymmetrically localize and substitute for pins function in Drosophila neuroblasts. J. Cell Sci. 116, 887–896 (2003).

    CAS  PubMed  Google Scholar 

  45. Mora-Bermudez, F., Matsuzaki, F. & Huttner, W. B. Specific polar subpopulations of astral microtubules control spindle orientation and symmetric neural stem cell division. eLife 3, e02875 (2014).

    PubMed Central  Google Scholar 

  46. Shitamukai, A., Konno, D. & Matsuzaki, F. Oblique radial glial divisions in the developing mouse neocortex induce self-renewing progenitors outside the germinal zone that resemble primate outer subventricular zone progenitors. J. Neurosci. 31, 3683–3695 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Bultje, R. S. et al. Mammalian Par3 regulates progenitor cell asymmetric division via notch signaling in the developing neocortex. Neuron 63, 189–202 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Conduit, P. T. & Raff, J. W. Cnn dynamics drive centrosome size asymmetry to ensure daughter centriole retention in Drosophila neuroblasts. Curr. Biol. 20, 2187–2192 (2010).

    CAS  PubMed  Google Scholar 

  49. Januschke, J., Llamazares, S., Reina, J. & Gonzalez, C. Drosophila neuroblasts retain the daughter centrosome. Nat. Commun. 2, 243 (2011).

    PubMed  Google Scholar 

  50. Wang, X. et al. Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature 461, 947–955 (2009). This paper shows that centrosomes are asymmetrically segregated in neural progenitors of the developing mouse brain.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Goetz, S. C. & Anderson, K. V. The primary cilium: a signalling centre during vertebrate development. Nat. Rev. Genet. 11, 331–344 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Paridaen, J. T., Wilsch-Brauninger, M. & Huttner, W. B. Asymmetric inheritance of centrosome-associated primary cilium membrane directs ciliogenesis after cell division. Cell 155, 333–344 (2013). This paper demonstrates asymmetric inheritance of the primary cilium membrane during neurogenic RG divisions.

    CAS  PubMed  Google Scholar 

  53. Insolera, R., Bazzi, H., Shao, W., Anderson, K. V. & Shi, S. H. Cortical neurogenesis in the absence of centrioles. Nat. Neurosci. 17, 1528–1535 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Pierfelice, T., Alberi, L. & Gaiano, N. Notch in the vertebrate nervous system: an old dog with new tricks. Neuron 69, 840–855 (2011).

    CAS  PubMed  Google Scholar 

  55. Kawaguchi, D., Yoshimatsu, T., Hozumi, K. & Gotoh, Y. Selection of differentiating cells by different levels of delta-like 1 among neural precursor cells in the developing mouse telencephalon. Development 135, 3849–3858 (2008).

    CAS  PubMed  Google Scholar 

  56. Yoon, K. J. et al. Mind bomb 1-expressing intermediate progenitors generate notch signaling to maintain radial glial cells. Neuron 58, 519–531 (2008).

    CAS  PubMed  Google Scholar 

  57. Dong, Z., Yang, N., Yeo, S. Y., Chitnis, A. & Guo, S. Intralineage directional Notch signaling regulates self-renewal and differentiation of asymmetrically dividing radial glia. Neuron 74, 65–78 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Nelson, B. R., Hodge, R. D., Bedogni, F. & Hevner, R. F. Dynamic interactions between intermediate neurogenic progenitors and radial glia in embryonic mouse neocortex: potential role in Dll1-Notch signaling. J. Neurosci. 33, 9122–9139 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ohtsuka, T., Sakamoto, M., Guillemot, F. & Kageyama, R. Roles of the basic helix-loop-helix genes Hes1 and Hes5 in expansion of neural stem cells of the developing brain. J. Biol. Chem. 276, 30467–30474 (2001).

    CAS  PubMed  Google Scholar 

  60. Mizutani, K., Yoon, K., Dang, L., Tokunaga, A. & Gaiano, N. Differential Notch signalling distinguishes neural stem cells from intermediate progenitors. Nature 449, 351–355 (2007).

    CAS  PubMed  Google Scholar 

  61. Shimojo, H., Ohtsuka, T. & Kageyama, R. Oscillations in notch signaling regulate maintenance of neural progenitors. Neuron 58, 52–64 (2008). This paper shows how oscillations in Notch signalling regulate the expression of proneural genes and regulate cell fate decisions.

    CAS  PubMed  Google Scholar 

  62. Baek, J. H., Hatakeyama, J., Sakamoto, S., Ohtsuka, T. & Kageyama, R. Persistent and high levels of Hes1 expression regulate boundary formation in the developing central nervous system. Development 133, 2467–2476 (2006).

    CAS  PubMed  Google Scholar 

  63. Calegari, F., Haubensak, W., Haffner, C. & Huttner, W. B. Selective lengthening of the cell cycle in the neurogenic subpopulation of neural progenitor cells during mouse brain development. J. Neurosci. 25, 6533–6538 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Arai, Y. et al. Neural stem and progenitor cells shorten S-phase on commitment to neuron production. Nat. Commun. 2, 154 (2011).

    PubMed  Google Scholar 

  65. Calegari, F. & Huttner, W. B. An inhibition of cyclin-dependent kinases that lengthens, but does not arrest, neuroepithelial cell cycle induces premature neurogenesis. J. Cell Sci. 116, 4947–4955 (2003).

    CAS  PubMed  Google Scholar 

  66. Pilaz, L. J. et al. Forced G1-phase reduction alters mode of division, neuron number, and laminar phenotype in the cerebral cortex. Proc. Natl Acad. Sci. USA 106, 21924–21929 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Lange, C., Huttner, W. B. & Calegari, F. Cdk4/cyclinD1 overexpression in neural stem cells shortens G1, delays neurogenesis, and promotes the generation and expansion of basal progenitors. Cell Stem Cell 5, 320–331 (2009).

    CAS  PubMed  Google Scholar 

  68. Takahashi, T., Nowakowski, R. S. & Caviness, V. S. J. The cell cycle of the pseudostratified ventricular epithelium of the embryonic murine cerebral wall. J. Neurosci. 15, 6046–6057 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kohwi, M. & Doe, C. Q. Temporal fate specification and neural progenitor competence during development. Nat. Rev. Neurosci. 14, 823–838 (2013).

    PubMed  PubMed Central  Google Scholar 

  70. Britton, J. S. & Edgar, B. A. Environmental control of the cell cycle in Drosophila: nutrition activates mitotic and endoreplicative cells by distinct mechanisms. Development 125, 2149–2158 (1998).

    CAS  PubMed  Google Scholar 

  71. Speder, P. & Brand, A. H. Gap junction proteins in the blood–brain barrier control nutrient-dependent reactivation of Drosophila neural stem cells. Dev. Cell. 30, 309–321 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Sousa-Nunes, R., Yee, L. L. & Gould, A. P. Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila. Nature 471, 508–512 (2011). This paper shows that D. melanogaster NSPCs in the embryo-to-larva transition exit from quiescence in response to larval feeding. Larval feeding is sensed by the fat body, which then stimulates the production of insulin-like peptides by glial cells that in turn activate the TOR pathway in neuroblasts, inducing neuroblast growth and proliferation.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Chell, J. M. & Brand, A. H. Nutrition-responsive glia control exit of neural stem cells from quiescence. Cell 143, 1161–1173 (2010). Along with reference 72, this paper shows that in response to nutrition a population of glial cells produces insulin-like peptides that are received by neuroblasts where they activate the TOR pathway, drive neuroblast growth and exit from quiescence.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Egger, B., Gold, K. S. & Brand, A. H. Regulating the balance between symmetric and asymmetric stem cell division in the developing brain. Fly 5, 237–241 (2011).

    CAS  PubMed  Google Scholar 

  75. Liu, J., Speder, P. & Brand, A. H. Control of brain development and homeostasis by local and systemic insulin signalling. Diabetes Obes. Metab. 16, S16–S20 (2014).

    Google Scholar 

  76. Lehtinen, M. K. et al. The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron 69, 893–905 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Popken, G. J. et al. In vivo effects of insulin-like growth factor-I (IGF-I) on prenatal and early postnatal development of the central nervous system. Eur. J. Neurosci. 19, 2056–2068 (2004).

    PubMed  Google Scholar 

  78. Brody, T. & Odenwald, W. F. Programmed transformations in neuroblast gene expression during Drosophila CNS lineage development. Dev. Biol. 226, 34–44 (2000).

    CAS  PubMed  Google Scholar 

  79. Isshiki, T., Pearson, B., Holbrook, S. & Doe, C. Q. Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell 106, 511–521 (2001).

    CAS  PubMed  Google Scholar 

  80. Kambadur, R. et al. Regulation of POU genes by castor and hunchback establishes layered compartments in the Drosophila CNS. Genes Dev. 12, 246–260 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Pearson, B. J. & Doe, C. Q. Regulation of neuroblast competence in Drosophila. Nature 425, 624–628 (2003).

    CAS  PubMed  Google Scholar 

  82. Grosskortenhaus, R., Robinson, K. J. & Doe, C. Q. Pdm and Castor specify late-born motor neuron identity in the NEUROBLAST7-1 lineage. Genes Dev. 20, 2618–2627 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Maurange, C., Cheng, L. & Gould, A. P. Temporal transcription factors and their targets schedule the end of neural proliferation in Drosophila. Cell 133, 891–902 (2008).

    CAS  PubMed  Google Scholar 

  84. Chai, P. C., Liu, Z., Chia, W. & Cai, Y. Hedgehog signaling acts with the temporal cascade to promote neuroblast cell cycle exit. PLoS Biol. 11, e1001494 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Homem, C. C. et al. Ecdysone and mediator change energy metabolism to terminate proliferation in Drosophila neural stem cells. Cell 158, 874–888 (2014). This paper shows that cell growth in D. melanogaster NSPCs is coupled with cell lifespan, with larger cells being longer-lived and proliferative. Cell growth and lifespan are dependent on the metabolic profile of these NSPCs, with growing, undifferentiated NSPCs relying on glycolysis and non-growing, differentiating NSPCs being more dependent on oxidative phosphorylation.

    CAS  PubMed  Google Scholar 

  86. Siegrist, S. E., Haque, N. S., Chen, C. H., Hay, B. A. & Hariharan, I. K. Inactivation of both foxo and reaper promotes long-term adult neurogenesis in Drosophila. Curr. Biol. 20, 643–648 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. White, K. et al. Genetic control of programmed cell death in Drosophila. Science 264, 667–683 (1994).

    Google Scholar 

  88. Bello, B. C., Hirth, F. & Gould, A. P. A pulse of the Drosophila Hox protein Abdominal-A schedules the end of neural proliferation via neuroblast apoptosis. Neuron 37, 209–219 (2003).

    CAS  PubMed  Google Scholar 

  89. Arya, R., Sarkissian, T., Tan, Y. & White, K. Neural stem cell progeny regulate stem cell death in a Notch and Hox dependent manner. Cell Death Differ. 22, 1378–1387 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Cenci, C. & Gould, A. P. Drosophila Grainyhead specifies late programmes of neural proliferation by regulating the mitotic activity and Hox-dependent apoptosis of neuroblasts. Development 132, 3835–3845 (2005).

    CAS  PubMed  Google Scholar 

  91. Bayraktar, O. A. & Doe, C. Q. Combinatorial temporal patterning in progenitors expands neural diversity. Nature 498, 449–455 (2013). This paper shows that D. melanogaster intermediate progenitor cells undergo a specific sequence of transcriptional profiles, which is required for the generation of different neuronal/glial progeny over time.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Fog, C. K., Galli, G. G. & Lund, A. H. PRDM proteins: important players in differentiation and disease. Bioessays 34, 50–60 (2012).

    CAS  PubMed  Google Scholar 

  93. Pinheiro, I. et al. Prdm3 and Prdm16 are H3K9me1 methyltransferases required for mammalian heterochromatin integrity. Cell 150, 948–960 (2012).

    CAS  PubMed  Google Scholar 

  94. Suzuki, T., Kaido, M., Takayama, R. & Sato, M. A temporal mechanism that produces neuronal diversity in the Drosophila visual center. Dev. Biol. 380, 12–24 (2013).

    CAS  PubMed  Google Scholar 

  95. Li, X. et al. Temporal patterning of Drosophila medulla neuroblasts controls neural fates. Nature 498, 456–462 (2013). This paper shows that D. melanogaster OL medulla neuroblasts sequentially express a series of transcription factors that, together with Notch, generate a variety of neuronal progeny.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Frantz, G. D. & McConnell, S. K. Restriction of late cerebral cortical progenitors to an upper-layer fate. Neuron 17, 55–61 (1996).

    CAS  PubMed  Google Scholar 

  97. Desai, A. R. & McConnell, S. K. Progressive restriction in fate potential by neural progenitors during cerebral cortical development. Development 127, 2863–2872 (2000).

    CAS  PubMed  Google Scholar 

  98. Gaspard, N. et al. An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature 455, 351–357 (2008).

    CAS  PubMed  Google Scholar 

  99. Shen, Q. et al. The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nat. Neurosci. 9, 743–751 (2006).

    CAS  PubMed  Google Scholar 

  100. Eiraku, M. et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3, 519–532 (2008).

    CAS  PubMed  Google Scholar 

  101. Franco, S. J. et al. Fate-restricted neural progenitors in the mammalian cerebral cortex. Science 337, 746–749 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Guo, C. et al. Fezf2 expression identifies a multipotent progenitor for neocortical projection neurons, astrocytes, and oligodendrocytes. Neuron 80, 1167–1174 (2013).

    CAS  PubMed  Google Scholar 

  103. Götz, M., Stoykova, A. & Gruss, P. Pax6 controls radial glia differentiation in the cerebral cortex. Neuron 21, 1031–1044 (1998).

    PubMed  Google Scholar 

  104. Quaggin, S. E., Heuvel, G. B., Golden, K., Bodmer, R. & Igarashi, P. Primary structure, neural-specific expression, and chromosomal localization of Cux-2, a second murine homeobox gene related to Drosophila cut. J. Biol. Chem. 271, 22624–22634 (1996).

    CAS  PubMed  Google Scholar 

  105. Naka, H., Nakamura, S., Shimazaki, T. & Okano, H. Requirement for COUP-TFI and II in the temporal specification of neural stem cells in CNS development. Nat. Neurosci. 11, 1014–1023 (2008).

    CAS  PubMed  Google Scholar 

  106. Alsio, J. M., Tarchini, B., Cayouette, M. & Livesey, F. J. Ikaros promotes early-born neuronal fates in the cerebral cortex. Proc. Natl Acad. Sci. USA 110, E716–E725 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Mattar, P., Ericson, J., Blackshaw, S. & Cayouette, M. A conserved regulatory logic controls temporal identity in mouse neural progenitors. Neuron 85, 497–504 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Culican, S. M., Baumrind, N. L., Yamamoto, M. & Pearlman, A. L. Cortical radial glia: identification in tissue culture and evidence for their transformation to astrocytes. J. Neurosci. 10, 684–692 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Rowitch, D. H. & Kriegstein, A. R. Developmental genetics of vertebrate glial-cell specification. Nature 468, 214–222 (2010).

    CAS  PubMed  Google Scholar 

  110. Fan, G. et al. DNA methylation controls the timing of astrogliogenesis through regulation of JAK-STAT signaling. Development 132, 3345–3356 (2005).

    CAS  PubMed  Google Scholar 

  111. Chambers, C. B. et al. Spatiotemporal selectivity of response to Notch1 signals in mammalian forebrain precursors. Development 128, 689–702 (2001).

    CAS  PubMed  Google Scholar 

  112. Namihira, M. et al. Committed neuronal precursors confer astrocytic potential on residual neural precursor cells. Dev. Cell 16, 245–255 (2009).

    CAS  PubMed  Google Scholar 

  113. Hirabayashi, Y. et al. Polycomb limits the neurogenic competence of neural precursor cells to promote astrogenic fate transition. Neuron 63, 600–613 (2009).

    CAS  PubMed  Google Scholar 

  114. Barnabe-Heider, F. et al. Evidence that embryonic neurons regulate the onset of cortical gliogenesis via cardiotrophin-1. Neuron 48, 253–265 (2005).

    CAS  PubMed  Google Scholar 

  115. Homem, C. C., Reichardt, I., Berger, C., Lendl, T. & Knoblich, J. A. Long-term live cell imaging and automated 4D analysis of neuroblast lineages. PLoS ONE 8, e79588 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Truman, J. W. & Bate, M. Spatial and temporal patterns of neurogenesis in the central nervous system of Drosophila melanogaster. Dev. Biol. 125, 145–157 (1988).

    CAS  PubMed  Google Scholar 

  117. Layalle, S., Arquier, N. & Leopold, P. The TOR pathway couples nutrition and developmental timing in Drosophila. Dev. Cell 15, 568–577 (2008).

    CAS  PubMed  Google Scholar 

  118. Colombani, J., Andersen, D. S. & Leopold, P. Secreted peptide Dilp8 coordinates Drosophila tissue growth with developmental timing. Science 336, 582–585 (2012).

    CAS  PubMed  Google Scholar 

  119. Garelli, A., Gontijo, A. M., Miguela, V., Caparros, E. & Dominguez, M. Imaginal discs secrete insulin-like peptide 8 to mediate plasticity of growth and maturation. Science 336, 579–582 (2012).

    CAS  PubMed  Google Scholar 

  120. Frerman, F. E. & Goodman, S. I. Deficiency of electron transfer flavoprotein or electron transfer flavoprotein:ubiquinone oxidoreductase in glutaric acidemia type II fibroblasts. Proc. Natl Acad. Sci. USA 82, 4517–4520 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Knobloch, M. et al. Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature 493, 226–230 (2013). This paper shows that mouse adult neurogenesis requires de novo lipogenesis, thus demonstrating that there is a functional coupling between the regulation of lipid metabolism and adult NSPC proliferation.

    CAS  PubMed  Google Scholar 

  122. McIntyre, R. E. et al. Disruption of mouse Cenpj, a regulator of centriole biogenesis, phenocopies Seckel syndrome. PLoS Genet. 8, e1003022 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Martin, C. A. et al. Mutations in PLK4, encoding a master regulator of centriole biogenesis, cause microcephaly, growth failure and retinopathy. Nat. Genet. 46, 1283–1292 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Buchman, J. J. et al. Cdk5rap2 interacts with pericentrin to maintain the neural progenitor pool in the developing neocortex. Neuron 66, 386–402 (2010).

    CAS  PubMed  Google Scholar 

  125. Barrera, J. A. et al. CDK5RAP2 regulates centriole engagement and cohesion in mice. Dev. Cell 18, 913–926 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Fish, J. L., Kosodo, Y., Enard, W., Paabo, S. & Huttner, W. B. Aspm specifically maintains symmetric proliferative divisions of neuroepithelial cells. Proc. Natl Acad. Sci. USA 103, 10438–10443 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Rujano, M. A., Sanchez-Pulido, L., Pennetier, C., le Dez, G. & Basto, R. The microcephaly protein Asp regulates neuroepithelium morphogenesis by controlling the spatial distribution of myosin II. Nat. Cell Biol. 15, 1294–1306 (2013).

    CAS  PubMed  Google Scholar 

  128. Buchman, J. J., Durak, O. & Tsai, L. H. ASPM regulates Wnt signaling pathway activity in the developing brain. Genes Dev. 25, 1909–1914 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Chen, J. F. et al. Microcephaly disease gene Wdr62 regulates mitotic progression of embryonic neural stem cells and brain size. Nat. Commun. 5, 3885 (2014).

    CAS  PubMed  Google Scholar 

  130. Gruber, R. et al. MCPH1 regulates the neuroprogenitor division mode by coupling the centrosomal cycle with mitotic entry through the Chk1–Cdc25 pathway. Nat. Cell Biol. 13, 1325–1334 (2011).

    CAS  PubMed  Google Scholar 

  131. Varmark, H. et al. Asterless is a centriolar protein required for centrosome function and embryo development in Drosophila. Curr. Biol. 17, 1735–1745 (2007).

    CAS  PubMed  Google Scholar 

  132. Dzhindzhev, N. S. et al. Asterless is a scaffold for the onset of centriole assembly. Nature 467, 714–718 (2010).

    CAS  PubMed  Google Scholar 

  133. Giansanti, M. G., Gatti, M. & Bonaccorsi, S. The role of centrosomes and astral microtubules during asymmetric division of Drosophila neuroblasts. Development 128, 1137–1145 (2001).

    CAS  PubMed  Google Scholar 

  134. Gilmore, E. C. & Walsh, C. A. Genetic causes of microcephaly and lessons for neuronal development. Wiley Interdiscip. Rev. Dev. Biol. 2, 461–478 (2013).

    CAS  PubMed  Google Scholar 

  135. Malatesta, P., Hartfuss, E. & Gotz, M. Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127, 5253–5263 (2000).

    CAS  PubMed  Google Scholar 

  136. Feng, Y. & Walsh, C. A. Mitotic spindle regulation by Nde1 controls cerebral cortical size. Neuron 44, 279–293 (2004).

    CAS  PubMed  Google Scholar 

  137. Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013). This paper describes cerebral organoids, an ESC-derived three-dimensional model of human brain development.

    CAS  PubMed  Google Scholar 

  138. Groszer, M. et al. Negative regulation of neural stem/progenitor cell proliferation by the PTEN tumor suppressor gene in vivo. Science 294, 2186–2189 (2001).

    CAS  PubMed  Google Scholar 

  139. D'Gama, A. M. et al. Mammalian target of rapamycin pathway mutations cause hemimegalencephaly and focal cortical dysplasia. Ann. Neurol. 77, 720–725 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Poduri, A. et al. Somatic activation of AKT3 causes hemispheric developmental brain malformations. Neuron 74, 41–48 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Mirzaa, G. M. & Poduri, A. Megalencephaly and hemimegalencephaly: breakthroughs in molecular etiology. Am. J. Med. Genet. C. Semin. Med. Genet. 166, 156–172 (2014).

    CAS  Google Scholar 

  142. Marsh, D. J. et al. Germline mutations in PTEN are present in Bannayan–Zonana syndrome. Nat. Genet. 16, 333–334 (1997).

    CAS  PubMed  Google Scholar 

  143. Mirzaa, G. M. et al. De novo CCND2 mutations leading to stabilization of cyclin D2 cause megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome. Nat. Genet. 46, 510–515 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Spaeth, J. M., Kim, N. H. & Boyer, T. G. Mediator and human disease. Semin. Cell. Dev. Biol. 22, 776–787 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Tsurusaki, Y. et al. Coffin–Siris syndrome is a SWI/SNF complex disorder. Clin. Genet. 85, 548–554 (2014).

    CAS  PubMed  Google Scholar 

  146. Fietz, S. A. et al. OSVZ progenitors of human and ferret neocortex are epithelial-like and expand by integrin signaling. Nat. Neurosci. 13, 690–699 (2010). This paper characterizes oRG cells in the human and ferret cortex, and demonstrates the role of integrin signalling in oRG cell expansion.

    CAS  PubMed  Google Scholar 

  147. Wilkinson, R. & Wiedenheft, B. A. CRISPR method for genome engineering. F1000Prime Rep. 6, 3 (2014).

    Google Scholar 

  148. Kadoshima, T. et al. Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex. Proc. Natl Acad. Sci. USA 110, 20284–20289 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Smart, I. H., Dehay, C., Giroud, P., Berland, M. & Kennedy, H. Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb. Cortex 12, 37–53 (2002).

    PubMed  Google Scholar 

  150. Wang, X., Tsai, J. W., LaMonica, B. & Kriegstein, A. R. A new subtype of progenitor cell in the mouse embryonic neocortex. Nat. Neurosci. 14, 555–561 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Lui, J. H., Hansen, D. V. & Kriegstein, A. R. Development and evolution of the human neocortex. Cell 146, 18–36 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Lui, J. H. et al. Radial glia require PDGFD–PDGFRβ signalling in human but not mouse neocortex. Nature 515, 264–268 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Hietakangas, V. & Cohen, S. M. Regulation of tissue growth through nutrient sensing. Annu. Rev. Genet. 43, 389–410 (2009).

    CAS  PubMed  Google Scholar 

  154. Gruenwald, P. Chronic fetal distress and placental insufficiency. Biol. Neonat. 5, 215–265 (1963).

    CAS  PubMed  Google Scholar 

  155. Cheng, L. Y. et al. Anaplastic lymphoma kinase spares organ growth during nutrient restriction in Drosophila. Cell 146, 435–447 (2011).

    CAS  PubMed  Google Scholar 

  156. Loren, C. E. et al. Identification and characterization of DAlk: a novel Drosophila melanogaster RTK which drives ERK activation in vivo. Genes Cells 6, 531–544 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Jackson, A. P. et al. Identification of microcephalin, a protein implicated in determining the size of the human brain. Am. J. Hum. Genet. 71, 136–142 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Lin, S. Y. & Elledge, S. J. Multiple tumor suppressor pathways negatively regulate telomerase. Cell 113, 881–889 (2003).

    CAS  PubMed  Google Scholar 

  159. Brunk, K. et al. Microcephalin coordinates mitosis in the syncytial Drosophila embryo. J. Cell Sci. 120, 3578–3588 (2007).

    CAS  PubMed  Google Scholar 

  160. Rickmyre, J. L. et al. The Drosophila homolog of MCPH1, a human microcephaly gene, is required for genomic stability in the early embryo. J. Cell Sci. 120, 3565–3577 (2007).

    CAS  PubMed  Google Scholar 

  161. Bilguvar, K. et al. Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Nature 467, 207–210 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Nicholas, A. K. et al. WDR62 is associated with the spindle pole and is mutated in human microcephaly. Nat. Genet. 42, 1010–1014 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Yu, T. W. et al. Mutations in WDR62, encoding a centrosome-associated protein, cause microcephaly with simplified gyri and abnormal cortical architecture. Nat. Genet. 42, 1015–1020 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Bond, J. et al. A centrosomal mechanism involving CDK5RAP2 and CENPJ controls brain size. Nat. Genet. 37, 353–355 (2005).

    CAS  PubMed  Google Scholar 

  165. Guernsey, D. L. et al. Mutations in centrosomal protein CEP152 in primary microcephaly families linked to MCPH4. Am. J. Hum. Genet. 87, 40–51 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Bond, J. et al. ASPM is a major determinant of cerebral cortical size. Nat. Genet. 32, 316–320 (2002).

    CAS  PubMed  Google Scholar 

  167. Kumar, A., Girimaji, S. C., Duvvari, M. R. & Blanton, S. H. Mutations in STIL, encoding a pericentriolar and centrosomal protein, cause primary microcephaly. Am. J. Hum. Genet. 84, 286–290 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Stevens, N. R., Dobbelaere, J., Brunk, K., Franz, A. & Raff, J. W. Drosophila Ana2 is a conserved centriole duplication factor. J. Cell Biol. 188, 313–323 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Hussain, M. S. et al. A truncating mutation of CEP135 causes primary microcephaly and disturbed centrosomal function. Am. J. Hum. Genet. 90, 871–878 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Lin, Y. C. et al. Human microcephaly protein CEP135 binds to hSAS-6 and CPAP, and is required for centriole assembly. EMBO J. 32, 1141–1154 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Sir, J. H. et al. A primary microcephaly protein complex forms a ring around parental centrioles. Nat. Genet. 43, 1147–1153 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank all the members of J.A.K.'s laboratory for their helpful discussion. Work in J.A.K.'s laboratory is supported by the Austrian Academy of Sciences, the Austrian Science Fund (Fonds zur Förderung der wissenschaftlichen Forschung (FWF); grants I_552-B19 and Z_153_B09), and an advanced grant of the European Research Council (ERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen A. Knoblich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Senescence

The phenomenon by which cells cease to proliferate; usually associated with ageing.

Transit amplifying cells

A progenitor cell population with the potential to develop into restricted number of cell types and limited proliferative potential.

Neural progenitor lineages

Neuronal lineages that originate from a neural stem cell.

Fat body

An organ in Drosophila melanogaster that combines the functions of mammalian fat tissue and liver.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Homem, C., Repic, M. & Knoblich, J. Proliferation control in neural stem and progenitor cells. Nat Rev Neurosci 16, 647–659 (2015). https://doi.org/10.1038/nrn4021

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn4021

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing