Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Stress, memory and the amygdala

Key Points

  • Emotionally arousing experiences tend to form strong memories and the amygdala has a pivotal role in this process.

  • Stress hormones and stress-activated neurotransmitter systems in the basolateral amygdala are crucially important in the consolidation of emotional memories.

  • A growing body of evidences points to a central role for noradrenaline in mediating the enhancing effects of adrenal stress hormones, such as adrenaline and glucocorticoids, on the consolidation of emotional memories.

  • Basolateral amygdala activity affects memory consolidation and neural plasticity in other brain regions (for example, the hippocampus and various neocortical regions).

  • The basolateral amygdala, and its interactions with the hippocampus and prefrontal cortex, also plays a part in the stress-induced impairment of memory retrieval and working memory.

  • The same amygdala mechanisms that facilitate the robust encoding of emotionally salient memories can become maladaptive under conditions of traumatic and chronic stress.

  • Chronic stress triggers patterns of structural plasticity in the basolateral amygdala, which are strikingly different from those seen in the hippocampus and prefrontal cortex. Chronic immobilization stress leads to dendritic growth and spinogenesis in principal neurons of the basolateral amygdala.

  • Stress-induced neuronal remodelling in animal models reveals unique features of structural plasticity in the amygdala that could be of relevance to studies of humans with mood disorders and post-traumatic stress disorder.


Emotionally significant experiences tend to be well remembered, and the amygdala has a pivotal role in this process. But the efficient encoding of emotional memories can become maladaptive — severe stress often turns them into a source of chronic anxiety. Here, we review studies that have identified neural correlates of stress-induced modulation of amygdala structure and function — from cellular mechanisms to their behavioural consequences. The unique features of stress-induced plasticity in the amygdala, in association with changes in other brain regions, could have long-term consequences for cognitive performance and pathological anxiety exhibited in people with affective disorders.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The main subdivisions of the amygdala and their intrinsic and extrinsic connections.
Figure 2: Glucocorticoid effects on memory consolidation for object recognition training require arousal-induced noradrenergic activation.
Figure 3: Emotional arousal-induced modulation of memory consolidation.
Figure 4: A brief exposure to stress triggers a delayed increase in anxiety and spine density in the BLA.
Figure 5: Effects of acute and chronic stress on BLA principal neurons.


  1. 1

    McEwen, B. S. Stress, adaptation, and disease. Allostasis and allostatic load. Ann. NY Acad. Sci. 840, 33–44 (1998).

    CAS  PubMed  Google Scholar 

  2. 2

    Neisser, U. et al. Remembering the earthquake: direct experience vs. hearing the news. Memory 4, 337–357 (1996).

    CAS  PubMed  Google Scholar 

  3. 3

    Bohannon, J. N. Flashbulb memories for the space shuttle disaster: a tale of two theories. Cognition 29, 179–196 (1988).

    PubMed  Google Scholar 

  4. 4

    Morris, R. G., Anderson, E., Lynch, G. S. & Baudry, M. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319, 774–776 (1986).

    CAS  Google Scholar 

  5. 5

    Vazdarjanova, A. & McGaugh, J. L. Basolateral amygdala is not critical for cognitive memory of contextual fear conditioning. Proc. Natl Acad. Sci. USA 95, 15003–15007 (1998).

    CAS  PubMed  Google Scholar 

  6. 6

    McGaugh, J. L. & Roozendaal, B. Role of adrenal stress hormones in forming lasting memories in the brain. Curr. Opin. Neurobiol. 12, 205–210 (2002).

    CAS  PubMed  Google Scholar 

  7. 7

    McEwen, B. S. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol. Rev. 87, 873–904 (2007).

    Google Scholar 

  8. 8

    Sheline, Y. I. Neuroimaging studies of mood disorder effects on the brain. Biol. Psychiatry 54, 338–352 (2003).

    PubMed  Google Scholar 

  9. 9

    Joels, M. & Baram, T. Z. The neuro-symphony of stress. Nature Rev. Neurosci. 2 Apr 2009 (doi:10.1038/nrn2632). These authors report why stress requires the activation of many different stress mediators and how the effects of individual mediators on neuronal function and plasticity are integrated.

    PubMed  PubMed Central  Google Scholar 

  10. 10

    McGaugh, J. L. Memory--a century of consolidation. Science 287, 248–251 (2000). A comprehensive review of memory consolidation research, focusing on the role of the amygdala, and the noradrenergic system in the BLA, in modulating long-term memory consolidation in other brain regions.

    CAS  PubMed  Google Scholar 

  11. 11

    Galvez, R., Mesches, M. H. & McGaugh, J. L. Norepinephrine release in the amygdala in response to footshock stimulation. Neurobiol. Learn. Mem. 66, 253–257 (1996).

    CAS  PubMed  Google Scholar 

  12. 12

    Hatfield, T. & McGaugh, J. L. Norepinephrine infused into the basolateral amygdala posttraining enhances retention in a spatial water maze task. Neurobiol. Learn. Mem. 71, 232–239 (1999).

    CAS  PubMed  Google Scholar 

  13. 13

    Liang, K. C., McGaugh, J. L. & Yao, H. Y. Involvement of amygdala pathways in the influence of post-training intra-amygdala norepinephrine and peripheral epinephrine on memory storage. Brain Res. 508, 225–233 (1990).

    CAS  PubMed  Google Scholar 

  14. 14

    Ferry, B., Roozendaal, B. & McGaugh, J. L. Basolateral amygdala noradrenergic influences on memory storage are mediated by an interaction between β- and α1-adrenoceptors. J. Neurosci. 19, 5119–5123 (1999).

    CAS  PubMed  Google Scholar 

  15. 15

    Ferry, B., Roozendaal, B. & McGaugh, J. L. Involvement of α1-adrenoceptors in the basolateral amygdala in modulation of memory storage. Eur. J. Pharmacol. 372, 9–16 (1999).

    CAS  PubMed  Google Scholar 

  16. 16

    Brioni, J. D., Nagahara, A. H. & McGaugh, J. L. Involvement of the amygdala GABAergic system in the modulation of memory storage. Brain Res. 487, 105–112 (1989).

    CAS  PubMed  Google Scholar 

  17. 17

    Wilensky, A. E., Schafe, G. E. & LeDoux, J. E. The amygdala modulates memory consolidation of fear-motivated inhibitory avoidance learning but not classical fear conditioning. J. Neurosci. 20, 7059–7066 (2000).

    CAS  PubMed  Google Scholar 

  18. 18

    Marsicano, G. et al. The endogenous cannabinoid system controls extinction of aversive memories. Nature 418, 530–534 (2002).

    CAS  PubMed  Google Scholar 

  19. 19

    Campolongo, P. et al. Endocannabinoids in the rat basolateral amygdala enhance memory consolidation and enable glucocorticoid modulation of memory. Proc. Natl Acad. Sci. USA 106, 4888–4893 (2009). These authors show that activation of endocannabinoid CB1 activity in the BLA enhances memory consolidation and provide the first in vivo demonstration in mammals that endocannabinoid activity is required to enable the memory-enhancing effects of glucocorticoids.

    CAS  PubMed  Google Scholar 

  20. 20

    Katona, I. et al. Presynaptically located CB1 cannabinoid receptors regulate GABA release from axon terminals of specific hippocampal interneurons. J. Neurosci. 19, 4544–4558 (1999).

    CAS  PubMed  Google Scholar 

  21. 21

    Hoffman, A. F. & Lupica, C. R. Mechanisms of cannabinoid inhibition of GABAA synaptic transmission in the hippocampus. J. Neurosci. 20, 2470–2479 (2000).

    CAS  PubMed  Google Scholar 

  22. 22

    Williams, C. L., Men, D., Clayton, E. C. & Gold, P. E. Norepinephrine release in the amygdala after systemic injection of epinephrine or escapable footshock: contribution of the nucleus of the solitary tract. Behav. Neurosci. 112, 1414–1422 (1998).

    CAS  PubMed  Google Scholar 

  23. 23

    Liang, K. C., Juler, R. G. & McGaugh, J. L. Modulating effects of posttraining epinephrine on memory: involvement of the amygdala noradrenergic system. Brain Res. 368, 125–133 (1986).

    CAS  PubMed  Google Scholar 

  24. 24

    McGaugh, J. L., Cahill, L. & Roozendaal, B. Involvement of the amygdala in memory storage: interaction with other brain systems. Proc. Natl Acad. Sci. USA 93, 13508–13514 (1996).

    CAS  PubMed  Google Scholar 

  25. 25

    Clayton, E. C. & Williams, C. L. Adrenergic activation of the nucleus tractus solitarius potentiates amygdala norepinephrine release and enhances retention performance in emotionally arousing and spatial memory tasks. Behav. Brain Res. 112, 151–158 (2000). These authors reported evidence that adrenaline infused into the nucleus of the solitary tract enhances retention of inhibitory avoidance and radial-maze spatial training. In addition, the adrenaline infusions potentiated noradrenaline release in the amygdala, as assessed by in vivo microdialysis and high-performance liquid chromatography.

    CAS  PubMed  Google Scholar 

  26. 26

    Williams, C. L. & Clayton, E. C. in Memory Consolidation: Essays in Honor of James L. McGaugh (eds Gold, P. E. & Greenough, W. T.) 141–163 (American Psychological Association, Washington DC, 2001).

    Google Scholar 

  27. 27

    Fallon, J. H. & Ciofi, P. in The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction (ed. Aggleton, J. P.) 97–114 (Wiley-Liss, New York, 1992).

    Google Scholar 

  28. 28

    Reul, J. M. & de Kloet, E. R. Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology 117, 2505–2511 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Roozendaal, B. & McGaugh, J. L. Glucocorticoid receptor agonist and antagonist administration into the basolateral but not central amygdala modulates memory storage. Neurobiol. Learn. Mem. 67, 176–179 (1997).

    CAS  PubMed  Google Scholar 

  30. 30

    Donley, M. P., Schulkin, J. & Rosen, J. B. Glucocorticoid receptor antagonism in the basolateral amygdala and ventral hippocampus interferes with long-term memory of contextual fear. Behav. Brain Res. 164, 197–205 (2005).

    CAS  PubMed  Google Scholar 

  31. 31

    Roozendaal, B. & McGaugh, J. L. Amygdaloid nuclei lesions differentially affect glucocorticoid-induced memory enhancement in an inhibitory avoidance task. Neurobiol. Learn. Mem. 65, 1–8 (1996).

    CAS  PubMed  Google Scholar 

  32. 32

    Roozendaal, B., Portillo-Marquez, G. & McGaugh, J. L. Basolateral amygdala lesions block glucocorticoid-induced modulation of memory for spatial learning. Behav. Neurosci. 110, 1074–1083 (1996).

    CAS  PubMed  Google Scholar 

  33. 33

    Quirarte, G. L., Roozendaal, B. & McGaugh, J. L. Glucocorticoid enhancement of memory storage involves noradrenergic activation in the basolateral amygdala. Proc. Natl Acad. Sci. USA 94, 14048–14053 (1997).

    CAS  PubMed  Google Scholar 

  34. 34

    Roozendaal, B., Quirarte, G. L. & McGaugh, J. L. Glucocorticoids interact with the basolateral amygdala β-adrenoceptor–cAMP/cAMP/PKA system in influencing memory consolidation. Eur. J. Neurosci. 15, 553–560 (2002).

    PubMed  Google Scholar 

  35. 35

    Roozendaal, B., Schelling, G. & McGaugh, J. L. Corticotropin-releasing factor in the basolateral amygdala enhances memory consolidation via an interaction with the β-adrenoceptor-cAMP pathway: dependence on glucocorticoid receptor activation. J. Neurosci. 28, 6642–6651 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Buchanan, T. W. & Lovallo, W. R. Enhanced memory for emotional material following stress-level cortisol treatment in humans. Psychoneuroendocrinology 26, 307–317 (2001).

    CAS  PubMed  Google Scholar 

  37. 37

    Cahill, L. et al. Amygdala activity at encoding correlated with long-term, free recall of emotional information. Proc. Natl Acad. Sci. USA 93, 8016–8021 (1996).

    CAS  PubMed  Google Scholar 

  38. 38

    Cahill, L. & Alkire, M. T. Epinephrine enhancement of human memory consolidation: interaction with arousal at encoding. Neurobiol. Learn. Mem. 79, 194–198 (2003).

    CAS  PubMed  Google Scholar 

  39. 39

    Okuda, S., Roozendaal, B. & McGaugh, J. L. Glucocorticoid effects on object recognition memory require training-associated emotional arousal. Proc. Natl Acad. Sci. USA 101, 853–858 (2004).

    CAS  PubMed  Google Scholar 

  40. 40

    Roozendaal, B., Okuda, S., Van der Zee, E. A. & McGaugh, J. L. Glucocorticoid enhancement of memory requires arousal-induced noradrenergic activation in the basolateral amygdala. Proc. Natl Acad. Sci. USA 103, 6741–6746 (2006).

    CAS  PubMed  Google Scholar 

  41. 41

    Roozendaal, B., Okuda, S., Van der Zee, E. A. & McGaugh, J. L. Glucocorticoid enhancement of memory requires arousal-induced noradrenergic activation in the basolateral amygdala. Proc. Natl Acad. Sci. USA 103, 6741–6746 (2006). This study showed that glucocorticoids require emotional arousal-induced noradrenergic activation in the BLA to influence memory consolidation.

    CAS  PubMed  Google Scholar 

  42. 42

    Cahill, L., Prins, B., Weber, M. & McGaugh, J. L. β-Adrenergic activation and memory for emotional events. Nature 371, 702–704 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Nielson, K. A. & Jensen, R. A. Beta-adrenergic receptor antagonist antihypertensive medications impair arousal-induced modulation of working memory in elderly humans. Behav. Neural Biol. 62, 190–200 (1994).

    CAS  PubMed  Google Scholar 

  44. 44

    Cahill, L., Babinsky, R., Markowitsch, H. J. & McGaugh, J. L. The amygdala and emotional memory. Nature 377, 295–296 (1995).

    CAS  PubMed  Google Scholar 

  45. 45

    Pikkarainen, M., Ronkko, S., Savander, V., Insausti, R. & Pitkanen, A. Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the hippocampal formation in rat. J. Comp. Neurol. 403, 229–260 (1999).

    CAS  PubMed  Google Scholar 

  46. 46

    Petrovich, G. D., Canteras, N. S. & Swanson, L. W. Combinatorial amygdalar inputs to hippocampal domains and hypothalamic behavior systems. Brain Res. Brain Res. Rev. 38, 247–289 (2001).

    CAS  PubMed  Google Scholar 

  47. 47

    McDonald, R. J. & White, N. M. A triple dissociation of memory systems: hippocampus, amygdala, and dorsal striatum. Behav. Neurosci. 107, 3–22 (1993).

    CAS  PubMed  Google Scholar 

  48. 48

    Packard, M. G. & McGaugh, J. L. Double dissociation of fornix and caudate nucleus lesions on acquisition of two water maze tasks: further evidence for multiple memory systems. Behav. Neurosci. 106, 439–446 (1992).

    CAS  PubMed  Google Scholar 

  49. 49

    Packard, M. G., Cahill, L. & McGaugh, J. L. Amygdala modulation of hippocampal-dependent and caudate nucleus-dependent memory processes. Proc. Natl Acad. Sci. USA 91, 8477–8481 (1994).

    CAS  PubMed  Google Scholar 

  50. 50

    McIntyre, C. K. et al. Memory-influencing intra-basolateral amygdala drug infusions modulate expression of Arc protein in the hippocampus. Proc. Natl Acad. Sci. USA 102, 10718–10723 (2005).

    CAS  PubMed  Google Scholar 

  51. 51

    Guzowski, J. F. et al. Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J. Neurosci. 20, 3993–4001 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Huff, N. C. et al. Amygdala regulation of immediate-early gene expression in the hippocampus induced by contextual fear conditioning. J. Neurosci. 26, 1616–1623 (2006).

    CAS  PubMed  Google Scholar 

  53. 53

    Roozendaal, B., Nguyen, B. T., Power, A. E. & McGaugh, J. L. Basolateral amygdala noradrenergic influence enables enhancement of memory consolidation induced by hippocampal glucocorticoid receptor activation. Proc. Natl Acad. Sci. USA 96, 11642–11647 (1999).

    CAS  PubMed  Google Scholar 

  54. 54

    Roozendaal, B. & McGaugh, J. L. Basolateral amygdala lesions block the memory-enhancing effect of glucocorticoid administration in the dorsal hippocampus of rats. Eur. J. Neurosci. 9, 76–83 (1997).

    CAS  PubMed  Google Scholar 

  55. 55

    Bermudez-Rattoni, F., Okuda, S., Roozendaal, B. & McGaugh, J. L. Insular cortex is involved in consolidation of object recognition memory. Learn. Mem. 12, 447–449 (2005).

    PubMed  Google Scholar 

  56. 56

    Malin, E. L., Ibrahim, D. Y., Tu, J. W. & McGaugh, J. L. Involvement of the rostral anterior cingulate cortex in consolidation of inhibitory avoidance memory: interaction with the basolateral amygdala. Neurobiol. Learn. Mem. 87, 295–302 (2007).

    PubMed  Google Scholar 

  57. 57

    Ardenghi, P. et al. Late and prolonged post-training memory modulation in entorhinal and parietal cortex by drugs acting on the cAMP/protein kinase A signalling pathway. Behav. Pharmacol. 8, 745–751 (1997).

    CAS  PubMed  Google Scholar 

  58. 58

    Izquierdo, I. et al. Sequential role of hippocampus and amygdala, entorhinal cortex and parietal cortex in formation and retrieval of memory for inhibitory avoidance in rats. Eur. J. Neurosci. 9, 786–793 (1997).

    CAS  PubMed  Google Scholar 

  59. 59

    Baldi, E., Ambrogi, L. C., Sacchetti, B., Tassoni, G. & Bucherelli, C. Effects of combined medial septal area, fimbria-fornix and entorhinal cortex tetrodotoxin inactivations on passive avoidance response consolidation in the rat. Brain Res. 821, 503–510 (1999).

    CAS  PubMed  Google Scholar 

  60. 60

    Pare, D. & Gaudreau, H. Projection cells and interneurons of the lateral and basolateral amygdala: distinct firing patterns and differential relation to theta and delta rhythms in conscious cats. J. Neurosci. 16, 3334–3350 (1996).

    CAS  PubMed  Google Scholar 

  61. 61

    Roesler, R., Roozendaal, B. & McGaugh, J. L. Basolateral amygdala lesions block the memory-enhancing effect of 8-Br-cAMP infused into the entorhinal cortex of rats after training. Eur. J. Neurosci. 15, 905–910 (2002).

    PubMed  Google Scholar 

  62. 62

    Miranda, M. I. & McGaugh, J. L. Enhancement of inhibitory avoidance and conditioned taste aversion memory with insular cortex infusions of 8-Br-cAMP: involvement of the basolateral amygdala. Learn. Mem. 11, 312–317 (2004).

    PubMed  PubMed Central  Google Scholar 

  63. 63

    Liang, K. C. in Memory Consolidation: Essays in Honor of James L. McGaugh (eds Gold, P. E. & Greenough, W. T.) 165–183 (American Psychological Association, Washington DC, 2001).

    Google Scholar 

  64. 64

    Laviolette, S. R. & Grace, A. A. Cannabinoids potentiate emotional learning plasticity in neurons of the medial prefrontal cortex through basolateral amygdala inputs. J. Neurosci. 26, 6458–6468 (2006).

    CAS  PubMed  Google Scholar 

  65. 65

    McGaugh, J. L. Memory consolidation and the amygdala: a systems perspective. Trends Neurosci. 25, 456 (2002).

    CAS  PubMed  Google Scholar 

  66. 66

    Buchanan, T. W., Tranel, D. & Adolphs, R. Impaired memory retrieval correlates with individual differences in cortisol response but not autonomic response. Learn. Mem. 13, 382–387 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    de Quervain, D. J., Roozendaal, B. & McGaugh, J. L. Stress and glucocorticoids impair retrieval of long-term spatial memory. Nature 394, 787–790 (1998).

    CAS  PubMed  Google Scholar 

  68. 68

    de Quervain, D. J., Roozendaal, B., Nitsch, R. M., McGaugh, J. L. & Hock, C. Acute cortisone administration impairs retrieval of long-term declarative memory in humans. Nature Neurosci. 3, 313–314 (2000).

    CAS  PubMed  Google Scholar 

  69. 69

    Wolf, O. T., Kuhlmann, S., Buss, C., Hellhammer, D. H. & Kirschbaum, C. Cortisol and memory retrieval in humans: influence of emotional valence. Ann. NY Acad. Sci. 1032, 195–197 (2004).

    CAS  PubMed  Google Scholar 

  70. 70

    Cai, W. H., Blundell, J., Han, J., Greene, R. W. & Powell, C. M. Postreactivation glucocorticoids impair recall of established fear memory. J. Neurosci. 26, 9560–9566 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    de Quervain, D. J. et al. Glucocorticoid-induced impairment of declarative memory retrieval is associated with reduced blood flow in the medial temporal lobe. Eur. J. Neurosci. 17, 1296–1302 (2003).

    PubMed  Google Scholar 

  72. 72

    Roozendaal, B., Griffith, Q. K., Buranday, J., de Quervain, D. J. & McGaugh, J. L. The hippocampus mediates glucocorticoid-induced impairment of spatial memory retrieval: dependence on the basolateral amygdala. Proc. Natl Acad. Sci. USA 100, 1328–1333 (2003).

    CAS  PubMed  Google Scholar 

  73. 73

    Roozendaal, B., Hahn, E. L., Nathan, S. V., de Quervain, D. J. & McGaugh, J. L. Glucocorticoid effects on memory retrieval require concurrent noradrenergic activity in the hippocampus and basolateral amygdala. J. Neurosci. 24, 8161–8169 (2004).

    CAS  PubMed  Google Scholar 

  74. 74

    de Quervain, D. J., Aerni, A. & Roozendaal, B. Preventive effect of β-adrenoceptor blockade on glucocorticoid-induced memory retrieval deficits. Am. J. Psychiatry 164, 967–969 (2007).

    PubMed  Google Scholar 

  75. 75

    Kuhlmann, S. & Wolf, O. T. A non-arousing test situation abolishes the impairing effects of cortisol on delayed memory retrieval in healthy women. Neurosci. Lett. 399, 268–272 (2006).

    CAS  PubMed  Google Scholar 

  76. 76

    Dolcos, F., LaBar, K. S. & Cabeza, R. Remembering one year later: role of the amygdala and the medial temporal lobe memory system in retrieving emotional memories. Proc. Natl Acad. Sci. USA 102, 2626–2631 (2005).

    CAS  PubMed  Google Scholar 

  77. 77

    Smith, A. P., Henson, R. N., Rugg, M. D. & Dolan, R. J. Modulation of retrieval processing reflects accuracy of emotional source memory. Learn. Mem. 12, 472–479 (2005).

    PubMed  PubMed Central  Google Scholar 

  78. 78

    Roozendaal, B., McReynolds, J. R. & McGaugh, J. L. The basolateral amygdala interacts with the medial prefrontal cortex in regulating glucocorticoid effects on working memory impairment. J. Neurosci. 24, 1385–1392 (2004).

    CAS  PubMed  Google Scholar 

  79. 79

    Arnsten, A. F. & Goldman-Rakic, P. S. Noise stress impairs prefrontal cortical cognitive function in monkeys: evidence for a hyperdopaminergic mechanism. Arch. Gen. Psychiatry 55, 362–368 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Lupien, S. J., Gillin, C. J. & Hauger, R. L. Working memory is more sensitive than declarative memory to the acute effects of corticosteroids: a dose-response study in humans. Behav. Neurosci. 113, 420–430 (1999).

    CAS  PubMed  Google Scholar 

  81. 81

    McEwen, B. S. Stress and hippocampal plasticity. Annu. Rev. Neurosci. 22, 105–122 (1999).

    CAS  PubMed  Google Scholar 

  82. 82

    Pelletier, J. G., Likhtik, E., Filali, M. & Pare, D. Lasting increases in basolateral amygdala activity after emotional arousal: implications for facilitated consolidation of emotional memories. Learn. Mem. 12, 96–102 (2005).

    PubMed  PubMed Central  Google Scholar 

  83. 83

    Maren, S. & Quirk, G. J. Neuronal signalling of fear memory. Nature Rev. Neurosci. 5, 844–852 (2004).

    CAS  Google Scholar 

  84. 84

    Buffalari, D. M. & Grace, A. A. Noradrenergic modulation of basolateral amygdala neuronal activity: opposing influences of α-2 and β receptor activation. J. Neurosci. 27, 12358–12366 (2007).

    CAS  PubMed  Google Scholar 

  85. 85

    Gean, P. W., Huang, C. C., Lin, J. H. & Tsai, J. J. Sustained enhancement of NMDA receptor-mediated synaptic potential by isoproterenol in rat amygdalar slices. Brain Res. 594, 331–334 (1992).

    CAS  PubMed  Google Scholar 

  86. 86

    Huang, C. C., Hsu, K. S. & Gean, P. W. Isoproterenol potentiates synaptic transmission primarily by enhancing presynaptic calcium influx via P- and/or Q-type calcium channels in the rat amygdala. J. Neurosci. 16, 1026–1033 (1996).

    CAS  PubMed  Google Scholar 

  87. 87

    Ferry, B., Magistretti, P. J. & Pralong, E. Noradrenaline modulates glutamate-mediated neurotransmission in the rat basolateral amygdala in vitro. Eur. J. Neurosci. 9, 1356–1364 (1997).

    CAS  PubMed  Google Scholar 

  88. 88

    Faber, E. S., Delaney, A. J. & Sah, P. SK channels regulate excitatory synaptic transmission and plasticity in the lateral amygdala. Nature Neurosci. 8, 635–641 (2005).

    CAS  PubMed  Google Scholar 

  89. 89

    Davis, M., Rainnie, D. & Cassell, M. Neurotransmission in the rat amygdala related to fear and anxiety. Trends Neurosci. 17, 208–214 (1994).

    CAS  PubMed  Google Scholar 

  90. 90

    Tully, K., Li, Y., Tsvetkov, E. & Bolshakov, V. Y. Norepinephrine enables the induction of associative long-term potentiation at thalamo-amygdala synapses. Proc. Natl Acad. Sci. USA 104, 14146–14150 (2007).

    CAS  PubMed  Google Scholar 

  91. 91

    Rodriguez Manzanares, P. A., Isoardi, N. A., Carrer, H. F. & Molina, V. A. Previous stress facilitates fear memory, attenuates GABAergic inhibition, and increases synaptic plasticity in the rat basolateral amygdala. J. Neurosci. 25, 8725–8734 (2005).

    PubMed  Google Scholar 

  92. 92

    Rainnie, D. G. et al. Corticotrophin releasing factor-induced synaptic plasticity in the amygdala translates stress into emotional disorders. J. Neurosci. 24, 3471–3479 (2004). One of the earliest slice electrophysiological studies that identified enhanced BLA network excitability and lower GABA A receptor-mediated inhibition as key cellular correlates of anxiety elicited by activation of CRF receptors in the BLA.

    CAS  PubMed  Google Scholar 

  93. 93

    Chattarji, S. et al. Delayed impact of stress on amygdala synapses: implications for an animal model of PTSD. Annual Meeting of the Society for Neuroscience 193.5 (Washington DC, 2008).

    Google Scholar 

  94. 94

    Stutzmann, G. E., McEwen, B. S. & LeDoux, J. E. Serotonin modulation of sensory inputs to the lateral amygdala: dependency on corticosterone. J. Neurosci. 18, 9529–9538 (1998).

    CAS  PubMed  Google Scholar 

  95. 95

    Duvarci, S. & Pare, D. Glucocorticoids enhance the excitability of principal basolateral amygdala neurons. J. Neurosci. 27, 4482–4491 (2007). A rigorous in vitro electrophysiological analysis showing that direct bath application of stress levels of glucocorticoids onto a brain slice results in an increase in intrinsic excitability and a reduction in evoked inhibitory post-synaptic potentials in principal neurons of the BLA.

    CAS  PubMed  Google Scholar 

  96. 96

    Popescu, A. T., Saghyan, A. A. & Pare, D. NMDA-dependent facilitation of corticostriatal plasticity by the amygdala. Proc. Natl Acad. Sci. USA 104, 341–346 (2007).

    CAS  PubMed  Google Scholar 

  97. 97

    Akirav, I. & Richter-Levin, G. Mechanisms of amygdala modulation of hippocampal plasticity. J. Neurosci. 22, 9912–9921 (2002).

    CAS  PubMed  Google Scholar 

  98. 98

    Frey, S., Bergado-Rosado, J., Seidenbecher, T., Pape, H. C. & Frey, J. U. Reinforcement of early long-term potentiation (early-LTP) in dentate gyrus by stimulation of the basolateral amygdala: heterosynaptic induction mechanisms of late-LTP. J. Neurosci. 21, 3697–3703 (2001).

    CAS  PubMed  Google Scholar 

  99. 99

    Ikegaya, Y., Nakanishi, K., Saito, H. & Abe, K. Amygdala beta-noradrenergic influence on hippocampal long-term potentiation in vivo. Neuroreport 8, 3143–3146 (1997).

    CAS  PubMed  Google Scholar 

  100. 100

    Nakao, K., Matsuyama, K., Matsuki, N. & Ikegaya, Y. Amygdala stimulation modulates hippocampal synaptic plasticity. Proc. Natl Acad. Sci. USA 101, 14270–14275 (2004).

    CAS  PubMed  Google Scholar 

  101. 101

    Paz, R., Pelletier, J. G., Bauer, E. P. & Pare, D. Emotional enhancement of memory via amygdala-driven facilitation of rhinal interactions. Nature Neurosci. 9, 1321–1329 (2006).

    CAS  PubMed  Google Scholar 

  102. 102

    Pape, H. C., Narayanan, R. T., Smid, J., Stork, O. & Seidenbecher, T. Theta activity in neurons and networks of the amygdala related to long-term fear memory. Hippocampus 15, 874–880 (2005).

    PubMed  Google Scholar 

  103. 103

    Pare, D. Role of the basolateral amygdala in memory consolidation. Prog. Neurobiol. 70, 409–420 (2003).

    CAS  PubMed  Google Scholar 

  104. 104

    Pelletier, J. G. & Pare, D. Role of amygdala oscillations in the consolidation of emotional memories. Biol. Psychiatry 55, 559–562 (2004).

    PubMed  Google Scholar 

  105. 105

    Huff, N. C. & Rudy, J. W. The amygdala modulates hippocampus-dependent context memory formation and stores cue-shock associations. Behav. Neurosci. 118, 53–62 (2004).

    PubMed  Google Scholar 

  106. 106

    Kim, J. J., Lee, H. J., Han, J. S. & Packard, M. G. Amygdala is critical for stress-induced modulation of hippocampal long-term potentiation and learning. J. Neurosci. 21, 5222–5228 (2001). The authors reported that lesions of the amygdala block the impairing effects of stress on hippocampal LTP and retention of water-maze spatial training. These findings provide evidence that the amygdala interacts with the hippocampus in mediating stress effects on hippocampal function.

    CAS  PubMed  Google Scholar 

  107. 107

    Kim, J. J., Koo, J. W., Lee, H. J. & Han, J. S. Amygdalar inactivation blocks stress-induced impairments in hippocampal long-term potentiation and spatial memory. J. Neurosci. 25, 1532–1539 (2005).

    CAS  PubMed  Google Scholar 

  108. 108

    Vyas, A., Mitra, R., Shankaranarayana Rao, B. S. & Chattarji, S. Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J. Neurosci. 22, 6810–6818 (2002). This was the first report to reveal that, unlike in the hippocampus, in principal neurons of the BLA chronic immobilization stress leads to dendritic growth. Further, this study showed that only those chronic stress paradigms that lead to enhanced anxiety-like behaviour cause this dendritic hypertrophy.

    CAS  PubMed  Google Scholar 

  109. 109

    Vyas, A. & Chattarji, S. Modulation of different states of anxiety-like behavior by chronic stress. Behav. Neurosci. 118, 1450–1454 (2004).

    PubMed  Google Scholar 

  110. 110

    Vyas, A., Pillai, A. G. & Chattarji, S. Recovery after chronic stress fails to reverse amygdaloid neuronal hypertrophy and enhanced anxiety-like behavior. Neuroscience 128, 667–673 (2004). This study provided further evidence of the contrasting nature of stress-induced structural plasticity in the hippocampus and the amygdala by showing that dendritic hypertrophy in the BLA persists even after the termination of chronic stress, whereas hippocampal dendritic atrophy is reversed.

    CAS  PubMed  Google Scholar 

  111. 111

    Vyas, A., Jadhav, S. & Chattarji, S. Prolonged behavioral stress enhances synaptic connectivity in the basolateral amygdala. Neuroscience 143, 387–393 (2006).

    CAS  PubMed  Google Scholar 

  112. 112

    Conrad, C. D., LeDoux, J. E., Magarinos, A. M. & McEwen, B. S. Repeated restraint stress facilitates fear conditioning independently of causing hippocampal CA3 dendritic atrophy. Behav. Neurosci. 113, 902–913 (1999).

    CAS  PubMed  Google Scholar 

  113. 113

    Sandi, C. et al. Rapid reversal of stress induced loss of synapses in CA3 of rat hippocampus following water maze training. Eur. J. Neurosci. 17, 2447–2456 (2003).

    PubMed  Google Scholar 

  114. 114

    Wood, G. E., Norris, E. H., Waters, E., Stoldt, J. T. & McEwen, B. S. Chronic immobilization stress alters aspects of emotionality and associative learning in the rat. Behav. Neurosci. 122, 282–292 (2008).

    PubMed  Google Scholar 

  115. 115

    Mitra, R., Jadhav, S., McEwen, B. S., Vyas, A. & Chattarji, S. Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala. Proc. Natl Acad. Sci. USA 102, 9371–9376 (2005). This paper demonstrated for the first time how a single and repeated exposure to the same stressor differentially modify the structural basis of synaptic connectivity in the BLA. Specifically, it showed that even an acute episode of stress can elicit a delayed increase in anxiety that is paralleled by a gradual increase in spine density in the BLA.

    CAS  PubMed  Google Scholar 

  116. 116

    Mitra, R. & Sapolsky, R. Acute corticosterone treatment is sufficient to induce anxiety and amygdaloid dendritic hypertrophy. Proc. Natl Acad. Sci. USA 105, 5573–5578 (2008).

    CAS  PubMed  Google Scholar 

  117. 117

    McEwen, B. S. & Chattarji, S. in Handbook of Neurochemistry & Molecular Neurobiology: Behavioral Neurochemistry and Neuroendocrinology (eds Lajtha, A. & Blaustein, J. D.) 571–594 (Springer, 2007).

    Google Scholar 

  118. 118

    Chattarji, S. Stress-induced formation of new synapses in the amygdala. Neuropsychopharmacology 33, 199–200 (2008).

    Google Scholar 

  119. 119

    Rao, R., Suvrathan, A., Miller, M. M., McEwen, B. S. & Chattarji, S. in Post-Traumatic Stress Disorder: Basic Science and Clinical Practice (eds Shiromani, P., Keane, T. & LeDoux, J. E.) (Humana, New Jersey, 2009). A comprehensive review covering the morphological, electrophysiological, endocrine and molecular effects of stress in the hippocampus, the amygdala and the prefrontal cortex, and the implications of these findings for animal models of PTSD.

    Google Scholar 

  120. 120

    Vyas, A., Bernal, S. & Chattarji, S. Effects of chronic stress on dendritic arborization in the central and extended amygdala. Brain Res. 965, 290–294 (2003).

    CAS  PubMed  Google Scholar 

  121. 121

    McDonald, A. J. in The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction (ed. Aggleton, J. P.) 67–96 (Wiley-Liss, New York, 1992).

    Google Scholar 

  122. 122

    Bennur, S. et al. Stress-induced spine loss in the medial amygdala is mediated by tissue-plasminogen activator. Neuroscience 144, 8–16 (2007).

    CAS  PubMed  Google Scholar 

  123. 123

    Pawlak, R., Magarinos, A. M., Melchor, J., McEwen, B. S. & Strickland, S. Tissue plasminogen activator in the amygdala is critical for stress-induced anxiety-like behavior. Nature Neurosci. 6, 168–174 (2003).

    CAS  PubMed  Google Scholar 

  124. 124

    Endo, A. et al. Proteolysis of highly polysialylated NCAM by the tissue plasminogen activator-plasmin system in rats. Neurosci. Lett. 246, 37–40 (1998).

    CAS  PubMed  Google Scholar 

  125. 125

    Cordero, M. I. et al. Chronic restraint stress down-regulates amygdaloid expression of polysialylated neural cell adhesion molecule. Neuroscience 133, 903–910 (2005).

    CAS  PubMed  Google Scholar 

  126. 126

    de Quervain, D. J., Aerni, A., Schelling, G. & Roozendaal, B. Glucocorticoids and the regulation of emotional memory in health and disease. Front. Neuroendocrinol. 31 Mar 2009 (doi:10.1016/j.yfrne.2009.03.002).

    CAS  PubMed  Google Scholar 

  127. 127

    Yehuda, R. Post-traumatic stress disorder. N. Engl. J. Med. 346, 108–114 (2002).

    CAS  PubMed  Google Scholar 

  128. 128

    Cohen, H., Zohar, J., Matar, M. A., Kaplan, Z. & Geva, A. B. Unsupervised fuzzy clustering analysis supports behavioral cutoff criteria in an animal model of posttraumatic stress disorder. Biol. Psychiatry 58, 640–650 (2005).

    PubMed  Google Scholar 

  129. 129

    Gurvits, T. V. et al. Magnetic resonance imaging study of hippocampal volume in chronic, combat-related posttraumatic stress disorder. Biol. Psychiatry 40, 1091–1099 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130

    Bremner, J. D. Neuroimaging studies in post-traumatic stress disorder. Curr. Psychiatry Rep. 4, 254–263 (2002).

    PubMed  Google Scholar 

  131. 131

    Gilbertson, M. W. et al. Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma. Nature Neurosci. 5, 1242–1247 (2002).

    CAS  PubMed  Google Scholar 

  132. 132

    Drevets, W. C. et al. Subgenual prefrontal cortex abnormalities in mood disorders. Nature 386, 824–827 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


Research was supported by National Science Foundation Grant IOS-0618211 (B.R.), United States Public Health Service Grants MH41256 and MH58911 (B.Mc.), the National Centre for Biological Sciences (S.C.) and an International Senior Research Fellowship from The Wellcome Trust (S.C.).

Author information



Corresponding author

Correspondence to Benno Roozendaal.


Inhibitory avoidance task

A learning task in which animals are placed in a small starting compartment or on a small platform and receive a single footshock after entering a larger compartment or stepping down from the platform. Memory of the one-trial training experience is usually tested by placing the animals back in the same position and recording the delay before they move to the place where they received the footshock.

Contextual fear conditioning

A learning paradigm in which animals are placed in a piece of apparatus and given a series of footshocks. Memory of the training experience is typically assessed by measuring how long the animals freeze when they are subsequently replaced in the apparatus.

Water-maze task

A spatial learning and memory task that depends on the hippocampus. Rodents are trained to learn the location of an escape platform that is hidden beneath the surface in a pool of water. The cued version of the water maze task measures a form of implicit learning and memory that depends on the caudate nucleus; here, animals are trained to swim to a visible platform that is moved from one location to another across trials.

Pavlovian or classical fear conditioning

A robust learning paradigm in which an animal rapidly learns to associate a previously neutral or innocuous sensory stimulus (conditioned stimulus), such as light or an auditory tone, with a coincident aversive stimulus (unconditioned stimulus) such as a mild footshock. Subsequent exposure to the same conditioned stimulus or cue alone elicits a conditioned response (freezing) that provides a measure of the learned association.


A process by which charged molecules are ejected onto tissue by passing electric current through the electrolyte solution containing the molecules. This causes a spurt of charged molecules to be transported out of the pipette tip.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Roozendaal, B., McEwen, B. & Chattarji, S. Stress, memory and the amygdala. Nat Rev Neurosci 10, 423–433 (2009).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing