Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The many faces of insulin-like peptide signalling in the brain

Key Points

  • Insulin-like peptides (ILPs), which comprise insulin, insulin-like growth factor 1 (IGF1) and IGF2, influence overall brain development by affecting proliferation, survival and differentiation of brain cells and by having modulatory roles in the refinement of brain circuitries.

  • Peripheral ILPs enter the brain through the blood–cerebrospinal fluid barrier and blood–brain barrier in a tonic fashion (dependent on circulating levels) and in a phasic manner according to local brain activity.

  • The adult brain is a major target of ILPs; here, they act as modulators of synaptic plasticity to orchestrate and control energy allocation.

  • We propose that central and peripheral ILPs cooperate as a functional network in brain physiology and disease.

Abstract

Central and peripheral insulin-like peptides (ILPs), which include insulin, insulin-like growth factor 1 (IGF1) and IGF2, exert many effects in the brain. Through their actions on brain growth and differentiation, ILPs contribute to building circuitries that subserve metabolic and behavioural adaptation to internal and external cues of energy availability. In the adult brain each ILP has distinct effects, but together their actions ultimately regulate energy homeostasis — they affect nutrient sensing and regulate neuronal plasticity to modulate adaptive behaviours involved in food seeking, including high-level cognitive operations such as spatial memory. In essence, the multifaceted activity of ILPs in the brain may be viewed as a system organization involved in the control of energy allocation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distribution of insulin and insulin-like growth factor receptors in the brain.
Figure 2: Signalling pathways.
Figure 3: Peripheral ILPs enter the brain.
Figure 4: Spatial compartmentalization of ILPs in the brain.
Figure 5: IGF1 in brain development.
Figure 6: Modulation of synaptic plasticity by ILPs.

Similar content being viewed by others

References

  1. Wilkinson, T. N. & Bathgate, R. A. The evolution of the relaxin peptide family and their receptors. Adv. Exp. Med. Biol. 612, 1–13 (2007).

    Article  PubMed  Google Scholar 

  2. Sehat, B. et al. SUMOylation mediates the nuclear translocation and signaling of the IGF-1 receptor. Sci. Signal. 3, ra10 (2010). This paper describes a mechanism regulating ligand-bound IGF1 receptor as a transcriptional modulator, providing a possible mechanism for IGF1-specific actions.

    Article  CAS  PubMed  Google Scholar 

  3. Garcia, J. V., Stoppelli, M. P., Thompson, K. L., Decker, S. J. & Rosner, M. R. Characterization of a Drosophila protein that binds both epidermal growth factor and insulin-related growth factors. J. Cell Biol. 105, 449–456 (1987).

    Article  CAS  PubMed  Google Scholar 

  4. Bach, L. A., Headey, S. J. & Norton, R. S. IGF-binding proteins — the pieces are falling into place. Trends Endocrinol. Metab. 16, 228–234 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Aguado, F., Sanchez-Franco, F., Rodrigo, J., Cacicedo, L. & Martinez-Murillo, R. Insulin-like growth factor I-immunoreactive peptide in adult human cerebellar Purkinje cells: co-localization with low-affinity nerve growth factor receptor. Neuroscience 59, 641–650 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Ayer-le Lievre, C., Stahlbom, P. A. & Sara, V. R. Expression of IGF-I and -II mRNA in the brain and craniofacial region of the rat fetus. Development 111, 105–115 (1991).

    CAS  PubMed  Google Scholar 

  7. Bach, M. A., Shen-Orr, Z., Lowe, W. L. Jr, Roberts, C. T. Jr & LeRoith, D. Insulin-like growth factor I mRNA levels are developmentally regulated in specific regions of the rat brain. Brain Res. Mol. Brain Res. 10, 43–48 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Han, V. K., Lund, P. K., Lee, D. C. & D'Ercole, A. J. Expression of somatomedin/insulin-like growth factor messenger ribonucleic acids in the human fetus: identification, characterization, and tissue distribution. J. Clin. Endocrinol. Metab. 66, 422–429 (1988).

    Article  CAS  PubMed  Google Scholar 

  9. McKelvie, P. A., Rosen, K. M., Kinney, H. C. & Villa-Komaroff, L. Insulin-like growth factor II expression in the developing human brain. J. Neuropathol. Exp. Neurol. 51, 464–471 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Pham, N. V., Nguyen, M. T., Hu, J. F., Vu, T. H. & Hoffman, A. R. Dissociation of IGF2 and H19 imprinting in human brain. Brain Res. 810, 1–8 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Sandberg, A. C., Engberg, C., Lake, M., von, H. H. & Sara, V. R. The expression of insulin-like growth factor I and insulin-like growth factor II genes in the human fetal and adult brain and in glioma. Neurosci. Lett. 93, 114–119 (1988).

    Article  CAS  PubMed  Google Scholar 

  12. Bondy, C. A. & Lee, W. H. Patterns of insulin-like growth factor and IGF receptor gene expression in the brain. Functional implications. Ann. NY Acad. Sci. 692, 33–43 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Stylianopoulou, F., Herbert, J., Soares, M. B. & Efstratiadis, A. Expression of the insulin-like growth factor II gene in the choroid plexus and the leptomeninges of the adult rat central nervous system. Proc. Natl Acad. Sci. USA 85, 141–145 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Banks, W. A. The source of cerebral insulin. Eur. J. Pharmacol. 490, 5–12 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Schwartz, M. W., Guyenet, S. J. & Cirulli, V. The hypothalamus and ss-cell connection in the gene-targeting era. Diabetes 59, 2991–2993 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guthrie, K. M., Nguyen, T. & Gall, C. M. Insulin-like growth factor-1 mRNA is increased in deafferented hippocampus: spatiotemporal correspondence of a trophic event with axon sprouting. J. Comp. Neurol. 352, 147–160 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Lee, W. H., Wang, G. M., Seaman, L. B. & Vannucci, S. J. Coordinate IGF-I and IGFBP5 gene expression in perinatal rat brain after hypoxia-ischemia. J. Cereb. Blood Flow Metab. 16, 227–236 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Walter, H. J., Berry, M., Hill, D. J. & Logan, A. Spatial and temporal changes in the insulin-like growth factor (IGF) axis indicate autocrine/paracrine actions of IGF-I within wounds of the rat brain. Endocrinology 138, 3024–3034 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Hwa, V., Oh, Y. & Rosenfeld, R. G. The insulin-like growth factor-binding protein (IGFBP) superfamily. Endocr. Rev. 20, 761–787 (1999).

    CAS  PubMed  Google Scholar 

  20. Ocrant, I., Fay, C. T. & Parmelee, J. T. Characterization of insulin-like growth factor binding proteins produced in the rat central nervous system. Endocrinology 127, 1260–1267 (1990).

    Article  CAS  PubMed  Google Scholar 

  21. Firth, S. M. & Baxter, R. C. Cellular actions of the insulin-like growth factor binding proteins. Endocr. Rev. 23, 824–854 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Han, V. K. et al. IGF-binding protein mRNAs in the human fetus: tissue and cellular distribution of developmental expression. Horm. Res. 45, 160–166 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Lee, W. H., Michels, K. M. & Bondy, C. A. Localization of insulin-like growth factor binding protein-2 messenger RNA during postnatal brain development: correlation with insulin-like growth factors I and II. Neuroscience 53, 251–265 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Stenvers, K. L., Zimmermann, E. M., Gallagher, M. & Lund, P. K. Expression of insulin-like growth factor binding protein-4 and -5 mRNAs in adult rat forebrain. J. Comp. Neurol. 339, 91–105 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Brar, A. K. & Chernausek, S. D. Localization of insulin-like growth factor binding protein-4 expression in the developing and adult rat brain: analysis by in situ hybridization. J. Neurosci. Res. 35, 103–114 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Bondy, C. & Lee, W. H. Correlation between insulin-like growth factor (IGF)-binding protein 5 and IGF-I gene expression during brain development. J. Neurosci. 13, 5092–5104 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Itoh, M. et al. Methyl CpG-binding protein 2 (a mutation of which causes Rett syndrome) directly regulates insulin-like growth factor binding protein 3 in mouse and human brains. J. Neuropathol. Exp. Neurol. 66, 117–123 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Holmin, S., Mathiesen, T., Langmoen, I. A. & Sandberg Nordqvist, A. C. Depolarization induces insulin-like growth factor binding protein-2 expression in vivo via NMDA receptor stimulation. Growth Horm. IGF Res. 11, 399–406 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Wood, T. L., O'Donnell, S. L. & Levison, S. W. Cytokines regulate IGF binding proteins in the CNS. Prog. Growth Factor Res. 6, 181–187 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Bondy, C. A. Transient IGF-I gene expression during the maturation of functionally related central projection neurons. J. Neurosci. 11, 3442–3455 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Devaskar, S. U. et al. Insulin gene expression and insulin synthesis in mammalian neuronal cells. J. Biol. Chem. 269, 8445–8454 (1994).

    CAS  PubMed  Google Scholar 

  32. Hynes, M. A., Brooks, P. J., Van Wyk, J. J. & Lund, P. K. Insulin-like growth factor II messenger ribonucleic acids are synthesized in the choroid plexus of the rat brain. Mol. Endocrinol. 2, 47–54 (1988).

    Article  CAS  PubMed  Google Scholar 

  33. Baron-Van, E. A., Olichon-Berthe, C., Kowalski, A., Visciano, G. & Van, O. E. Expression of IGF-I and insulin receptor genes in the rat central nervous system: a developmental, regional, and cellular analysis. J. Neurosci. Res. 28, 244–253 (1991).

    Article  Google Scholar 

  34. Adamo, M., Raizada, M. K. & LeRoith, D. Insulin and insulin-like growth factor receptors in the nervous system. Mol. Neurobiol. 3, 71–100 (1989).

    Article  CAS  PubMed  Google Scholar 

  35. Bondy, C. A., Werner, H., Roberts, C. T. Jr & LeRoith, D. Cellular pattern of insulin-like growth factor-I (IGF-I) and type I IGF receptor gene expression in early organogenesis: comparison with IGF-II gene expression. Mol. Endocrinol. 4, 1386–1398 (1990).

    Article  CAS  PubMed  Google Scholar 

  36. Valentino, K. L., Ocrant, I. & Rosenfeld, R. G. Developmental expression of insulin-like growth factor-II receptor immunoreactivity in the rat central nervous system. Endocrinology 126, 914–920 (1990).

    Article  CAS  PubMed  Google Scholar 

  37. Pons, S., Rejas, M. T. & Torres-Alemán, I. Ontogeny of insulin-like growth factor I, its receptor, and its binding proteins in the rat hypothalamus. Brain Res. Dev. Brain Res. 62, 169–175 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. Carro, E. & Torres-Alemán, I. The role of insulin and insulin-like growth factor I in the molecular and cellular mechanisms underlying the pathology of Alzheimer's disease. Eur. J. Pharmacol. 490, 127–133 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Hawkes, C. & Kar, S. The insulin-like growth factor-II/mannose-6-phosphate receptor: structure, distribution and function in the central nervous system. Brain Res. Brain Res. Rev. 44, 117–140 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Garcia-Segura, L. M., Rodriguez, J. R. & Torres-Alemán, I. Localization of the insulin-like growth factor I receptor in the cerebellum and hypothalamus of adult rats: an electron microscopic study. J. Neurocytol. 26, 479–490 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Hawkes, C. et al. Single transmembrane domain insulin-like growth factor-II/mannose-6-phosphate receptor regulates central cholinergic function by activating a G-protein-sensitive, protein kinase C-dependent pathway. J. Neurosci. 26, 585–596 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Poiraudeau, S., Lieberherr, M., Kergosie, N. & Corvol, M. T. Different mechanisms are involved in intracellular calcium increase by insulin-like growth factors 1 and 2 in articular chondrocytes: voltage-gated calcium channels, and/or phospholipase C coupled to a pertussis-sensitive G-protein. J. Cell Biochem. 64, 414–422 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Sanchez-Lasheras, C., Konner, A. C. & Bruning, J. C. Integrative neurobiology of energy homeostasis-neurocircuits, signals and mediators. Front. Neuroendocrinol. 31, 4–15 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Baura, G. D. et al. Saturable transport of insulin from plasma into the central nervous system of dogs in vivo. A mechanism for regulated insulin delivery to the brain. J. Clin. Invest. 92, 1824–1830 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Carro, E., Nunez, A., Busiguina, S. & Torres-Alemán, I. Circulating insulin-like growth factor I mediates effects of exercise on the brain. J. Neurosci. 20, 2926–2933 (2000). A demonstration that a physiological stimulus such as exercise regulates entry of serum IGF1 into the brain through the choroid plexus. These observations provide a rationale for abundant expression of IGF1 receptors in choroid plexus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Trejo, J. L., Carro, E. & Torres-Alemán, I. Circulating insulin-like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J. Neurosci. 21, 1628–1634 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nishijima, T. et al. Neuronal activity drives localized blood-brain-barrier transport of serum insulin-like growth factor-I into the CNS. Neuron 67, 834–846 (2010). Mechanisms of entry of serum IGF1 across the BBB are coupled to neuronal activity. This paper provides evidence of a functional link between peripheral and central actions of circulating IGF1.

    Article  CAS  PubMed  Google Scholar 

  48. Logan, A. et al. Coordinated pattern of expression and localization of insulin-like growth factor-II (IGF-II) and IGF-binding protein-2 in the adult rat brain. Endocrinology 135, 2255–2264 (1994).

    Article  CAS  PubMed  Google Scholar 

  49. Gronke, S., Clarke, D. F., Broughton, S., Andrews, T. D. & Partridge, L. Molecular evolution and functional characterization of Drosophila insulin-like peptides. PLoS Genet. 6, e1000857 (2010). A comprehensive analysis of the D. melanogaster insulin peptides that provides important insight into the functional arrangement of this complex hormonal system and will guide research into vertebrate insulin peptides.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Frank, H. J., Pardridge, W. M., Morris, W. L., Rosenfeld, R. G. & Choi, T. B. Binding and internalization of insulin and insulin-like growth factors by isolated brain microvessels. Diabetes 35, 654–661 (1986).

    Article  CAS  PubMed  Google Scholar 

  51. Lehtinen, M. et al. The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron 69, 893–905 (2011). The first paper describing a specific role of IGFs in CSF, providing evidence of a functional compartmentalization of ILP inputs to the brain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bolós, M., Fernandez, S. & Torres-Alemán, I. Oral administration of a GSK3 inhibitor increases brain insulin-like growth factor I levels. J. Biol. Chem. 285, 17693–17700 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Carro, E., Spuch, C., Trejo, J. L., Antequera, D. & Torres-Alemán, I. Choroid plexus megalin is involved in neuroprotection by serum insulin-like growth factor I. J. Neurosci. 25, 10884–10893 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Orlando, R. A. et al. Megalin is an endocytic receptor for insulin. J. Am. Soc. Nephrol. 9, 1759–1766 (1998).

    CAS  PubMed  Google Scholar 

  55. Marks, J. L., Porte, D. Jr, Stahl, W. L. & Baskin, D. G. Localization of insulin receptor mRNA in rat brain by in situ hybridization. Endocrinology 127, 3234–3236 (1990).

    Article  CAS  PubMed  Google Scholar 

  56. Manin, M., Broer, Y., Balage, M., Rostene, W. & Grizard, J. Metabolic clearance of insulin from the cerebrospinal fluid in the anesthetized rat. Peptides 11, 5–12 (1990).

    Article  CAS  PubMed  Google Scholar 

  57. Schwartz, M. W. et al. Kinetics and specificity of insulin uptake from plasma into cerebrospinal fluid. Am. J. Physiol. 259, E378–E383 (1990).

    CAS  PubMed  Google Scholar 

  58. Pardridge, W. M. Transport of insulin-related peptides and glucose across the blood–brain barrier. Ann. NY Acad. Sci. 692, 126–137 (1993).

    Article  CAS  PubMed  Google Scholar 

  59. Auletta, M., Nielsen, F. C. & Gammeltoft, S. Receptor-mediated endocytosis and degradation of insulin-like growth factor I and II in neonatal rat astrocytes. J. Neurosci. Res. 31, 14–20 (1992).

    Article  CAS  PubMed  Google Scholar 

  60. Attwell, D. et al. Glial and neuronal control of brain blood flow. Nature 468, 232–243 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Torres-Alemán, I. Toward a comprehensive neurobiology of IGF-I. Dev. Neurobiol. 70, 384–396 (2010).

    PubMed  Google Scholar 

  62. Trejo, J. L. et al. Central actions of liver-derived insulin-like growth factor I underlying its pro-cognitive effects. Mol. Psychiatry 12, 1118–1128 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Lopez-Lopez, C., LeRoith, D. & Torres-Alemán, I. Insulin-like growth factor I is required for vessel remodeling in the adult brain. Proc. Natl Acad. Sci. USA 101, 9833–9838 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Davila, D., Piriz, J., Trejo, J. L., Nunez, A. & Torres-Alemán, I. Insulin and insulin-like growth factor I signalling in neurons. Front. Biosci. 12, 3194–3202 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Kappeler, L. et al. Brain IGF-1 receptors control mammalian growth and lifespan through a neuroendocrine mechanism. PLoS. Biol. 6, e254 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xuan, S. et al. Genetic analysis of type-1 insulin-like growth factor receptor signaling through insulin receptor substrate-1 and -2 in pancreatic β-cells. J. Biol. Chem. 285, 41044–41050 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fernandez, A. M. et al. Functional inactivation of the IGF-I and insulin receptors in skeletal muscle causes type 2 diabetes. Genes Dev. 15, 1926–1934 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kahn, C. R. Knockout mice challenge our concepts of glucose homeostasis and the pathogenesis of diabetes. Exp. Diabesity Res. 4, 169–182 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ji, Y. et al. Acute and gradual increases in BDNF concentration elicit distinct signaling and functions in neurons. Nature Neurosci. 13, 302–309 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Withers, D. J. et al. Irs-2 coordinates Igf-1 receptor-mediated β-cell development and peripheral insulin signalling. Nature Genet. 23, 32–40 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. D'Ercole, A. J., Ye, P., Calikoglu, A. S. & Gutierrez-Ospina, G. The role of the insulin-like growth factors in the central nervous system. Mol. Neurobiol. 13, 227–255 (1996).

    Article  CAS  PubMed  Google Scholar 

  72. Baker, J., Liu, J. P., Robertson, E. J. & Efstratiadis, A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell 75, 73–82 (1993).

    Article  CAS  PubMed  Google Scholar 

  73. Camacho-Hubner, C., Woods, K. A., Clark, A. J. & Savage, M. O. Insulin-like growth factor (IGF)-I gene deletion. Rev. Endocr. Metab. Disord. 3, 357–361 (2002).

    Article  PubMed  Google Scholar 

  74. Hodge, R. D., D'Ercole, A. J. & O'Kusky, J. R. Insulin-like growth factor-I accelerates the cell cycle by decreasing G1 phase length and increases cell cycle reentry in the embryonic cerebral cortex. J. Neurosci. 24, 10201–10210 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ciucci, F. et al. Insulin-like growth factor 1 (IGF-1) mediates the effects of enriched environment (EE) on visual cortical development. PLoS ONE 2, e475 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chiu, S. L., Chen, C. M. & Cline, H. T. Insulin receptor signaling regulates synapse number, dendritic plasticity, and circuit function in vivo. Neuron 58, 708–719 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Calikoglu, A., Karayal, A. & D'Ercole, A. Nutritional regulation of IGF-I expression during brain development in mice. Pediatr. Res. 49, 197–202 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Vickers, M. H., Ikenasio, B. A. & Breier, B. H. IGF-I treatment reduces hyperphagia, obesity, and hypertension in metabolic disorders induced by fetal programming. Endocrinology 142, 3964–3973 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Bassas, L., Girbau, M., Lesniak, M. A., Roth, J. & de Pablo, F. Development of receptors for insulin and insulin-like growth factor-I in head and brain of chick embryos: autoradiographic localization. Endocrinology 125, 2320–2327 (1989).

    Article  CAS  PubMed  Google Scholar 

  80. Schoen, T. J. et al. Differential temporal and spatial expression of insulin-like growth factor binding protein-2 in developing chick ocular tissues. Invest. Ophthalmol. Vis. Sci. 36, 2652–2662 (1995).

    CAS  PubMed  Google Scholar 

  81. Deltour, L. et al. Differential expression of the two nonallelic proinsulin genes in the developing mouse embryo. Proc. Natl Acad. Sci. USA 90, 527–531 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bondy, C., Werner, H., Roberts, C. T. Jr & LeRoith, D. Cellular pattern of type-I insulin-like growth factor receptor gene expression during maturation of the rat brain: comparison with insulin-like growth factors I and II. Neuroscience 46, 909–923 (1992).

    Article  CAS  PubMed  Google Scholar 

  83. Drago, J., Murphy, M., Carroll, S. M., Harvey, R. P. & Bartlett, P. F. Fibroblast growth factor-mediated proliferation of central nervous system precursors depends on endogenous production of insulin-like growth factor I. Proc. Natl Acad. Sci. USA 88, 2199–2203 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cheng, C. M. et al. Insulin-like growth factor 1 regulates developing brain glucose metabolism. Proc. Natl Acad. Sci. USA 97, 10236–10241 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hodge, R. D., D'Ercole, A. J. & O'Kusky, J. R. Increased expression of insulin-like growth factor-I (IGF-I) during embryonic development produces neocortical overgrowth with differentially greater effects on specific cytoarchitectonic areas and cortical layers. Brain Res. Dev. Brain Res. 154, 227–237 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Pera, E. M., Wessely, O., Li, S. Y. & De Robertis, E. M. Neural and head induction by insulin-like growth factor signals. Dev. Cell 1, 655–665 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Zou, S., Kamei, H., Modi, Z. & Duan, C. Zebrafish IGF genes: gene duplication, conservation and divergence, and novel roles in midline and notochord development. PLoS ONE 4, e7026 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. White, Y. A., Kyle, J. T. & Wood, A. W. Targeted gene knockdown in zebrafish reveals distinct intraembryonic functions for insulin-like growth factor II signaling. Endocrinology 150, 4366–4375 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Gorczyca, M., Augart, C. & Budnik, V. Insulin-like receptor and insulin-like peptide are localized at neuromuscular junctions in Drosophila. J. Neurosci. 13, 3692–3704 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Song, J., Wu, L., Chen, Z., Kohanski, R. A. & Pick, L. Axons guided by insulin receptor in Drosophila visual system. Science 300, 502–505 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Sousa-Nunes, R., Yee, L. L. & Gould, A. P. Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila. Nature 471, 508–512 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lee, C. C., Huang, C. C. & Hsu, K. S. Insulin promotes dendritic spine and synapse formation by the PI3K/Akt/mTOR and Rac1 signaling pathways. Neuropharmacology 61, 867–879 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Bruning, J. C. et al. Role of brain insulin receptor in control of body weight and reproduction. Science 289, 2122–2125 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Desai, N. S., Cudmore, R. H., Nelson, S. B. & Turrigiano, G. G. Critical periods for experience-dependent synaptic scaling in visual cortex. Nature Neurosci. 5, 783–789 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Oishi, K. et al. Selective induction of neocortical GABAergic neurons by the PDK1-Akt pathway through activation of Mash1. Proc. Natl Acad. Sci. USA 106, 13064–13069 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hurtado-Chong, A. et al. IGF-I promotes neuronal migration and positioning in the olfactory bulb and the exit of neuroblasts from the subventricular zone. Eur. J. Neurosci. 30, 742–755 (2009).

    Article  PubMed  Google Scholar 

  97. O'Kusky, J. R., Ye, P. & D'Ercole, A. J. Insulin-like growth factor-I promotes neurogenesis and synaptogenesis in the hippocampal dentate gyrus during postnatal development. J. Neurosci. 20, 8435–8442 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sosa, L. et al. IGF-1 receptor is essential for the establishment of hippocampal neuronal polarity. Nature Neurosci. 9, 993–995 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Ozdinler, P. H. & Macklis, J. D. IGF-I specifically enhances axon outgrowth of corticospinal motor neurons. Nature Neurosci. 9, 1371–1381 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Sanchez-Calderon, H. et al. RNA microarray analysis in prenatal mouse cochlea reveals novel IGF-I target genes: implication of MEF2 and FOXM1 transcription factors. PLoS ONE 5, e8699 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Liu, W., Ye, P., O'Kusky, J. R. & D'Ercole, A. J. Type 1 insulin-like growth factor receptor signaling is essential for the development of the hippocampal formation and dentate gyrus. J. Neurosci. Res. 87, 2821–2832 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Ye, P. et al. Astrocyte-specific overexpression of insulin-like growth factor-I promotes brain overgrowth and glial fibrillary acidic protein expression. J. Neurosci. Res. 78, 472–484 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Hartnett, L., Glynn, C., Nolan, C. M., Grealy, M. & Byrnes, L. Insulin-like growth factor-2 regulates early neural and cardiovascular system development in zebrafish embryos. Int. J. Dev. Biol. 54, 573–583 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Konishi, Y. et al. Insulin-like growth factor II promotes in vitro cholinergic development of mouse septal neurons: comparison with the effects of insulin-like growth factor I. Brain Res. 649, 53–61 (1994).

    Article  CAS  PubMed  Google Scholar 

  105. Desai, M., Li, T. & Ross, M. G. Fetal hypothalamic neuroprogenitor cell culture: preferential differentiation paths induced by leptin and insulin. Endocrinology 152, 3192–3201 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Torres-Alemán, I., Pons, S. & Arevalo, M. A. The insulin-like growth factor I system in the rat cerebellum: developmental regulation and role in neuronal survival and differentiation. J. Neurosci. Res. 39, 117–126 (1994).

    Article  PubMed  Google Scholar 

  107. Barres, B. A. et al. Cell death and control of cell survival in the oligodendrocyte lineage. Cell 70, 31–46 (1992).

    Article  CAS  PubMed  Google Scholar 

  108. Cui, Q. L., Zheng, W. H., Quirion, R. & Almazan, G. Inhibition of Src-like kinases reveals Akt-dependent and -independent pathways in insulin-like growth factor I-mediated oligodendrocyte progenitor survival. J. Biol. Chem. 280, 8918–8928 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Morton, G. J., Cummings, D. E., Baskin, D. G., Barsh, G. S. & Schwartz, M. W. Central nervous system control of food intake and body weight. Nature 443, 289–295 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Wu, Q., Zhao, Z. & Shen, P. Regulation of aversion to noxious food by Drosophila neuropeptide Y- and insulin-like systems. Nature Neurosci. 8, 1350–1355 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Dietrich, M. O. et al. Western style diet impairs entrance of blood-borne insulin-like growth factor-1 into the brain. Neuromolecular Med. 9, 324–330 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. LaFever, L. & Drummond-Barbosa, D. Direct control of germline stem cell division and cyst growth by neural insulin in Drosophila. Science 309, 1071–1073 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. la Torre, S. et al. Amino acid-dependent activation of liver estrogen receptor-α integrates metabolic and reproductive functions via IGF-1. Cell. Metab. 13, 205–214 (2011).

    Article  CAS  Google Scholar 

  114. Cohen, E. & Dillin, A. The insulin paradox: aging, proteotoxicity and neurodegeneration. Nature Rev. Neurosci. 9, 759–767 (2008).

    Article  CAS  Google Scholar 

  115. Russo, V. C., Gluckman, P. D., Feldman, E. L. & Werther, G. A. The insulin-like growth factor system and its pleiotropic functions in brain. Endocr. Rev. 26, 916–943 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Beilharz, E. J. et al. Co-ordinated and cellular specific induction of the components of the IGF/IGFBP axis in the rat brain following hypoxic-ischemic injury. Brain Res. Mol. Brain Res. 59, 119–134 (1998).

    Article  CAS  PubMed  Google Scholar 

  117. Walter, H. J. et al. Distinct sites of insulin-like growth factor (IGF)-II expression and localization in lesioned rat brain: possible roles of IGF binding proteins (IGFBPs) in the mediation of IGF-II activity. Endocrinology 140, 520–532 (1999).

    Article  CAS  PubMed  Google Scholar 

  118. Piriz, J., Muller, A., Trejo, J. L. & Torres-Alemán, I. IGF-I and the aging mammalian brain. Exp. Gerontol. 46, 96–99 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Root, C. M., Ko, K. I., Jafari, A. & Wang, J. W. Presynaptic facilitation by neuropeptide signaling mediates odor-driven food search. Cell 145, 133–144 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Scolnick, J. A. et al. Role of IGF signaling in olfactory sensory map formation and axon guidance. Neuron 57, 847–857 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Craft, S. et al. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch. Neurol. 69, 29–38 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Arpa, J. et al. Subcutaneous insulin-like growth factor-1 treatment in spinocerebellar ataxias: an open label clinical trial. Mov. Disord. 26, 358–359 (2011).

    Article  PubMed  Google Scholar 

  123. Fernandez, A. M. et al. Regulation of the phosphatase calcineurin by insulin-like growth factor I unveils a key role of astrocytes in Alzheimer's pathology. Mol. Psychiatry 18 Oct 2011 (doi: 10.1038/mp.2011.128).

    Article  CAS  PubMed  Google Scholar 

  124. Endres, M. et al. Serum insulin-like growth factor I and ischemic brain injury. Brain Res. 1185, 328–335 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Carro, E. et al. Therapeutic actions of insulin-like growth factor I on APP/PS2 mice with severe brain amyloidosis. Neurobiol. Aging 27, 1250–1257 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Guan, J., Bennet, L., Gluckman, P. D. & Gunn, A. J. Insulin-like growth factor-1 and post-ischemic brain injury. Prog. Neurobiol. 70, 443–462 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Carro, E., Trejo, J. L., Nunez, A. & Torres-Alemán, I. Brain repair and neuroprotection by serum insulin-like growth factor I. Mol. Neurobiol. 27, 153–162 (2003).

    Article  CAS  PubMed  Google Scholar 

  128. Dudek, H. et al. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275, 661–665 (1997). Seminal observations establishing IGF1–AKT signalling as a key pro-survival route in neurons. This work positioned ILPs as neurotrophic factors.

    Article  CAS  PubMed  Google Scholar 

  129. Carro, E., Trejo, J. L., Gomez-Isla, T., LeRoith, D. & Torres-Alemán, I. Serum insulin-like growth factor I regulates brain amyloid-beta levels. Nature Med. 8, 1390–1397 (2002).

    Article  CAS  PubMed  Google Scholar 

  130. Fernandez, A. M., Fernandez, S., Carrero, P., Garcia-Garcia, M. & Torres-Alemán, I. Calcineurin in reactive astrocytes plays a key role in the interplay between proinflammatory and anti-inflammatory signals. J. Neurosci. 27, 8745–8756 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Nieto-Bona, M. P., Garcia-Segura, L. M. & Torres-Alemán, I. Transynaptic modulation by insulin-like growth factor I of dendritic spines in Purkinje cells. Int. J. Dev. Neurosci. 15, 749–754 (1997).

    Article  CAS  PubMed  Google Scholar 

  132. Ramsey, M. M., Adams, M. M., Ariwodola, O. J., Sonntag, W. E. & Weiner, J. L. Functional characterization of des-IGF-1 action at excitatory synapses in the CA1 region of rat hippocampus. J. Neurophysiol. 94, 247–254 (2005).

    Article  CAS  PubMed  Google Scholar 

  133. Anderson, M. F., Aberg, M. A., Nilsson, M. & Eriksson, P. S. Insulin-like growth factor-I and neurogenesis in the adult mammalian brain. Brain Res. Dev. Brain Res. 134, 115–122 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. Jiu, Y. M. et al. Insulin-like signaling pathway functions in integrative response to an olfactory and a gustatory stimuli in Caenorhabditis elegans. Protein Cell 1, 75–81 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Marks, D. R., Tucker, K., Cavallin, M. A., Mast, T. G. & Fadool, D. A. Awake intranasal insulin delivery modifies protein complexes and alters memory, anxiety, and olfactory behaviors. J. Neurosci. 29, 6734–6751 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Castro-Alamancos, M. A. & Torres-Alemán, I. Learning of the conditioned eye-blink response is impaired by an antisense insulin-like growth factor I oligonucleotide. Proc. Natl Acad. Sci. USA 91, 10203–10207 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Haj-ali, V., Mohaddes, G. & Babri, S. H. Intracerebroventricular insulin improves spatial learning and memory in male Wistar rats. Behav. Neurosci. 123, 1309–1314 (2009).

    Article  CAS  PubMed  Google Scholar 

  138. Dhamoon, M. S., Noble, J. M. & Craft, S. Intranasal insulin improves cognition and modulates β-amyloid in early AD. Neurology 72, 292–293 (2009).

    Article  PubMed  Google Scholar 

  139. Zhao, W. et al. Brain insulin receptors and spatial memory. Correlated changes in gene expression, tyrosine phosphorylation, and signaling molecules in the hippocampus of water maze trained rats. J. Biol. Chem. 274, 34893–34902 (1999).

    Article  CAS  PubMed  Google Scholar 

  140. Deijen, J. B., de Boer, H. & van de Veen, E. A. Cognitive changes during growth hormone replacement in adult men. Psychoneuroendocrinology 23, 45–55 (1998).

    Article  CAS  PubMed  Google Scholar 

  141. Skeberdis, V. A., Lan, J., Zheng, X., Zukin, R. S. & Bennett, M. V. Insulin promotes rapid delivery of N-methyl-D-aspartate receptors to the cell surface by exocytosis. Proc. Natl Acad. Sci. USA 98, 3561–3566 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wan, Q. et al. Recruitment of functional GABAA receptors to postsynaptic domains by insulin. Nature 388, 686–690 (1997). An early description of direct modulatory effects of insulin on neurotransmitter receptors, pointing to ILPs as modulators of synaptic plasticity events.

    Article  CAS  PubMed  Google Scholar 

  143. Wang, Y. T. & Linden, D. J. Expression of cerebellar long-term depression requires postsynaptic clathrin-mediated endocytosis. Neuron 25, 635–647 (2000).

    Article  CAS  PubMed  Google Scholar 

  144. Liou, J. C., Tsai, F. Z. & Ho, S. Y. Potentiation of quantal secretion by insulin-like growth factor-1 at developing motoneurons in Xenopus cell culture. J. Physiol. 553, 719–728 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Xing, C. et al. Effects of insulin-like growth factor 1 on synaptic excitability in cultured rat hippocampal neurons. Exp. Neurol. 205, 222–229 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Ahmadian, G. et al. Tyrosine phosphorylation of GluR2 is required for insulin-stimulated AMPA receptor endocytosis and LTD. EMBO J. 23, 1040–1050 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Chen, B. S. & Roche, K. W. Growth factor-dependent trafficking of cerebellar NMDA receptors via protein kinase B/Akt phosphorylation of NR2C. Neuron 62, 471–478 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Hwang, O. & Choi, H. J. Induction of gene expression of the catecholamine-synthesizing enzymes by insulin-like growth factor-I. J. Neurochem. 65, 1988–1996 (1995).

    Article  CAS  PubMed  Google Scholar 

  149. Blair, L. A. & Marshall, J. IGF-1 modulates N and L calcium channels in a PI 3-kinase-dependent manner. Neuron 19, 421–429 (1997).

    Article  CAS  PubMed  Google Scholar 

  150. Ster, J. et al. Insulin-like growth factor-1 inhibits adult supraoptic neurons via complementary modulation of mechanoreceptors and glycine receptors. J. Neurosci. 25, 2267–2276 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Yanagita, T. et al. Transcriptional up-regulation of cell surface NaV1.7 sodium channels by insulin-like growth factor-1 via inhibition of glycogen synthase kinase-3β in adrenal chromaffin cells: enhancement of 22Na+ influx, 45Ca2+ influx and catecholamine secretion. Neuropharmacology 61, 1265–1274 (2011).

    Article  CAS  PubMed  Google Scholar 

  152. Suzuki, R. et al. Diabetes and insulin in regulation of brain cholesterol metabolism. Cell Metab. 12, 567–579 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Turrigiano, G. G. The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135, 422–435 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kuczewski, N. et al. Backpropagating action potentials trigger dendritic release of BDNF during spontaneous network activity. J. Neurosci. 28, 7013–7023 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Cao, P., Maximov, A. & Südhof, T. Activity-dependent IGF-1 exocytosis is controlled by the Ca2+-sensor synaptotagmin-10. Cell 145, 300–311 (2011). New insights into the molecular mechanisms regulating IGF1 release by neurons in the adult brain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Abbott, M. A., Wells, D. G. & Fallon, J. R. The insulin receptor tyrosine kinase substrate p58/53 and the insulin receptor are components of CNS synapses. J. Neurosci. 19, 7300–7308 (1999). By describing the presence of insulin receptors in synapses of the mature CNS, this work provided a compelling argument for synaptic actions of insulin in the adult brain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Clarke, D. W., Mudd, L., Boyd, F. T. Jr, Fields, M. & Raizada, M. K. Insulin is released from rat brain neuronal cells in culture. J. Neurochem. 47, 831–836 (1986).

    Article  CAS  PubMed  Google Scholar 

  158. Deng, W., Aimone, J. B. & Gage, F. H. New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nature Rev. Neurosci. 11, 339–350 (2010).

    Article  CAS  Google Scholar 

  159. Aberg, N. D., Brywe, K. G. & Isgaard, J. Aspects of growth hormone and insulin-like growth factor-I related to neuroprotection, regeneration, and functional plasticity in the adult brain. ScientificWorldJournal 6, 53–80 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Ma, D. K. et al. Epigenetic choreographers of neurogenesis in the adult mammalian brain. Nature Neurosci. 13, 1338–1344 (2010).

    Article  CAS  PubMed  Google Scholar 

  161. Bruel-Jungerman, E. et al. Inhibition of PI3K-Akt signaling blocks exercise-mediated enhancement of adult neurogenesis and synaptic plasticity in the dentate gyrus. PLoS ONE 4, e7901 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Trejo, J. L., Llorens-Martin, M. V. & Torres-Alemán, I. The effects of exercise on spatial learning and anxiety-like behavior are mediated by an IGF-I-dependent mechanism related to hippocampal neurogenesis. Mol. Cell. Neurosci. 37, 402–411 (2008).

    Article  CAS  PubMed  Google Scholar 

  163. Duman, R. S. Depression: a case of neuronal life and death? Biol. Psychiatry 56, 140–145 (2004).

    Article  PubMed  Google Scholar 

  164. Greenwood, B. N. & Fleshner, M. Exercise, learned helplessness, and the stress-resistant brain. Neuromolecular Med. 10, 81–98 (2008).

    Article  CAS  PubMed  Google Scholar 

  165. Duman, C. H. et al. Peripheral insulin-like growth factor-I produces antidepressant-like behavior and contributes to the effect of exercise. Behav. Brain Res. 198, 366–371 (2009).

    Article  CAS  PubMed  Google Scholar 

  166. Burgdorf, J., Panksepp, J. & Moskal, J. R. Frequency-modulated 50 kHz ultrasonic vocalizations: a tool for uncovering the molecular substrates of positive affect. Neurosci. Biobehav. Rev. 35, 1831–1836 (2010).

    Article  PubMed  Google Scholar 

  167. Yan, H. et al. Circulating IGF1 regulates hippocampal IGF1 levels and brain gene expression during adolescence. J. Endocrinol. 211, 27–37 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Armstrong, C. S., Wuarin, L. & Ishii, D. N. Uptake of circulating insulin-like growth factor-I into the cerebrospinal fluid of normal and diabetic rats and normalization of IGF-II mRNA content in diabetic rat brain. J. Neurosci. Res. 59, 649–660 (2000).

    Article  CAS  PubMed  Google Scholar 

  169. Harel, Z. & Tannenbaum, G. S. Synergistic interaction between insulin-like growth factors-I and -II in central regulation of pulsatile growth hormone secretion. Endocrinology 131, 758–764 (1992).

    CAS  PubMed  Google Scholar 

  170. Boucher, J. et al. A kinase-independent role for unoccupied insulin and IGF-1 receptors in the control of apoptosis. Sci. Signal. 3, ra87 (2010). This work describes a novel role of insulin and IGF1 receptors as ligand-independent entities in the control of cell survival. The fact that these receptors have a direct effect on apoptotic pathways provides new alternatives for the debate regarding the role of ILPs in ageing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Bokov, A. F. et al. Does reduced IGF-1R signaling in Igf1r+/− mice alter aging? PLoS ONE 6, e26891 (2011). This paper showed that, after controlling for environmental influences on general health conditions, IGF1 has no effect on longevity in rodents, suggesting that the effects of ILPs on longevity may differ between invertebrates and higher species.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Anctil, M. Chemical transmission in the sea anemone Nematostella vectensis: a genomic perspective. Comp. Biochem. Physiol. Part D 4, 268–289 (2009).

    Google Scholar 

  173. Rodriguez-Lopez, C. D., Rodriguez-Romero, A., Aguilar, R. & de Jimenez, E. S. Biochemical characterization of a new maize (Zea mays L.) peptide growth factor. Protein Pept. Lett. 18, 84–91 (2011).

    Article  CAS  PubMed  Google Scholar 

  174. Wallis, M. New insulin-like growth factor (IGF)-precursor sequences from mammalian genomes: the molecular evolution of IGFs and associated peptides in primates. Growth Horm. IGF Res. 19, 12–23 (2009).

    Article  CAS  PubMed  Google Scholar 

  175. Slaidina, M., Delanoue, R., Gronke, S., Partridge, L. & Leopold, P. A Drosophila insulin-like peptide promotes growth during nonfeeding states. Dev. Cell 17, 874–884 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Honegger, B. et al. Imp-L2, a putative homolog of vertebrate IGF-binding protein 7, counteracts insulin signaling in Drosophila and is essential for starvation resistance. J. Biol. 7, 10 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Kim, H. S. et al. Identification of a family of low-affinity insulin-like growth factor binding proteins (IGFBPs): characterization of connective tissue growth factor as a member of the IGFBP superfamily. Proc. Natl Acad. Sci. USA 94, 12981–12986 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Mutaguchi, K. et al. Restoration of insulin-like growth factor binding protein-related protein 1 has a tumor-suppressive activity through induction of apoptosis in human prostate cancer. Cancer Res. 63, 7717–7723 (2003).

    CAS  PubMed  Google Scholar 

  179. Marino, J. S., Xu, Y. & Hill, J. W. Central insulin and leptin-mediated autonomic control of glucose homeostasis. Trends Endocrinol. Metab. 22, 275–285 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Adem, A. et al. Insulin-like growth factor 1 (IGF-1) receptors in the human brain: quantitative autoradiographic localization. Brain Res. 503, 299–303 (1989).

    Article  CAS  PubMed  Google Scholar 

  181. De, K. J., Wilczak, N., de Backer, J. P., Herroelen, L. & Vauquelin, G. Insulin-like growth factor-I receptors in human brain and pituitary gland: an autoradiographic study. Synapse 17, 196–202 (1994).

    Article  Google Scholar 

  182. Pandini, G. et al. Insulin/insulin-like growth factor I hybrid receptors have different biological characteristics depending on the insulin receptor isoform involved. J. Biol. Chem. 277, 39684–39695 (2002).

    Article  CAS  PubMed  Google Scholar 

  183. van, H. M., Posner, B. I., Kopriwa, B. M. & Brawer, J. R. Insulin binding sites localized to nerve terminals in rat median eminence and arcuate nucleus. Science 207, 1081–1083 (1980).

    Article  Google Scholar 

  184. Okano, T., Xuan, S. & Kelley, M. W. Insulin-like growth factor signaling regulates the timing of sensory cell differentiation in the mouse cochlea. J. Neurosci. 31, 18104–18118 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge past members of the laboratory for their important contributions to work cited in this Review. We apologize to authors whose work is not included owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Torres-Alemán.

Ethics declarations

Competing interests

Ignacio Torres-Alemán owns shares in spin-off companies involved in developing drugs for neurodegenerative diseases. Ana M. Fernandez declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Authors' homepage 1

Authors' homepage 2

Allen Brain Atlas

Glossary

Transcytosis

Regulated endocytosis and transport of molecules from one side of the cell to the other for their eventual release.

Neurovascular coupling

A process by which brain activity is coupled to blood flow to assure proper nutrient and oxygen supply.

Tanycytes

Ependymal cells located in the floor of the third ventricle that have processes extending deep into the hypothalamus.

Insulin receptor substrates

(IRSs). A family of large docking proteins for tyrosine kinase receptors, including insulin and IGF1 receptors, with multiple protein–protein interacting sites and complex post-transductional regulatory mechanisms, such as phosphorylation, dephosphorylation and ubiquitylation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandez, A., Torres-Alemán, I. The many faces of insulin-like peptide signalling in the brain. Nat Rev Neurosci 13, 225–239 (2012). https://doi.org/10.1038/nrn3209

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3209

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing