Multisensory brain mechanisms of bodily self-consciousness

Key Points

  • A powerful approach to study self-consciousness has been to target brain mechanisms that process bodily signals (bodily self-consciousness).

  • Bodily self-consciousness depends on three factors: self-identification with the body, self-location and the first-person perspective.

  • Visuotactile and visuovestibular conflicts that induce changes in bodily self-consciousness have been tested using video, virtual reality and robotic devices.

  • Experimental changes in illusory self-identification with a fake or virtual body are associated with changes in touch and pain perception, as well as physiological changes.

  • Activity in the bilateral premotor cortex and posterior parietal cortex that is probably due to the activation of multisensory neurons integrating visual and somatosensory signals has been associated with self-identification.

  • Neurological data in patients with heautoscopy reveal that damage to the left temporoparietal cortex leads to abnormal self-identification and self-location.

  • Activity in the temporoparietal cortex and posterior parietal cortex that is probably due to the activation of multisensory neurons integrating vestibular, visual and tactile signals has been associated with self-location and the first-person perspective.

  • Neurological data in patients with out-of-body experiences reveal that damage to the right temporoparietal cortex (posterior superior temporal gyrus) leads to abnormal self-location and first-person perspective.

  • The interaction of these multisensory signals with other bodily signals, especially those related to interoceptive signals, and their respective importance for bodily self-consciousness and consciousness in general should be targeted by future research.

  • Future neuro-rehabilitation procedures for amputees, stroke patients and patients with spinal cord injury are likely to benefit from the described automatized multisensory stimulations between augmented artificial bodies and residual own-body signals.


Recent research has linked bodily self-consciousness to the processing and integration of multisensory bodily signals in temporoparietal, premotor, posterior parietal and extrastriate cortices. Studies in which subjects receive ambiguous multisensory information about the location and appearance of their own body have shown that these brain areas reflect the conscious experience of identifying with the body (self-identification (also known as body-ownership)), the experience of where 'I' am in space (self-location) and the experience of the position from where 'I' perceive the world (first-person perspective). Along with phenomena of altered states of self-consciousness in neurological patients and electrophysiological data from non-human primates, these findings may form the basis for a neurobiological model of bodily self-consciousness.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Illusory hand ownership.
Figure 2: Set-ups of illusory self-identification experiments.
Figure 3: Brain mechanisms of illusory self-identification.
Figure 4: Illusory self-location and first-person perspective.
Figure 5: Multimodal neurons in illusory self-location and the first-person perspective.


  1. 1

    Blanke, O. & Metzinger, T. Full-body illusions and minimal phenomenal selfhood. Trends Cogn. Sci. 13, 7–13 (2009).

    Article  PubMed  Google Scholar 

  2. 2

    Christoff, K., Cosmelli, D., Legrand, D. & Thompson, E. Specifying the self for cognitive neuroscience. Trends Cogn. Sci. 15, 104–112 (2011).

    Article  PubMed  Google Scholar 

  3. 3

    de Vignemont, F. Embodiment, ownership and disownership. Conscious. Cogn. 20, 82–93 (2011).

    Article  PubMed  Google Scholar 

  4. 4

    Jeannerod, M. The mechanism of self-recognition in humans. Behav. Brain Res. 142, 1–15 (2003).

    Article  PubMed  Google Scholar 

  5. 5

    Knoblich, G. Self-recognition: body and action. Trends Cogn. Sci. 6, 447–449 (2002).

    Article  PubMed  Google Scholar 

  6. 6

    Legrand, D. Pre-reflective self-as-subject from experiential and empirical perspectives. Conscious. Cogn. 16, 583–599 (2007).

    Article  PubMed  Google Scholar 

  7. 7

    Berlucchi, G. & Aglioti, S. The body in the brain: neural bases of corporeal awareness. Trends Neurosci. 20, 560–564 (1997). A comprehensive, classical review of deficits in body perception that are of relevance for bodily self-consciousness following brain damage in patients with neurological disorders.

    CAS  Article  PubMed  Google Scholar 

  8. 8

    Berlucchi, G. & Aglioti, S. M. The body in the brain revisited. Exp. Brain Res. 200, 25–35 (2010).

    Article  PubMed  Google Scholar 

  9. 9

    Critchley, M. The body-image in neurology. Lancet 255, 335–341 (1950).

    Article  Google Scholar 

  10. 10

    Head, H. & Holmes, G. Sensory disturbances from cerebral lesions. Brain 34, 102–254 (1911).

    Article  Google Scholar 

  11. 11

    Hécaen, H. & Ajuriaguerra, J. (eds) Meconnassiances et Hallucinations Corporelles: Integration et Desintegration de la Somatognosie 310–343 (Masson, 1952) (in French).

    Google Scholar 

  12. 12

    Lhermitte, J. L'image de Notre Corps 170–227 (L'Harmattan, 1998) (in French).

    Google Scholar 

  13. 13

    Schilder, P. The Image and Appearance of the Human Body (Georg Routledge and Sons, 1935).

    Google Scholar 

  14. 14

    Sollier, P. Les Phénomènes d'Autoscopie (Alcan, 1903) (in French).

    Google Scholar 

  15. 15

    Gerstmann, J. Problem of imperception of disease and of impaired body territories with organic lesions. Arch. Neurol. Psychiatry 48, 890–913 (1942).

    Article  Google Scholar 

  16. 16

    Halligan, P. W., Marshall, J. C. & Wade, D. T. Unilateral somatoparaphrenia after right hemisphere stroke: a case description. Cortex 31, 173–182 (1995).

    CAS  Article  PubMed  Google Scholar 

  17. 17

    Fotopoulou, A. et al. Mirror-view reverses somatoparaphrenia: dissociation between first- and third-person perspectives on body ownership. Neuropsychologia 49, 3946–3955 (2011).

    Article  PubMed  Google Scholar 

  18. 18

    Vallar, G. & Ronchi, R. Somatoparaphrenia: a body delusion. A review of the neuropsychological literature. Exp. Brain Res. 192, 533–551 (2009).

    Article  PubMed  Google Scholar 

  19. 19

    Baier, B. & Karnath, H. O. Tight link between our sense of limb ownership and self-awareness of actions. Stroke 39, 486–488 (2008).

    Article  PubMed  Google Scholar 

  20. 20

    Botvinick, M. & Cohen, J. Rubber hands 'feel' touch that eyes see. Nature 391, 756 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21

    Ehrsson, H. H., Spence, C. & Passingham, R. E. That's my hand! Activity in premotor cortex reflects feeling of ownership of a limb. Science 305, 875–877 (2004).

    CAS  Article  PubMed  Google Scholar 

  22. 22

    Slater, M., Perez-Marcos, D., Ehrsson, H. H. & Sanchez-Vives, M. V. Towards a digital body: the virtual arm illusion. Front. Hum. Neurosci. 2, 6 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23

    Tsakiris, M. & Haggard, P. The rubber hand illusion revisited: visuotactile integration and self-attribution. J. Exp. Psychol. Hum. Percept. Perform. 31, 80–91 (2005).

    Article  PubMed  Google Scholar 

  24. 24

    Kammers, M. P., de Vignemont, F., Verhagen, L. & Dijkerman, H. C. The rubber hand illusion in action. Neuropsychologia 47, 204–211 (2009).

    CAS  Article  PubMed  Google Scholar 

  25. 25

    Lloyd, D. M. Spatial limits on referred touch to an alien limb may reflect boundaries of visuo-tactile peripersonal space surrounding the hand. Brain Cogn. 64, 104–109 (2007).

    Article  PubMed  Google Scholar 

  26. 26

    Makin, T. R., Holmes, N. P. & Ehrsson, H. H. On the other hand: dummy hands and peripersonal space. Behav. Brain Res. 191, 1–10 (2008).

    Article  PubMed  Google Scholar 

  27. 27

    Tsakiris, M. My body in the brain: a neurocognitive model of body-ownership. Neuropsychologia 48, 703–712 (2010).

    Article  PubMed  Google Scholar 

  28. 28

    Rohde, M., Di Luca, M. & Ernst, M. O. The Rubber Hand Illusion: feeling of ownership and proprioceptive drift do not go hand in hand. PLoS ONE 6, e21659 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29

    Ehrsson, H. H., Holmes, N. P. & Passingham, R. E. Touching a rubber hand: feeling of body ownership is associated with activity in multisensory brain areas. J. Neurosci. 25, 10564–10573 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30

    Kammers, M. P. et al. Is this hand for real? Attenuation of the rubber hand illusion by transcranial magnetic stimulation over the inferior parietal lobule. J. Cogn. Neurosci. 21, 1311–1320 (2009).

    Article  PubMed  Google Scholar 

  31. 31

    Kanayama, N., Sato, A. & Ohira, H. Crossmodal effect with rubber hand illusion and gamma-band activity. Psychophysiology 44, 392–402 (2007).

    Article  PubMed  Google Scholar 

  32. 32

    Kanayama, N., Sato, A. & Ohira, H. The role of gamma band oscillations and synchrony on rubber hand illusion and crossmodal integration. Brain Cogn. 69, 19–29 (2009).

    Article  PubMed  Google Scholar 

  33. 33

    Tsakiris, M., Hesse, M. D., Boy, C., Haggard, P. & Fink, G. R. Neural signatures of body ownership: a sensory network for bodily self-consciousness. Cereb. Cortex 17, 2235–2244 (2007).

    Article  PubMed  Google Scholar 

  34. 34

    Ehrsson, H. H., Wiech, K., Weiskopf, N., Dolan, R. J. & Passingham, R. E. Threatening a rubber hand that you feel is yours elicits a cortical anxiety response. Proc. Natl Acad. Sci. USA 104, 9828–9833 (2007).

    CAS  Article  PubMed  Google Scholar 

  35. 35

    Lloyd, D., Morrison, I. & Roberts, N. Role for human posterior parietal cortex in visual processing of aversive objects in peripersonal space. J. Neurophysiol. 95, 205–214 (2006).

    Article  PubMed  Google Scholar 

  36. 36

    Zeller, D., Gross, C., Bartsch, A., Johansen-Berg, H. & Classen, J. Ventral premotor cortex may be required for dynamic changes in the feeling of limb ownership: a lesion study. J. Neurosci. 31, 4852–4857 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37

    Bremmer, F. et al. Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron 29, 287–296 (2001).

    CAS  Article  Google Scholar 

  38. 38

    Fogassi, L. et al. Coding of peripersonal space in inferior premotor cortex (area F4). J. Neurophysiol. 76, 141–157 (1996).

    CAS  Article  Google Scholar 

  39. 39

    Gentile, G., Petkova, V. I. & Ehrsson, H. H. Integration of visual and tactile signals from the hand in the human brain: an FMRI study. J. Neurophysiol. 105, 910–922 (2011).

    Article  PubMed  Google Scholar 

  40. 40

    Graziano, M. S. & Gandhi, S. Location of the polysensory zone in the precentral gyrus of anesthetized monkeys. Exp. Brain Res. 135, 259–266 (2000).

    CAS  Article  PubMed  Google Scholar 

  41. 41

    Graziano, M. S., Hu, X. T. & Gross, C. G. Visuospatial properties of ventral premotor cortex. J. Neurophysiol. 77, 2268–2292 (1997).

    CAS  Article  PubMed  Google Scholar 

  42. 42

    Iriki, A., Tanaka, M. & Iwamura, Y. Coding of modified body schema during tool use by macaque postcentral neurones. Neuroreport 7, 2325–2330 (1996).

    CAS  Article  PubMed  Google Scholar 

  43. 43

    Maravita, A. & Iriki, A. Tools for the body (schema). Trends Cogn. Sci. 8, 79–86 (2004). An important review on multisensory integration of the upper extremity, in particular the integration of visual, tactile and proprioceptive signals in the parietal cortex of human and non-human primates.

    Article  Google Scholar 

  44. 44

    Petkova, V. I. et al. From part- to whole-body ownership in the multisensory brain. Curr. Biol. 21, 1118–1122 (2011). An important study on the brain mechanisms of self-identification using fMRI and virtual reality.

    CAS  Article  PubMed  Google Scholar 

  45. 45

    Farne, A., Iriki, A. & Ladavas, E. Shaping multisensory action–space with tools: evidence from patients with cross-modal extinction. Neuropsychologia 43, 238–248 (2005).

    Article  PubMed  Google Scholar 

  46. 46

    Holmes, N. P., Calvert, G. A. & Spence, C. Tool use changes multisensory interactions in seconds: evidence from the crossmodal congruency task. Exp. Brain Res. 183, 465–476 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  47. 47

    Maravita, A., Spence, C., Sergent, C. & Driver, J. Seeing your own touched hands in a mirror modulates cross-modal interactions. Psychol. Sci. 13, 350–355 (2002).

    Article  PubMed  Google Scholar 

  48. 48

    Graziano, M. S., Cooke, D. F. & Taylor, C. S. Coding the location of the arm by sight. Science 290, 1782–1786 (2000). Important research in macaque monkeys on the neurophysiology of area 5 neurons and the integration of visual, proprioceptive and tactile cues. These findings are of relevance for self-attribution of an individual's hand.

    CAS  Article  Google Scholar 

  49. 49

    Dieguez, S., Mercier, M. R., Newby, N. & Blanke, O. Feeling numbness for someone else's finger. Curr. Biol. 19, R1108–R1109 (2009).

    CAS  Article  PubMed  Google Scholar 

  50. 50

    Tastevin, J. En partant de lexpérience d'Aristote: les déplacements artificiels des parties du corps ne sont pas suivis par le sentiment de ces parties ni pas les sensations qu'on peut y produire. Encephale 1, 140–158 (1937) (in French).

    Google Scholar 

  51. 51

    Brugger, P., Regard, M. & Landis, T. Unilaterally felt presences: the neuropsychiatry of one's invisible Doppelgänger. Neuropsychiatry Neuropsychol. Behav. Neurol. 9, 114–122 (1996).

    Google Scholar 

  52. 52

    Heydrich, L., Dieguez, S., Grunwald, T., Seeck, M. & Blanke, O. Illusory own body perceptions: case reports and relevance for bodily self-consciousness. Conscious. Cogn. 19, 702–710 (2010).

    Article  PubMed  Google Scholar 

  53. 53

    Sforza, A., Bufalari, I., Haggard, P. & Aglioti, S. M. My face in yours: visuo-tactile facial stimulation influences sense of identity. Soc. Neurosci. 5, 148–162 (2010).

    Article  PubMed  Google Scholar 

  54. 54

    Tsakiris, M. Looking for myself: current multisensory input alters self-face recognition. PLoS ONE 3, e4040 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Bolognini, N., Ladavas, E. & Farne, A. Spatial perspective and coordinate systems in autoscopy: a case report of a “fantome de profil” in occipital brain damage. J. Cogn. Neurosci. 23, 1741–1751 (2011).

    Article  PubMed  Google Scholar 

  56. 56

    Devinsky, O., Feldmann, E., Burrowes, K. & Bromfield, E. Autoscopic phenomena with seizures. Arch. Neurol. 46, 1080–1088 (1989).

    CAS  Article  PubMed  Google Scholar 

  57. 57

    Grusser, O. J. & Landis, T. in Visual Agnosia and Other Disturbances of Visual Perception and Cognition (eds Grusser, O. J. & Landis, T.) 297–303 (Macmillan, 1991).

    Google Scholar 

  58. 58

    Ehrsson, H. H. The experimental induction of out-of-body experiences. Science 317, 1048 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. 59

    Ionta, S. et al. Multisensory mechanisms in temporo-parietal cortex support self-location and first-person perspective. Neuron 70, 363–374 (2011). An important study on the brain mechanisms of self-identification, self-location and the first-person perspective using fMRI with neuroscience robotics.

    CAS  Article  PubMed  Google Scholar 

  60. 60

    Lenggenhager, B., Tadi, T., Metzinger, T. & Blanke, O. Video ergo sum: manipulating bodily self-consciousness. Science 317, 1096–1099 (2007).

    CAS  Article  Google Scholar 

  61. 61

    Lenggenhager, B., Mouthon, M. & Blanke, O. Spatial aspects of bodily self-consciousness. Conscious. Cogn. 18, 110–117 (2009).

    Article  PubMed  Google Scholar 

  62. 62

    Altschuler, E. L. & Ramachandran, V. S. A simple method to stand outside oneself. Perception 36, 632–634 (2007).

    Article  PubMed  Google Scholar 

  63. 63

    Mizumoto, M. & Ishikawa, M. Immunity to error through misidentification and the bodily illusion experiment J. Conscious. Stud. 12, 3–19 (2005).

    Google Scholar 

  64. 64

    Ramachandran, V. S., Rogers-Ramachandran, D. & Cobb, S. Touching the phantom limb. Nature 377, 489–490 (1995).

    CAS  Article  PubMed  Google Scholar 

  65. 65

    Stratton, G. M. The spatial harmony of touch and sight. Mind 8 492–505 (1899).

    Article  Google Scholar 

  66. 66

    von Helmholtz, H. Helmholtz's Treatise on Physiological Optics (Dover Publication, 1962).

    Google Scholar 

  67. 67

    Spence, C., Pavani, F. & Driver, J. Spatial constraints on visual-tactile cross-modal distractor congruency effects. Cogn. Affect Behav. Neurosci. 4, 148–169 (2004).

    Article  PubMed  Google Scholar 

  68. 68

    Aspell, J. E., Lenggenhager, B. & Blanke, O. Keeping in touch with one's self: multisensory mechanisms of self-consciousness. PLoS ONE 4, e6488 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Igarashi, Y., Kimura, Y., Spence, C. & Ichihara, S. The selective effect of the image of a hand on visuotactile interactions as assessed by performance on the crossmodal congruency task. Exp. Brain Res. 184, 31–38 (2008).

    Article  PubMed  Google Scholar 

  70. 70

    Pavani, F. & Castiello, U. Binding personal and extrapersonal space through body shadows. Nature Neurosci. 7, 14–16 (2004).

    CAS  Article  PubMed  Google Scholar 

  71. 71

    Pavani, F., Spence, C. & Driver, J. Visual capture of touch: out-of-the-body experiences with rubber gloves. Psychol. Sci. 11, 353–359 (2000).

    CAS  Article  PubMed  Google Scholar 

  72. 72

    Shore, D. I., Barnes, M. E. & Spence, C. Temporal aspects of the visuotactile congruency effect. Neurosci. Lett. 392, 96–100 (2006).

    CAS  Article  PubMed  Google Scholar 

  73. 73

    Aspell, J. E., Lavanchy, T., Lenggenhager, B. & Blanke, O. Seeing the body modulates audiotactile integration. Eur. J. Neurosci. 31, 1868–1873 (2010).

    Article  PubMed  Google Scholar 

  74. 74

    Zopf, R., Savage, G. & Williams, M. A. Crossmodal congruency measures of lateral distance effects on the rubber hand illusion. Neuropsychologia 48, 713–725 (2010).

    Article  PubMed  Google Scholar 

  75. 75

    Petkova, V. I. & Ehrsson, H. H. If I were you: perceptual illusion of body swapping. PLoS ONE 3, e3832 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Hansel, A., Lenggenhager, B., von Kanel, R., Curatolo, M. & Blanke, O. Seeing and identifying with a virtual body decreases pain perception. Eur. J. Pain 15, 874–879 (2011).

    Article  PubMed  Google Scholar 

  77. 77

    Lenggenhager, B., Halje, P. & Blanke, O. Alpha band oscillations correlate with illusory self-location induced by virtual reality. Eur. J. Neurosci. 33, 1935–1943 (2011).

    Article  PubMed  Google Scholar 

  78. 78

    Pineda, J. A. The functional significance of mu rhythms: translating “seeing” and “hearing” into “doing”. Brain Res. Brain Res. Rev. 50, 57–68 (2005).

    Article  Google Scholar 

  79. 79

    Oakes, T. R. et al. Functional coupling of simultaneous electrical and metabolic activity in the human brain. Hum. Brain Mapp. 21, 257–270 (2004).

    Article  PubMed  Google Scholar 

  80. 80

    Gastaut, H. Etude électrocorticographique de la réactivité des rhythms rolandiques. Rev. Neurol. (Paris) 87, 176–182 (1952) (in French).

    CAS  Google Scholar 

  81. 81

    Pfurtscheller, G. & Neuper, C. Motor imagery activates primary sensorimotor area in humans. Neurosci. Lett. 239, 65–68 (1997).

    CAS  Article  PubMed  Google Scholar 

  82. 82

    Ulloa, E. R. & Pineda, J. A. Recognition of point-light biological motion: mu rhythms and mirror neuron activity. Behav. Brain Res. 183, 188–194 (2007).

    Article  PubMed  Google Scholar 

  83. 83

    Pfurtscheller, G. Central beta rhythm during sensorimotor activities in man. Electroencephalogr. Clin. Neurophysiol. 51, 253–264 (1981).

    CAS  Article  PubMed  Google Scholar 

  84. 84

    Cheyne, D. et al. Neuromagnetic imaging of cortical oscillations accompanying tactile stimulation. Brain Res. Cogn. Brain Res. 17, 599–611 (2003).

    Article  PubMed  Google Scholar 

  85. 85

    Astafiev, S. V., Stanley, C. M., Shulman, G. L. & Corbetta, M. Extrastriate body area in human occipital cortex responds to the performance of motor actions. Nature Neurosci. 7, 542–548 (2004).

    CAS  Article  PubMed  Google Scholar 

  86. 86

    Downing, P. E., Jiang, Y., Shuman, M. & Kanwisher, N. A cortical area selective for visual processing of the human body. Science 293, 2470–2473 (2001).

    CAS  Article  PubMed  Google Scholar 

  87. 87

    Grossman, E. D. & Blake, R. Brain areas active during visual perception of biological motion. Neuron 35, 1167–1175 (2002).

    CAS  Article  PubMed  Google Scholar 

  88. 88

    Urgesi, C., Candidi, M., Ionta, S. & Aglioti, S. M. Representation of body identity and body actions in extrastriate body area and ventral premotor cortex. Nature Neurosci. 10, 30–31 (2007).

    CAS  Article  PubMed  Google Scholar 

  89. 89

    Duhamel, J. R., Colby, C. L. & Goldberg, M. E. in Brain and Space (ed. Paillard, J.) 223–236 (Oxford Univ. Press, 1991).

    Google Scholar 

  90. 90

    Duhamel, J. R., Colby, C. L. & Goldberg, M. E. Ventral intraparietal area of the macaque: congruent visual and somatic response properties. J. Neurophysiol. 79, 126–136 (1998). Pioneering work on the neurophysiology of VIP neurons and the integration of visual and tactile cues that are likely to be of relevance for self-identification.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  91. 91

    Armel, K. C. & Ramachandran, V. S. Projecting sensations to external objects: evidence from skin conductance response. Proc. Biol. Sci. 270, 1499–1506 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  92. 92

    Taoka, M., Toda, T., Iriki, A., Tanaka, M. & Iwamura, Y. Bilateral receptive field neurons in the hindlimb region of the postcentral somatosensory cortex in awake macaque monkeys. Exp. Brain Res. 134, 139–146 (2000).

    CAS  Article  PubMed  Google Scholar 

  93. 93

    Taoka, M., Toda, T. & Iwamura, Y. Representation of the midline trunk, bilateral arms, and shoulders in the monkey postcentral somatosensory cortex. Exp. Brain Res. 123, 315–322 (1998).

    CAS  Article  PubMed  Google Scholar 

  94. 94

    Sakata, H., Taira, M., Murata, A. & Mine, S. Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. Cereb. Cortex 5, 429–438 (1995).

    CAS  Article  Google Scholar 

  95. 95

    Kitada, R., Johnsrude, I. S., Kochiyama, T. & Lederman, S. J. Functional specialization and convergence in the occipito-temporal cortex supporting haptic and visual identification of human faces and body parts: an fMRI study. J. Cogn. Neurosci. 21, 2027–2045 (2009).

    Article  PubMed  Google Scholar 

  96. 96

    Cardini, F. et al. Viewing one's own face being touched modulates tactile perception: an fMRI study. J. Cogn. Neurosci. 23, 503–513 (2011).

    Article  PubMed  Google Scholar 

  97. 97

    Brugger, P. Reflective mirrors: perspective-taking in autoscopic phenomena. Cogn. Neuropsychiatry 7, 179–194 (2002).

    Article  PubMed  Google Scholar 

  98. 98

    Blanke, O. & Mohr, C. Out-of-body experience, heautoscopy, and autoscopic hallucination of neurological origin: implications for neurocognitive mechanisms of corporeal awareness and self-consciousness. Brain Res. Brain Res. Rev. 50, 184–199 (2005). A useful review about the neurological findings in a large number of patients suffering from autoscopic phenomena that are associated with abnormal bodily self-consciousness.

    Article  PubMed  Google Scholar 

  99. 99

    Lukianowicz, N. Autoscopic phenomena. AMA Arch. Neurol. Psychiatry 80, 199–220 (1958).

    CAS  Article  PubMed  Google Scholar 

  100. 100

    Blanke, O., Landis, T., Spinelli, L. & Seeck, M. Out-of-body experience and autoscopy of neurological origin. Brain 127, 243–258 (2004).

    Article  PubMed  Google Scholar 

  101. 101

    Brugger, P., Agosti, R., Regard, M., Wieser, H. G. & Landis, T. Heautoscopy, epilepsy, and suicide. J. Neurol. Neurosurg. Psychiatry 57, 838–839 (1994).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  102. 102

    Pearson, J. & Dewhurst, K. Two cases of heautoscopic phenomena following organic lesions. Encephale 43, 166–172 (1954).

    CAS  PubMed  Google Scholar 

  103. 103

    Lunn, V. Autoscopic phenomena. Acta Psych Scand. 46, 118–125 (1970).

    Article  Google Scholar 

  104. 104

    Avillac, M., Deneve, S., Olivier, E., Pouget, A. & Duhamel, J. R. Reference frames for representing visual and tactile locations in parietal cortex. Nature Neurosci. 8, 941–949 (2005).

    CAS  Article  Google Scholar 

  105. 105

    De Ridder, D., Van Laere, K., Dupont, P., Menovsky, T. & Van de Heyning, P. Visualizing out-of-body experience in the brain. N. Engl. J. Med. 357, 1829–1833 (2007).

    CAS  Article  PubMed  Google Scholar 

  106. 106

    Claparede, E. D. Note sur la localisation du moi. Arch. Psychol. 19, 172–182 (1924) (in French).

    Google Scholar 

  107. 107

    Hoffmann, F. R. Über die Sehrichtungen. Graefe's Arch. Clin. Exp. Opthalmol. 116, 135–142 (1926) (in German).

    Article  Google Scholar 

  108. 108

    Bertossa, F., Besa, M., Ferrari, R. & Ferri, F. Point zero: a phenomenological inquiry into the seat of consciousness. Percept. Mot. Skills 107, 323–335 (2008).

    Article  PubMed  Google Scholar 

  109. 109

    Limanowski, J. & Hecht, H. Where do we stand on locating the self? Psychology 2, 312–317 (2011).

    Article  Google Scholar 

  110. 110

    Roelofs, C. O. Considerations on the visual egocenter. Acta Pschol. 16, 226–234 (1959).

    Article  Google Scholar 

  111. 111

    Harris, C. S. Perceptual adaptation to inverted, reversed, and displaced vision. Psychol. Rev. 72, 419–444 (1965).

    CAS  Article  PubMed  Google Scholar 

  112. 112

    Held, R. & Freedman, S. J. Plasticity in human sensorimotor control. Science 142, 455–462 (1963).

    CAS  Article  PubMed  Google Scholar 

  113. 113

    Kohler, I. Uber Aufbau und Wandlungen der Wahrnehmungswelt. Östereichische Akademie der Wissenschaften. Philosophisch historische Klasse 227, 1–118 (1951) (in German).

    Google Scholar 

  114. 114

    Pisella, L., Rode, G., Farne, A., Tilikete, C. & Rossetti, Y. Prism adaptation in the rehabilitation of patients with visuo-spatial cognitive disorders. Curr. Opin. Neurol. 19, 534–542 (2006).

    Article  PubMed  Google Scholar 

  115. 115

    Welch, R. B. Research on adaptation to rearranged vision: 1966–1974. Perception 3, 367–392 (1974).

    CAS  Article  PubMed  Google Scholar 

  116. 116

    Brugger, P., Regard, M. & Landis, T. Illusory reduplication of one's own body: phenomenology and classification of autoscopic phenomena. Cogn. Neuropsychiatry 2, 19–38 (1997).

    CAS  Article  PubMed  Google Scholar 

  117. 117

    Dennett, D. C. Consciousness Explained (Penguin Books, 1991).

    Google Scholar 

  118. 118

    Nagel, T. The View from Nowhere (Oxford Univ. Press, 1986).

    Google Scholar 

  119. 119

    Shoemaker, S. The First-person Perspective and Other Essays (Cambridge Univ. Press, 1996).

    Google Scholar 

  120. 120

    Blanke, O., Ortigue, S., Landis, T. & Seeck, M. Stimulating illusory own-body perceptions. Nature 419, 269–270 (2002).

    CAS  Article  PubMed  Google Scholar 

  121. 121

    Penfield, W. & Jaspers, H. Epilepsy and the Functional Anatomy of the Human Brain (Little Brown & Co, 1954).

    Google Scholar 

  122. 122

    Tong, F. Out-of-body experiences: from Penfield to present. Trends Cogn. Sci. 7, 104–106 (2003).

    Article  PubMed  Google Scholar 

  123. 123

    Brandt, C., Brechtelsbauer, D., Bien, C. G. & Reiners, K. [Out-of-body experience as possible seizure symptom in a patient with a right parietal lesion]. Nervenarzt 76, 1259–1262 (2005) (in German).

    CAS  Article  PubMed  Google Scholar 

  124. 124

    Maillard, L., Vignal, J. P., Anxionnat, R. & TaillandierVespignani, L. Semiologic value of ictal autoscopy. Epilepsia 45, 391–394 (2004).

    Article  PubMed  Google Scholar 

  125. 125

    Arzy, S., Thut, G., Mohr, C., Michel, C. M. & Blanke, O. Neural basis of embodiment: distinct contributions of temporoparietal junction and extrastriate body area. J. Neurosci. 26, 8074–8081 (2006).

    CAS  Article  PubMed  Google Scholar 

  126. 126

    Petkova, V. I., Khoshnevis, M. & Ehrsson, H. H. The perspective matters! Multisensory integration in ego-centric reference frames determines full-body ownership. Front. Psychol. 2, 35 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  127. 127

    Slater, M., Spanlang, B., Sanchez-Vives, M. V. & Blanke, O. First person experience of body transfer in virtual reality. PLoS ONE 5, e10564 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. 128

    David, N. et al. Neural representations of self versus other: visual-spatial perspective taking and agency in a virtual ball-tossing game. J. Cogn. Neurosci. 18, 898–910 (2006).

    Article  PubMed  Google Scholar 

  129. 129

    Vogeley, K. & Fink, G. R. Neural correlates of the first-person-perspective. Trends Cogn. Sci. 7, 38–42 (2003).

    Article  PubMed  Google Scholar 

  130. 130

    Vogeley, K. et al. Neural correlates of first-person perspective as one constituent of human self-consciousness. J. Cogn. Neurosci. 16, 817–827 (2004).

    CAS  Article  PubMed  Google Scholar 

  131. 131

    Corradi-Dell'acqua, C. et al. Effects of shifting perspective of the self: an fMRI study. Neuroimage 40, 1902–1911 (2008).

    Article  PubMed  Google Scholar 

  132. 132

    Zacks, J. M. & Michelon, P. Transformations of visuospatial images. Behav. Cogn. Neurosci. Rev. 4, 96–118 (2005).

    Article  PubMed  Google Scholar 

  133. 133

    Burgess, N., Maguire, E. A., Spiers, H. J. & O'Keefe, J. A temporoparietal and prefrontal network for retrieving the spatial context of lifelike events. Neuroimage 14, 439–453 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  134. 134

    Lambrey, S. et al. Distinct visual perspective-taking strategies involve the left and right medial temporal lobe structures differently. Brain 131, 523–534 (2008).

    CAS  Article  PubMed  Google Scholar 

  135. 135

    Golomer, E., Cremieux, J., Dupui, P., Isableu, B. & Ohlmann, T. Visual contribution to self-induced body sway frequencies and visual perception of male professional dancers. Neurosci. Lett. 267, 189–192 (1999).

    CAS  Article  PubMed  Google Scholar 

  136. 136

    Isableu, B., Ohlmann, T., Cremieux, J. & Amblard, B. Selection of spatial frame of reference and postural control variability. Exp. Brain Res. 114, 584–589 (1997).

    CAS  Article  PubMed  Google Scholar 

  137. 137

    Lopez, C., Lacour, M., Magnan, J. & Borel, L. Visual field dependence-independence before and after unilateral vestibular loss. Neuroreport 17, 797–803 (2006).

    Article  PubMed  Google Scholar 

  138. 138

    Young, L. R., Oman, C. M., Watt, D. G., Money, K. E. & Lichtenberg, B. K. Spatial orientation in weightlessness and readaptation to earth's gravity. Science 225, 205–208 (1984).

    CAS  Article  PubMed  Google Scholar 

  139. 139

    Green, C. E. Out-of-Body Experiences (Hamish Hamilton, 1968).

    Google Scholar 

  140. 140

    Gurovskiy, N. N., Bryanov, I. I. & Yegorov, A. D. Changes in the vestibular function during space flight. Acta Astronaut. 2, 207–216 (1975).

    CAS  Article  PubMed  Google Scholar 

  141. 141

    Kornilova, L. N. Orientation illusions in spaceflight. J. Vestib. Res. 7, 429–439 (1997).

    CAS  Article  PubMed  Google Scholar 

  142. 142

    Lackner, J. R. Spatial orientation in weightless environments. Perception 21, 803–812 (1992).

    CAS  Article  PubMed  Google Scholar 

  143. 143

    Graybiel, A. & Kellogg, R. S. Inversion illusion in parabolic flight: its probable dependence on otolith function. Aerosp. Med. 38, 1099–1103 (1967).

    CAS  PubMed  Google Scholar 

  144. 144

    Aubert, H. Eine scheinbare bedeutende Drehung von Objecten bei Neigung des Kopfes nach rechts oder links. Virchows Archiv. 20, 381–393 (1861) (in German).

    Article  Google Scholar 

  145. 145

    Jenkin, H. L., Dyde, R. T., Jenkin, M. R., Howard, I. P. & Harris, L. R. Relative role of visual and non-visual cues in determining the direction of “up”: experiments in the York tilted room facility. J. Vestib. Res. 13, 287–293 (2003).

    CAS  PubMed  Google Scholar 

  146. 146

    Lopez, C., Bachofner, C., Mercier, M. & Blanke, O. Gravity and observer's body orientation influence the visual perception of human body postures. J. Vis. 9, 11–14 (2009).

    Article  Google Scholar 

  147. 147

    Mittelstaedt, H. The role of the otoliths in perception of the orientation of self and world to the vertical. Zool. Jahrb. Abt Physiol. 95, 418–425 (1991).

    Google Scholar 

  148. 148

    Lopez, C., Halje, P. & Blanke, O. Body ownership and embodiment: vestibular and multisensory mechanisms. Neurophysiol. Clin. 38, 149–161 (2008).

    CAS  Article  PubMed  Google Scholar 

  149. 149

    Solms, M., Kaplan-Solms, K., Saling, M. & Miller, P. Inverted vision after frontal lobe disease. Cortex 24, 499–509 (1988).

    CAS  Article  PubMed  Google Scholar 

  150. 150

    Tiliket, C., Ventre-Dominey, J., Vighetto, A. & Grochowicki, M. Room tilt illusion. A central otolith dysfunction. Arch. Neurol. 53, 1259–1264 (1996).

    CAS  Article  PubMed  Google Scholar 

  151. 151

    Chan, A. W., Peelen, M. V. & Downing, P. E. The effect of viewpoint on body representation in the extrastriate body area. Neuroreport 15, 2407–2410 (2004).

    Article  PubMed  Google Scholar 

  152. 152

    Saxe, R., Jamal, N. & Powell, L. My body or yours? The effect of visual perspective on cortical body representations. Cereb. Cortex 16, 178–182 (2006).

    Article  PubMed  Google Scholar 

  153. 153

    Grusser, O. J., Pause, M. & Schreiter, U. Vestibular neurones in the parieto-insular cortex of monkeys (Macaca fascicularis): visual and neck receptor responses. J. Physiol. 430, 559–583 (1990).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  154. 154

    Grusser, O. J., Pause, M. & Schreiter, U. Localization and responses of neurones in the parieto-insular vestibular cortex of awake monkeys (Macaca fascicularis). J. Physiol. 430, 537–557 (1990). Pioneering work on the neurophysiology of PIVC neurons and the integration of visual, vestibular and somatosensory cues that are likely to be of relevance for self-location and the first-person perspective.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  155. 155

    Robinson, C. J. & Burton, H. Somatotopographic organization in the second somatosensory area of M. fascicularis. J. Comp. Neurol. 192, 43–67 (1980).

    CAS  Article  PubMed  Google Scholar 

  156. 156

    Schneider, R. J., Friedman, D. P. & Mishkin, M. A modality-specific somatosensory area within the insula of the rhesus monkey. Brain Res. 621, 116–120 (1993).

    CAS  Article  PubMed  Google Scholar 

  157. 157

    Guldin, W. O., Akbarian, S. & Grusser, O. J. Cortico-cortical connections and cytoarchitectonics of the primate vestibular cortex: a study in squirrel monkeys (Saimiri sciureus). J. Comp. Neurol. 326, 375–401 (1992).

    CAS  Article  PubMed  Google Scholar 

  158. 158

    Guldin, W. O. & Grusser, O. J. Is there a vestibular cortex? Trends Neurosci. 21, 254–259 (1998).

    CAS  Article  PubMed  Google Scholar 

  159. 159

    Lopez, C. & Blanke, O. The thalamocortical vestibular system in animals and humans. Brain Res. Rev. 67, 119–146 (2011). A comprehensive review about the vestibular cortex and the processing of vestibular, visual and somatosensory signals including neurophysiological, neuroanatomical and neuroimaging data in animals and humans.

    Article  PubMed  Google Scholar 

  160. 160

    Duffy, C. J. MST neurons respond to optic flow and translational movement. J. Neurophysiol. 80, 1816–1827 (1998).

    CAS  Article  Google Scholar 

  161. 161

    Duffy, C. J. & Wurtz, R. H. Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. J. Neurophysiol. 65, 1329–1345 (1991).

    CAS  Article  PubMed  Google Scholar 

  162. 162

    Tanaka, K. & Saito, H. Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. J. Neurophysiol. 62, 626–641 (1989).

    CAS  Article  PubMed  Google Scholar 

  163. 163

    Schlack, A., Hoffmann, K. P. & Bremmer, F. Interaction of linear vestibular and visual stimulation in the macaque ventral intraparietal area (VIP). Eur. J. Neurosci. 16, 1877–1886 (2002).

    Article  PubMed  Google Scholar 

  164. 164

    Bremmer, F., Klam, F., Duhamel, J. R., Ben Hamed, S. & Graf, W. Visual-vestibular interactive responses in the macaque ventral intraparietal area (VIP). Eur. J. Neurosci. 16, 1569–1586 (2002). Important work on the neurophysiology of VIP neurons and the integration of visual, vestibular and somatosensory cues that are likely to be of relevance for self-identification, self-location and the first-person perspective.

    Article  PubMed  Google Scholar 

  165. 165

    Bremmer, F., Kubischik, M., Pekel, M., Lappe, M. & Hoffmann, K. P. Linear vestibular self-motion signals in monkey medial superior temporal area. Ann. NY Acad. Sci. 871, 272–281 (1999).

    CAS  Article  PubMed  Google Scholar 

  166. 166

    Fetsch, C. R., Wang, S., Gu, Y., Deangelis, G. C. & Angelaki, D. E. Spatial reference frames of visual, vestibular, and multimodal heading signals in the dorsal subdivision of the medial superior temporal area. J. Neurosci. 27, 700–712 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  167. 167

    Gu, Y., Angelaki, D. E. & Deangelis, G. C. Neural correlates of multisensory cue integration in macaque MSTd. Nature Neurosci. 11, 1201–1210 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  168. 168

    Gu, Y., DeAngelis, G. C. & Angelaki, D. E. A functional link between area MSTd and heading perception based on vestibular signals. Nature Neurosci. 10, 1038–1047 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  169. 169

    MacNeilage, P. R., Banks, M. S., Berger, D. R. & Bulthoff, H. H. A. Bayesian model of the disambiguation of gravitoinertial force by visual cues. Exp. Brain Res. 179, 263–290 (2007).

    Article  PubMed  Google Scholar 

  170. 170

    Metzinger, T. Being No One (MIT Press, 2003).

    Google Scholar 

  171. 171

    Craig, A. D. How do you feel — now? The anterior insula and human awareness. Nature Rev. Neurosci. 10, 59–70 (2009).

    CAS  Article  Google Scholar 

  172. 172

    Damasio, A. & Meyer, D. E. in The Neurology of Consciousness (eds Laureys, S. & Tononi, G.) 3–14 (Elsevier, 2009).

    Google Scholar 

  173. 173

    Damasio, A. R. The Feeling of What Happens: Body and Emotion in the Making of Consciousness (Harcourt Brace, 1999).

    Google Scholar 

  174. 174

    Pacherie, E. The phenomenology of action: a conceptual framework. Cognition 107, 179–217 (2008).

    Article  PubMed  Google Scholar 

  175. 175

    Tsakiris, M., Tajadura-Jimenez, A. & Costantini, M. Just a heartbeat away from one's body: interoceptive sensitivity predicts malleability of body-representations. Proc. Biol. Sci. 278, 2470–2476 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  176. 176

    Fox, M. D. & Raichle, M. E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Rev. Neurosci. 8, 700–711 (2007).

    CAS  Article  Google Scholar 

  177. 177

    Greicius, M. D., Supekar, K., Menon, V. & Dougherty, R. F. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb. Cortex 19, 72–78 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  178. 178

    Golland, Y. et al. Extrinsic and intrinsic systems in the posterior cortex of the human brain revealed during natural sensory stimulation. Cereb. Cortex 17, 766–777 (2007).

    Article  PubMed  Google Scholar 

  179. 179

    Crick, F. & Koch, C. Some reflections on visual awareness. Cold Spring Harb. Symp. Quant. Biol. 55, 953–962 (1990).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  180. 180

    Weiskrantz, L. Consciousness Lost and Found (Oxford Univ. Press, 1997).

    Google Scholar 

  181. 181

    Dehaene, S. & Changeux, J. P. Experimental and theoretical approaches to conscious processing. Neuron 70, 200–227 (2011).

    CAS  Article  PubMed  Google Scholar 

  182. 182

    Edelman, G. Bright Air, Brilliant Fire (Basic Books, 1992).

    Google Scholar 

  183. 183

    Esslen, M., Metzler, S., Pascual-Marqui, R. & Jancke, L. Pre-reflective and reflective self-reference: a spatiotemporal EEG analysis. Neuroimage 42, 437–449 (2008).

    Article  PubMed  Google Scholar 

  184. 184

    Gillihan, S. J. & Farah, M. J. Is self special? A critical review of evidence from experimental psychology and cognitive neuroscience. Psychol. Bull. 131, 76–97 (2005).

    Article  PubMed  Google Scholar 

  185. 185

    Heatherton, T. F. et al. Medial prefrontal activity differentiates self from close others. Soc. Cogn. Affect Neurosci. 1, 18–25 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  186. 186

    Legrand, D. & Ruby, P. What is self-specific? Theoretical investigation and critical review of neuroimaging results. Psychol. Rev. 116, 252–282 (2009).

    Article  PubMed  Google Scholar 

  187. 187

    Macrae, C. N., Moran, J. M., Heatherton, T. F., Banfield, J. F. & Kelley, W. M. Medial prefrontal activity predicts memory for self. Cereb. Cortex 14, 647–654 (2004).

    Article  PubMed  Google Scholar 

  188. 188

    Northoff, G. et al. Self-referential processing in our brain — a meta-analysis of imaging studies on the self. Neuroimage 31, 440–457 (2006).

    Article  PubMed  Google Scholar 

  189. 189

    Perrin, F. et al. Neural mechanisms involved in the detection of our first name: a combined ERPs and PET study. Neuropsychologia 43, 12–19 (2005).

    Article  PubMed  Google Scholar 

  190. 190

    Platek, S. M. et al. Neural substrates for functionally discriminating self-face from personally familiar faces. Hum. Brain Mapp. 27, 91–98 (2006).

    Article  PubMed  Google Scholar 

  191. 191

    Gazzaniga, M. S., LeDoux, J. E. & Wilson, D. H. Language, praxis, and the right hemisphere: clues to some mechanisms of consciousness. Neurology 27, 1144–1147 (1977).

    CAS  Article  PubMed  Google Scholar 

  192. 192

    Arzy, S., Arzouan, Y., Adi-Japha, E., Solomon, S. & Blanke, O. The 'intrinsic' system in the human cortex and self-projection: a data driven analysis. Neuroreport 21, 569–574 (2010).

    Article  PubMed  Google Scholar 

  193. 193

    Arzy, S., Bick, A. & Blanke, O. Mental time in amnesia: evidence from bilateral medial temporal damage before and after recovery. Cogn. Neuropsychol. 26, 503–510 (2009).

    Article  PubMed  Google Scholar 

  194. 194

    Saxe, R., Moran, J. M., Scholz, J. & Gabrieli, J. Overlapping and non-overlapping brain regions for theory of mind and self reflection in individual subjects. Soc. Cogn. Affect Neurosci. 1, 229–234 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  195. 195

    Moore, J. W., Lagnado, D., Deal, D. C. & Haggard, P. Feelings of control: contingency determines experience of action. Cognition 110, 279–283 (2009).

    Article  PubMed  Google Scholar 

  196. 196

    Herbelin, B. Virtual Reality Exposure Therapy for Social Phobia. Thesis, Ecole Polytechnique Federale de Lausanne (2005).

    Google Scholar 

  197. 197

    Klinger, E. et al. Virtual reality therapy versus cognitive behavior therapy for social phobia: a preliminary controlled study. Cyberpsychol. Behav. 8, 76–88 (2005).

    CAS  Article  PubMed  Google Scholar 

  198. 198

    Moseley, G. L., Gallace, A. & Spence, C. Space-based, but not arm-based, shift in tactile processing in complex regional pain syndrome and its relationship to cooling of the affected limb. Brain 132, 3142–3151 (2009).

    Article  PubMed  Google Scholar 

  199. 199

    Barnsley, N. et al. The rubber hand illusion increases histamine reactivity in the real arm. Curr. Biol. 21, R945–R946 (2011).

    CAS  Article  PubMed  Google Scholar 

  200. 200

    Ehrsson, H. H. et al. Upper limb amputees can be induced to experience a rubber hand as their own. Brain 131, 3443–3452 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  201. 201

    Marasco, P. D., Kim, K., Colgate, J. E., Peshkin, M. A. & Kuiken, T. A. Robotic touch shifts perception of embodiment to a prosthesis in targeted reinnervation amputees. Brain 134, 747–758 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  202. 202

    Blanke, O. & Aspell, J. E. Brain technologies raise unprecedented ethical challenges. Nature 458, 703 (2009).

    CAS  Article  PubMed  Google Scholar 

  203. 203

    Hochberg, L. R. et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442, 164–171 (2006).

    CAS  Article  PubMed  Google Scholar 

  204. 204

    Nicolelis, M. Beyond Boundaries. The Neuroscience of Connecting Brains with Machines and How It will Change our Lives (Times Books, 2011).

    Google Scholar 

  205. 205

    Perez-Marcos, D., Slater, M. & Sanchez-Vives, M. V. Inducing a virtual hand ownership illusion through a brain-computer interface. Neuroreport 20, 589–594 (2009).

    Article  PubMed  Google Scholar 

  206. 206

    Creem, S. H. et al. An fMRI study of imagined self-rotation. Cogn. Affect Behav. Neurosci. 1, 239–249 (2001).

    CAS  Article  PubMed  Google Scholar 

  207. 207

    Wraga, M., Shephard, J. M., Church, J. A., Inati, S. & Kosslyn, S. M. Imagined rotations of self versus objects: an fMRI study. Neuropsychologia 43, 1351–1361 (2005).

    Article  PubMed  Google Scholar 

  208. 208

    Aichhorn, M., Perner, J., Kronbichler, M., Staffen, W. & Ladurner, G. Do visual perspective tasks need theory of mind? Neuroimage 30, 1059–1068 (2006).

    Article  PubMed  Google Scholar 

  209. 209

    Zacks, J., Rypma, B., Gabrieli, J. D., Tversky, B. & Glover, G. H. Imagined transformations of bodies: an fMRI investigation. Neuropsychologia 37, 1029–1040 (1999).

    CAS  Article  PubMed  Google Scholar 

  210. 210

    Schwabe, L., Lenggenhager, B. & Blanke, O. The timing of temporoparietal and frontal activations during mental own body transformations from different visuospatial perspectives. Hum. Brain Mapp. 30, 1801–1812 (2009).

    Article  PubMed  Google Scholar 

  211. 211

    Amorim, M. A. & Stucchi, N. Viewer- and object-centered mental explorations of an imagined environment are not equivalent. Brain Res. Cogn. Brain Res. 5, 229–239 (1997).

    CAS  Article  PubMed  Google Scholar 

  212. 212

    Wang, R. F. & Simons, D. J. Active and passive scene recognition across views. Cognition 70, 191–210 (1999).

    CAS  Article  PubMed  Google Scholar 

  213. 213

    Clement, G., Moore, S. T., Raphan, T. & Cohen, B. Perception of tilt (somatogravic illusion) in response to sustained linear acceleration during space flight. Exp. Brain Res. 138, 410–418 (2001).

    CAS  Article  PubMed  Google Scholar 

  214. 214

    Iriki, A., Tanaka, M., Obayashi, S. & Iwamura, Y. Self-images in the video monitor coded by monkey intraparietal neurons. Neurosci. Res. 40, 163–173 (2001).

    CAS  Article  PubMed  Google Scholar 

Download references


The author thanks C. Pfeiffer for his valuable help on the manuscript. The author is supported by grants from the Swiss National Science Foundation (SINERGIA CRSII1-125135), the European Science Foundation (FP7 project VERE) and the Bertarelli Foundation.

Author information



Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links


Olaf Blanke's homepage


Body ownership

The feeling that the physical body and its parts, such as its hands and feet, belong to 'me' and are 'my' body.

Trimodal neurons

Neurons that respond to signals from three perceptual domains. One type of trimodal neuron responds to visual, tactile and proprioceptive signals; another type of trimodal neuron responds to visual, tactile and vestibular signals.

Proprioceptive signals

Sensory signals about limb and body position.

Autoscopic phenomena

A group of illusory own-body perceptions during which subjects report seeing a second own-body in extracorporeal space. They include autoscopic hallucination, heautoscopy and out-of-body experiences.


The phenomenon in which the subject experiences seeing a second own-body in extracorporeal space. Subjects often report strong self-identification with the second own-body and heautoscopy is often associated with the sensation of bi-location (that is, the sensation of being at two places at the same time).


A single point from which human observers believe they are viewing a spatial scene. Ego-centres have been investigated for visual, auditory or kinaesthetic stimuli.

Prism adaptation

The phenomenon that subjects who wear prism glasses that introduce spatial mismatches between the seen position of visual cues and their actual spatial coordinates learn to correctly perceive and reach for visual targets.

Out-of-body experience

(OBE). The phenomenon in which the subject experiences seeing a second own-body from an elevated and distanced extracorporeal position. Subjects often report disembodiment (that is, a sensation of separation from their physical body) and sensations of flying and lightness.

Virtual mirrors

Part of an immersive virtual reality scenario that includes a region where the image and movements of the immersed user will be simulated as if reflected from a physical mirror.


An umbrella term for maps and/or patterns of modulation that can be defined in relation to some point on the observer (for example, head- or eye-centred maps).


An umbrella term for maps and/or patterns of modulation that are defined in relation to an object external to the observer.

Microgravity environment

Environments in which no gravity exists for short periods (parabolic flight) or prolonged periods (orbital flight).

Vestibular neurons

Neurons responding to activation of receptors in the vestibular labyrinth (semicircular canals and otolith organs).


Organs in the vestibular labyrinth of the inner ear that are sensitive to linear acceleration and gravity.

Translational signals

Otolithic vestibular signals that cause linear acceleration.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Blanke, O. Multisensory brain mechanisms of bodily self-consciousness. Nat Rev Neurosci 13, 556–571 (2012).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing