Neurocriminology: implications for the punishment, prediction and prevention of criminal behaviour


Criminal behaviour and violence are increasingly viewed as worldwide public health problems. A growing body of knowledge shows that criminal behaviour has a neurobiological basis, and this has intensified judicial interest in the potential application of neuroscience to criminal law. It also gives rise to important questions. What are the implications of such application for predicting future criminal behaviour and protecting society? Can it be used to prevent violence? And what are the implications for the way offenders are punished?

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Raine, A. The Anatomy of Violence: The Biological Roots of Crime (Pantheon, 2013).

    Google Scholar 

  2. 2

    Tuvblad, C. et al. The genetic and environmental etiology of decision-making: a longitudinal twin study. J. Adolesc. 36, 245–255 (2013).

    Article  PubMed  Google Scholar 

  3. 3

    Ferguson, C. J. Genetic contributions to antisocial personality and behavior: a meta-analytic review from an evolutionary perspective. J. Soc. Psychol. 150, 160–180 (2010).

    Article  PubMed  Google Scholar 

  4. 4

    Cadoret, R. J. et al. Associations of the serotonin transporter promoter polymorphism with aggressivity, attention deficit, and conduct disorder in an adoptee population. Compr. Psychiatry 44, 88–101 (2003).

    Article  PubMed  Google Scholar 

  5. 5

    DeLisi, M., Beaver, K. M., Vaughn, M. G. & Wright, J. P. All in the family: gene × environment interaction between DRD2 and criminal father is associated with five antisocial phenotypes. Crim. Justice Behav. 36, 1187–1197 (2009).

    Article  Google Scholar 

  6. 6

    DeYoung, C. G. et al. Variation in the catechol-O-methyltransferase Val158Met polymorphism associated with conduct disorder and ADHD symptoms, among adolescent male delinquents. Psychiatr. Genet. 20, 20–24 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7

    Gadow, K. D., Devincent, C. J., Olvet, D. M., Pisarevskaya, V. & Hatchwell, E. Association of DRD4 polymorphism with severity of oppositional defiant disorder, separation anxiety disorder and repetitive behaviors in children with autism spectrum disorder. Eur. J. Neurosci. 32, 1058–1065 (2010).

    Article  PubMed  Google Scholar 

  8. 8

    Vassos, E., Collier, D. A. & Fazel, S. Systematic meta-analyses and field synopsis of genetic association studies of violence and aggression. Mol. Psychiatry (2013).

  9. 9

    Caspi, A. et al. Role of genotype in the cycle of violence in maltreated children. Science 297, 851–854 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. 10

    Tremblay, R. E. Understanding development and prevention of chronic physical aggression: towards experimental epigenetics studies. Phil. Trans. R. Soc. B 363, 2613–2622 (2008).

    Article  PubMed  Google Scholar 

  11. 11

    Raine, A., Buchsbaum, M. S. & Lacasse, L. Brain abnormalities in murderers indicated by positron emission tomography. Biol. Psychiatry 42, 495–508 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. 12

    Arseneault, L., Tremblay, R. E., Boulerice, B., Seguin, J. R. & Saucier, J. F. Minor physical anomalies and family adversity as risk factors for violent delinquency in adolescence. Am. J. Psychiatry 157, 917–923 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. 13

    Mednick, S. A. & Kandel, E. S. Congenital determinants of violence. Bull. Am. Acad. Psychiatry Law 16, 101–109 (1988).

    CAS  PubMed  Google Scholar 

  14. 14

    Ryan, S. R., Schechter, J. C. & Brennan, P. A. Perinatal factors, parenting behavior, and reactive aggression: does cortisol reactivity mediate this developmental risk process? J. Abnorm. Child Psychol. 40, 1211–1222 (2012).

    Article  PubMed  Google Scholar 

  15. 15

    Pine, D. S., Shaffer, D., Schonfeld, I. S. & Davies, M. Minor physical anomalies: modifiers of environmental risks for psychiatric impairment? J. Am. Acad. Child Adolesc. Psychiatry 36, 395–403 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. 16

    Raine, A., Lee, L., Yang, Y. & Colletti, P. Neurodevelopmental marker for limbic maldevelopment in antisocial personality disorder and psychopathy. Br. J. Psychiatry 197, 186–192 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17

    Sarwar, M. The septum pellucidum: normal and abnormal. AJNR Am. J. Neuroradiol. 10, 989–1005 (1989).

    CAS  PubMed  Google Scholar 

  18. 18

    Pardini, D. A., Raine, A., Erickson, K. & Loeber, R. Lower amygdala volume in men is associated with childhood aggression, early psychopathic traits, and future violence. Biol. Psychiatry (2013).

  19. 19

    Brennan, P. A., Grekin, E. R. & Mednick, S. A. Maternal smoking during pregnancy and adult male criminal outcomes. Arch. Gen. Psychiatry 56, 215–219 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. 20

    Sood, B. et al. Prenatal alcohol exposure and childhood behavior at age 6 to 7 years: I. dose–response effect. Pediatrics 108, e34 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. 21

    Maughan, B., Taylor, A., Caspi, A. & Moffitt, T. E. Prenatal smoking and early childhood conduct problems: testing genetic and environmental explanations of the association. Arch. Gen.Psychiatry 61, 836–843 (2004).

    Article  PubMed  Google Scholar 

  22. 22

    Jaffee, S. R., Strait, L. B. & Odgers, C. L. From correlates to causes: can quasi-experimental studies and statistical innovations bring us closer to identifying the causes of antisocial behavior? Psychol. Bull. 138, 272–295 (2012).

    Article  PubMed  Google Scholar 

  23. 23

    Olympio, K. P. K., Gonçalves, C., Günther, W. M. R. & Bechara, E. J. H. Neurotoxicity and aggressiveness triggered by low-level lead in children: a review. Rev. Panam. Salud Publica 26, 266–275 (2009).

    Article  PubMed  Google Scholar 

  24. 24

    Wright, J. P. et al. Association of prenatal and childhood blood lead concentrations with criminal arrests in early adulthood. PloS Med. 5, 732–740 (2008).

    Article  CAS  Google Scholar 

  25. 25

    Fergusson, D. M., Boden, J. M. & Horwood, L. J. Dentine lead levels in childhood and criminal behaviour in late adolescence and early adulthood. J. Epidemiol. Commun. Health 62, 1045–1050 (2008).

    Article  CAS  Google Scholar 

  26. 26

    Ericson, J. E. et al. Prenatal manganese levels linked to childhood behavioral disinhibition. Neurotoxicol. Teratol. 29, 181–187 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. 27

    Neugebauer, R., Hoek, H. W. & Susser, E. Prenatal exposure to wartime famine and development of antisocial personality disorder in early adulthood. JAMA 282, 455–462 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. 28

    Galler, J. R. et al. Socioeconomic outcomes in adults malnourished in the first year of life: a 40-year study. Pediatrics 130, e1–e7 (2012).

    Article  PubMed  Google Scholar 

  29. 29

    Liu, J. H., Raine, A., Venables, P. H. & Mednick, S. Malnutrition at age 3 years and externalizing behavior problems at ages 8, 11 and 17 years. Am. J. Psychiatry 161, 2005–2013 (2004).

    Article  PubMed  Google Scholar 

  30. 30

    Hawes, D. J., Brennan, J. & Dadds, M. R. Cortisol, callous–unemotional traits, and pathways to antisocial behavior. Curr. Opin. Psychiatry 22, 357–362 (2009).

    Article  PubMed  Google Scholar 

  31. 31

    van Goozen, S. H., Fairchild, G., Snoek, H. & Harold, G. T. The evidence for a neurobiological model of childhood antisocial behavior. Psychol. Bull. 133, 149–182 (2007).

    Article  PubMed  Google Scholar 

  32. 32

    Shoal, G. D., Giancola, P. R. & Kilrillova, G. P. Salivary cortisol, personality, and aggressive behavior in adolescent boys: a 5-year longitudinal study. J. Am. Acad. Child Adolesc. Psychiatry 42, 1101–1107 (2003).

    Article  PubMed  Google Scholar 

  33. 33

    McBurnett, K., Lahey, B. B., Rathouz, P. J. & Loeber, R. Low salivary cortisol and persistent aggression in boys referred for disruptive behavior. Arch. Gen. Psychiatry 57, 38–43 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. 34

    Archer, J., Graham-Kevan, N. & Davies, M. Testosterone and aggression: a reanalysis of Book, Starzyk, and Quinsey's study. Aggress. Violent Behav. 10, 241–261 (2005).

    Article  Google Scholar 

  35. 35

    Pope, H. G. Jr, Kouri, E. M. & Hudson, J. I. Effects of supraphysiologic doses of testosterone on mood and aggression in normal men: a randomized controlled trial. Arch. Gen. Psychiatry 57, 133–140 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. 36

    O'Connor, D. B., Archer, J., Hair, W. M. & Wu, F. C. Exogenous testosterone, aggression, and mood in eugonadal and hypogonadal men. Physiol. Behav. 75, 557–566 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. 37

    Tarter, R. E. et al. Prospective study of the association between abandoned dwellings and testosterone level on the development of behaviors leading to cannabis use disorder in boys. Biol. Psychiatry 65, 116–121 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. 38

    van Bokhoven, I. et al. Salivary testosterone and aggression, delinquency, and social dominance in a population-based longitudinal study of adolescent males. Horm. Behav. 50, 118–125 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. 39

    Nelson, R. J. & Trainor, B. C. Neural mechanisms of aggression. Nature Rev. Neurosci. 8, 536–546 (2007).

    Article  CAS  Google Scholar 

  40. 40

    Moore, T. M., Scarpa, A. & Raine, A. A meta-analysis of serotonin metabolite 5-HIAA and antisocial behavior. Aggressive Behav. 28, 299–316 (2002).

    Article  CAS  Google Scholar 

  41. 41

    Coccaro, E. F. Central serotonin and impulsive aggression. Br. J. Psychiatry 155 (Suppl. 8), 52–62 (1989).

    Article  Google Scholar 

  42. 42

    Rubia, K. et al. Tryptophan depletion reduces right inferior prefrontal activation during response inhibition in fast, event-related fMRI. Psychopharmacology 179, 791–803 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. 43

    Blair, R. J. The amygdala and ventromedial prefrontal cortex in morality and psychopathy. Trends Cogn. Sci. 11, 387–392 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. 44

    Alia-Klein, N. et al. Brain monoamine oxidase A activity predicts trait aggression. J. Neurosci. 28, 5099–5104 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Ortiz, J. & Raine, A. Heart rate level and antisocial behavior in children and adolescents: a meta-analysis. J. Am. Acad. Child Adolesc. Psychiatry 43, 154–162 (2004).

    Article  PubMed  Google Scholar 

  46. 46

    Armstrong, T. A., Keller, S., Franklin, T. W. & Macmillan, S. N. Low resting heart rate and antisocial behavior: a brief review of evidence and preliminary results from a new test. Crim. Justice Behav. 36, 1125–1140 (2009).

    Article  Google Scholar 

  47. 47

    De Vries-Bouw, M. et al. The predictive value of low heart rate and heart rate variability during stress for reoffending in delinquent male adolescents. Psychophysiology 48, 1597–1604 (2011).

    Article  PubMed  Google Scholar 

  48. 48

    Jennings, W. G., Piquero, A. R. & Farrington, D. P. Does resting heart rate at age 18 distinguish general and violent offending up to age 50? Findings from the Cambridge Study in Delinquent Development. J. Crim. Justice 41, 213–219 (2013).

    Article  Google Scholar 

  49. 49

    Raine, A., Venables, P. H. & Williams, M. Relationships between central and autonomic measures of arousal at age 15 years and criminality at age 24 years. Arch. Gen. Psychiatry 47, 1003–1007 (1990).

    Article  CAS  PubMed  Google Scholar 

  50. 50

    Gao, Y. & Raine, A. P3 event-related potential impairments in antisocial and psychopathic individuals: a meta-analysis. Biol. Psychol. 82, 199–210 (2009).

    Article  PubMed  Google Scholar 

  51. 51

    Gao, Y., Raine, A., Venables, P. H. & Mednick, S. A. The association between P3 amplitude at age 11 and criminal offending at age 23. J. Clin. Child Adolesc. Psychol. 42, 120–130 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  52. 52

    Lorber, M. F. Psychophysiology of aggression, psychopathy, and conduct problems: a meta-analysis. Pychol. Bull. 130, 531–552 (2004).

    Article  Google Scholar 

  53. 53

    Raine, A. The Psychopathology of Crime: Criminal Behavior as a Clinical Disorder (Academic Press, 1993).

    Google Scholar 

  54. 54

    Fairchild, G., Van Goozen, S. H., Stollery, S. J. & Goodyer, I. M. Fear conditioning and affective modulation of the startle reflex in male adolescents with early-onset or adolescence-onset conduct disorder and healthy control subjects. Biol. Psychiatry 63, 279–285 (2008).

    Article  PubMed  Google Scholar 

  55. 55

    Fairchild, G., Stobbe, Y., van Goozen, S. H. M., Calder, A. J. & Goodyer, I. M. Facial expression recognition, fear conditioning, and startle modulation in female subjects with conduct disorder. Biol. Psychiatry 68, 272–279 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  56. 56

    Syngelaki, E. M., Fairchild, G., Moore, S. C., Savage, J. C. & van Goozen, S. H. Fearlessness in juvenile offenders is associated with offending rate. Dev. Sci. 16, 84–90 (2013).

    Article  PubMed  Google Scholar 

  57. 57

    Sehlmeyer, C. et al. Human fear conditioning and extinction in neuroimaging: a systematic review. PLoS ONE 4, e5865 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Patrick, C. J., Venables, N. C. & Skeem, J. in Psychopathy and Law: A Practitioner's Guide (eds Häkkänen-Nyholm, H. & Nyholm, J.-O.) 39–77 (Wiley, 2012).

    Google Scholar 

  59. 59

    Gao, Y., Raine, A., Venables, P. H. & Dawson, M. E. Association of poor childhood fear conditioning and adult crime. Am. J. Psychiatry 167, 56–60 (2010).

    Article  PubMed  Google Scholar 

  60. 60

    Raine, A., Venables, P. H. & Williams, M. Better autonomic conditioning and faster electrodermal half-recovery time at age 15 years as possible protective factors agains crime at 29 years. Dev. Psychol. 32, 624–630 (1996).

    Article  Google Scholar 

  61. 61

    Yang, Y. & Raine, A. Prefrontal structural and functional brain imaging findings in antisocial, violent, and psychopathic individuals: a meta-analysis. Psychiatry Res. 174, 81–88 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  62. 62

    Holroyd, C. B. & Coles, M. G. H. The neural basis. of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychol. Rev. 109, 679–709 (2002).

    Article  PubMed  Google Scholar 

  63. 63

    Kiehl, K. A., Liddle, P. F. & Hopfinger, J. B. Error processing and the rostral anterior cingulate: an event-related fMRI study. Psychophysiology 37, 216–223 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. 64

    Kosson, D. S. et al. The role of the amygdala and rostral anterior cingulate in encoding expected outcomes during learning. Neuroimage 29, 1161–1172 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. 65

    Devinsky, O., Morrell, M. J. & Vogt, B. A. Contributions of anterior cingulate cortex to behaviour. Brain 118, 279–306 (1995).

    Article  PubMed  Google Scholar 

  66. 66

    Danckert, J. et al. Goal-directed selective attention and response competition monitoring: evidence from unilateral parietal and anterior cingulate lesions. Neuropsychology 14, 16–28 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. 67

    Hornak, J. et al. Changes in emotion after circumscribed surgical lesions of the orbitofrontal and cingulate cortices. Brain 126, 1691–1712 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. 68

    Damasio, A. R. Descartes' Error: Emotion, Reason, and the Human Brain (G. P. Putnam's Sons, 1994).

    Google Scholar 

  69. 69

    Blair, R. J. The roles of the orbital frontal cortex in the modulation of antisocial behavior. Brain Cogn. 55, 198–208 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. 70

    Grafman, J. et al. Frontal lobe injuries, violence, and aggression: a report of the Vietnam Head Injury Study. Neurology 46, 1231–1238 (1996).

    Article  CAS  PubMed  Google Scholar 

  71. 71

    Burns, J. M. & Swerdlow, R. H. Right orbitofrontal tumor with pedophilia symptom and constructional apraxia sign. Arch. Neurol. 60, 437–440 (2003).

    Article  PubMed  Google Scholar 

  72. 72

    Yang, Y., Raine, A., Narr, K. L., Colletti, P. & Toga, A. W. Localization of deformations within the amygdala in individuals with psychopathy. Arch. Gen. Psychiatry 66, 986–994 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  73. 73

    Glenn, A. L., Raine, A. & Schug, R. A. The neural correlates of moral decision-making in psychopathy. Mol. Psychiatry 14, 5–6 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. 74

    Jones, A. P., Laurens, K. R., Herba, C. M., Barker, G. J. & Viding, E. Amygdala hypoactivity to fearful faces in boys with conduct problems and callous–unemotional traits. Am. J. Psychiatry 166, 95–102 (2009).

    Article  PubMed  Google Scholar 

  75. 75

    Birbaumer, N. et al. Deficient fear conditioning in psychopathy: a functional magnetic resonance imaging study. Arch. Gen. Psychiatry 62, 799–805 (2005).

    Article  PubMed  Google Scholar 

  76. 76

    Coccaro, E. F., McCloskey, M. S., Fitzgerald, D. A. & Phan, K. L. Amygdala and orbitofrontal reactivity to social threat in individuals with impulsive aggression. Biol. Psychiatry 62, 168–178 (2007).

    Article  PubMed  Google Scholar 

  77. 77

    Tranel, D., Gullickson, G., Koch, M. & Adolphs, R. Altered experience of emotion following bilateral amygdala damage. Cogn. Neurospsychiatry 11, 219–232 (2006).

    Article  Google Scholar 

  78. 78

    Adolphs, R. et al. Recognition of facial emotion in nine individuals with bilateral amygdala damage. Neuropsychologia 37, 1111–1117 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. 79

    Aharoni, E. et al. Neuroprediction of future rearrest. Proc. Natl Acad. Sci. USA 110, 6223–6228 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. 80

    Fazel, S., Lichtenstein, P., Grann, M. & Långström, N. Risk of violent crime in individuals with epilepsy and traumatic brain injury: a 35-year Swedish population study. PLoS Med. 8, e1001150 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  81. 81

    Timonen, M. et al. The association of preceding traumatic brain injury with mental disorders, alcoholism and criminality: the Northern Finland 1966 Birth Cohort Study. Psychiatry Res. 113, 217–226 (2002).

    Article  PubMed  Google Scholar 

  82. 82

    Raine, A. et al. Increased executive functioning, attention, and cortical thickness in white-collar criminals. Hum. Brain Mapp. 33, 2932–2940 (2012).

    Article  PubMed  Google Scholar 

  83. 83

    Toro, R. et al. Prenatal exposure to maternal cigarette smoking and the adolescent cerebral cortex. Neuropsychopharmacology 33, 1019–1027 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. 84

    Cecil, K. M. et al. Decreased brain volume in adults with childhood lead exposure. PloS Med. 5, 741–750 (2008).

    Article  CAS  Google Scholar 

  85. 85

    Meyer-Lindenberg, A. et al. Neural mechanisms of genetic risk for impulsivity and violence in humans. Proc. Natl Acad. Sci. USA 103, 6269–6274 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. 86

    Wahlund, K. & Kristiansson, M. Aggression, psychopathy and brain imaging — review and future recommendations. Int. J. Law Psychiatry 32, 266–271 (2009).

    Article  PubMed  Google Scholar 

  87. 87

    Cornet, L. J. M., de Kogel, C. H., Nijman, H. L. I., Raine, A. & van der Laan, P. H. Neurobiological factors as predictors of cognitive–behavioral therapy outcome in individuals with antisocial behavior: a review of the literature. Int. J. Offender Ther. Comp. Criminol. (2013).

  88. 88

    Tiger Aspect Productions. Mindshock: sex on the brain. Channel Four (UK, 2006).

  89. 89

    Morse, S. J. Voluntary control of behavior and responsibility. Am. J. Bioeth. 7, 12–13 (2007).

    Article  PubMed  Google Scholar 

  90. 90

    Morse, S. J. Psychopathy and criminal responsibility. Neuroethics 1, 205–212 (2008).

    Article  Google Scholar 

  91. 91

    Viding, E. & McCrory, E. J. Genetic and neurocognitive contributions to the development of psychopathy. Dev. Psychopathol. 24, 969–983 (2012).

    Article  PubMed  Google Scholar 

  92. 92

    Hare, R. D. & Neumann, C. S. Structural models of psychopathy. Curr. Psychiatry Rep. 7, 57–64 (2005).

    Article  PubMed  Google Scholar 

  93. 93

    van der Leij, J. B., Jackson, J. L., Malsch, M. & Nijboer, J. F. Residential mental health assessment within Dutch criminal cases: a discussion. Behav. Sci. Law 19, 691–702 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. 94

    Greene, J. D., Sommerville, R. B., Nystrom, L. E., Darley, J. M. & Cohen, J. An fMRI investigation of emotional engagement in moral judgment. Science 293, 2105–2108 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. 95

    Neumann, C. S., Johansson, P. T. & Hare, R. D. The Psychopathy Checklist-Revised (PCL-R), low anxiety, and fearlessness: a structural equation modeling analysis. Personal. Disord. 4, 129–137 (2013).

    Article  PubMed  Google Scholar 

  96. 96

    Patrick, C. J., Cuthbert, B. N. & Lang, P. J. Emotion in the criminal psychopath: fear image processing. J. Abnorm. Psychol. 103, 523–534 (1994).

    Article  CAS  PubMed  Google Scholar 

  97. 97

    Sapolsky, R. M. The frontal cortex and the criminal justice system. Phil. Trans. R. Soc. Lond. B 359, 1787–1796 (2004).

    Article  Google Scholar 

  98. 98

    Farah, M. J. Neuroethics: the ethical, legal, and societal impact of neuroscience. Annu. Rev. Psychol. 63, 571–591 (2012).

    Article  PubMed  Google Scholar 

  99. 99

    Frazer, K. A., Murray, S. S., Schork, N. J. & Topol, E. J. Human genetic variation and its contribution to complex traits. Nature Rev. Genet. 10, 241–251 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. 100

    Hariri, A. R. The neurobiology of individual differences in complex behavioral traits. Annu. Rev. Neurosci. 32, 225–247 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. 101

    Raine, A. et al. Corpus callosum abnormalities in psychopathic antisocial individuals. Arch. Gen. Psychiatry 60, 1134–1142 (2003).

    Article  PubMed  Google Scholar 

  102. 102

    Raine, A., Lencz, T., Bihrle, S., LaCasse, L. & Colletti, P. Reduced prefrontal gray matter volume and reduced autonomic activity in antisocial personality disorder. Arch. Gen. Psychiatry 57, 119–127 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. 103

    Mackintosh, N. et al. Brain waves 4: neuroscience and the law. The Royal Society [online], (2011).

  104. 104

    Berk, R., Sherman, L., Barnes, G., Kurtz, E. & Ahlman, L. Forecasting murder within a population of probationers and parolees: a high stakes application of statistical learning. J. R. Stat. Soc. A 172, 191–211 (2009).

    Article  Google Scholar 

  105. 105

    Pappadopulos, E. et al. Pharmacotherapy of aggression in children and adolescents: efficacy and effect size. J. Can. Acad. Child Adolesc. Psychiatry 15, 27–39 (2006).

    PubMed  PubMed Central  Google Scholar 

  106. 106

    New, A. S. et al. Fluoxetine increases relative metabolic rate in prefrontal cortex in impulsive aggression. Psychopharmacology 176, 451–458 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. 107

    Lösel, F. & Schmucker, M. The effectiveness of treatment for sexual offenders: a comprehensive meta-analysis. J. Exp. Criminol. 1, 117–146 (2005).

    Article  Google Scholar 

  108. 108

    Douglas, T., Bonte, P., Focquaert, F., Devolder, K. & Sterckx, S. Coercion, incarceration, and chemical castration: an argument from autonomy. J. Bioeth. Inq. 10, 393–405 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  109. 109

    Zaalberg, A., Nijman, H., Bulten, E., Stroosma, L. & van der Staak, C. Effects of nutritional supplements on aggression, rule-breaking, and psychopathology among young adult prisoners. Aggressive Behav. 36, 117–126 (2010).

    Article  CAS  Google Scholar 

  110. 110

    Gesch, S. M., Hampson, S. E., Eves, A. & Crowder, M. J. Influence of supplemental vitamins, minerals and essential fatty acids on the antisocial behaviour of young adult prisoners. Br. J. Psychiatry 181, 22–28 (2002).

    Article  PubMed  Google Scholar 

  111. 111

    Gustafsson, P. A. et al. EPA supplementation improves teacher-rated behaviour and oppositional symptoms in children with ADHD. Acta Paediatr. 99, 1540–1549 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. 112

    Kirby, A., Woodward, A., Jackson, S., Wang, Y. & Crawford, M. A. A double-blind, placebo-controlled study investigating the effects of omega-3 supplementation in children aged 8–10 years from a mainstream school population. Res. Dev. Disabil. 31, 718–730 (2010).

    Article  CAS  PubMed  Google Scholar 

  113. 113

    Calderon, F. & Kim, H.-Y. Docosahexaenoic acid promotes neurite growth in hippocampal neurons. J. Neurochem. 90, 979–988 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. 114

    Olds, D. et al. Long-term effects of nurse home visitation on children's criminal and antisocial behavior: 15-year follow-up of a randomized controlled trial. JAMA 280, 1238–1244 (1998).

    Article  CAS  PubMed  Google Scholar 

  115. 115

    Raine, A. et al. Early educational and health enrichment at age 3–5 years is associated with increased autonomic and central nervous system arousal and orienting at age 11 years: evidence from the Mauritius Child Health Project. Psychophysiology 38, 254–266 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. 116

    Raine, A., Mellingen, K., Liu, J., Venables, P. H. & Mednick, S. Effects of environmental enrichment at 3–5 years on schizotypal personality and antisocial behavior at ages 17 and 23 years. Am. J. Psychiatry 160, 1627–1635 (2003).

    Article  PubMed  Google Scholar 

  117. 117

    Ruff, C. C., Ugazio, G. & Fehr, E. Changing social norm compliance with noninvasive brain stimulation. Science 342, 482–484 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. 118

    Desbordes, G. et al. Effects of mindful-attention and compassion meditation training on amygdala response to emotional stimuli in an ordinary, non-meditative state. Front. Hum. Neurosci. 6, 292 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  119. 119

    Davidson, R. J. et al. Alterations in brain and immune function produced by mindfulness meditation. Psychosom. Med. 65, 564–570 (2003).

    Article  PubMed  Google Scholar 

  120. 120

    Himelstein, S. Meditation research: the state of the art in correctional settings. Int. J. Offender Ther. Comp. Criminol. 55, 646–661 (2010).

    Article  PubMed  Google Scholar 

  121. 121

    Wupperman, P. et al. Mindfulness and modification therapy for behavioral dysregulation: results from a pilot study targeting alcohol use and aggression in women. J. Clin. Psychol. 68, 50–66 (2012).

    Article  PubMed  Google Scholar 

  122. 122

    Hjalmarsson, R. & Lindquist, M. J. The origins of intergenerational associations in crime: lessons from Swedish adoption data. Labour Econ. 20, 68–81 (2013).

    Article  Google Scholar 

  123. 123

    Raine, A. & Yang, Y. Neural foundations to moral reasoning and antisocial behavior. Soc. Cogn. Affect. Neurosci. 1, 203–213 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Andrea L. Glenn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links


Nature Reviews Neuroscience Series on Neuroscience and the law

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Glenn, A., Raine, A. Neurocriminology: implications for the punishment, prediction and prevention of criminal behaviour. Nat Rev Neurosci 15, 54–63 (2014).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing