The neural basis of human moral cognition

Abstract

Moral cognitive neuroscience is an emerging field of research that focuses on the neural basis of uniquely human forms of social cognition and behaviour. Recent functional imaging and clinical evidence indicates that a remarkably consistent network of brain regions is involved in moral cognition. These findings are fostering new interpretations of social behavioural impairments in patients with brain dysfunction, and require new approaches to enable us to understand the complex links between individuals and society. Here, we propose a cognitive neuroscience view of how cultural and context-dependent knowledge, semantic social knowledge and motivational states can be integrated to explain complex aspects of human moral cognition.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Brain regions implicated in moral cognition and behaviour in functional imaging and patient studies.
Figure 2: Functional imaging studies of moral cognition.
Figure 3: The event–feature–emotion complex framework.

References

  1. 1

    Blakemore, S. -J., Winston, J. & Frith, U. Social cognitive neuroscience: where are we heading? Trends Cogn. Sci. 8, 216–222 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2

    Wood, J. N. Social cognition and the prefrontal cortex. Behav. Cogn. Neurosci. Rev. 2, 97–114 (2003).

    Article  Google Scholar 

  3. 3

    Adolphs, R. Cognitive neuroscience of human social behaviour. Nature Rev. Neurosci. 4, 165–178 (2003).

    Article  CAS  Google Scholar 

  4. 4

    MacIntyre, A. After Virtue (Duckworth, London, 1985).

    Google Scholar 

  5. 5

    Tranel, D. 'Acquired sociopathy': the development of sociopathic behavior following focal brain damage. Prog. Exp. Pers. Psychopathol. Res. 285–311 (1994).

  6. 6

    Casebeer, W. D. Moral cognition and its neural constituents. Nature Rev. Neurosci. 4, 840–846 (2003).

    Article  CAS  Google Scholar 

  7. 7

    Greene, J. From neural 'is' to moral 'ought': what are the moral implications of neuroscientific moral psychology? Nature Rev. Neurosci. 4, 846–849 (2003).

    Article  CAS  Google Scholar 

  8. 8

    Casebeer, W. D. Natural Ethical Facts: Evolution, Connectionism, and Moral Cognition (MIT Press, Cambridge, Massachusetts, USA, 2003).

    Google Scholar 

  9. 9

    Schulkin, J. Roots of Social Sensitivity and Neural Function (MIT Press, Cambridge, Massachusetts, USA, 2000).

    Google Scholar 

  10. 10

    Hauser, M. D., Chen, M. K., Chen, F. & Chuang, E. Give unto others: genetically unrelated cotton-top tamarin monkeys preferentially give food to those who altruistically give food back. Proc. Biol. Sci. 270, 2363–2370 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11

    de Waal, F. B. M. Tree of Origin: What Primate Behavior Can Tell Us About Human Social Evolution (Harvard Univ. Press, Cambridge, Massachusetts, USA, 2001).

    Google Scholar 

  12. 12

    Allman, J., Hakeem, A. & Watson, K. Two phylogenetic specializations in the human brain. Neuroscientist 8, 335–346 (2002).

    Article  Google Scholar 

  13. 13

    Moll, J., de Oliveira-Souza, R. & Eslinger, P. J. Morals and the human brain: a working model. Neuroreport 14, 299–305 (2003).

    Article  Google Scholar 

  14. 14

    Wood, J. N. & Grafman, J. Human prefrontal cortex: processing and representational perspectives. Nature Rev. Neurosci. 4, 139–147 (2003).

    Article  CAS  Google Scholar 

  15. 15

    Grafman, J. Similarities and distinctions among current models of prefrontal cortical functions. Ann. NY Acad. Sci. 769, 337–368 (1995).

    Article  CAS  Google Scholar 

  16. 16

    Mithen, S. The Prehistory of the Mind: The Cognitive Origins of Art, Religion and Science (Thames and Hudson, London, 1996).

    Google Scholar 

  17. 17

    Altschuler, E. L., Haroun, A., Ho, B. & Weimer, A. Did Samson have antisocial personality disorder? Arch. Gen. Psychiatry 58, 202–203 (2001).

    Article  CAS  Google Scholar 

  18. 18

    Augstein, H. F. J C Prichard's concept of moral insanity — a medical theory of the corruption of human nature. Med. Hist. 40, 311–343 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Prichard, J. C. in The Cyclopaedia of Practical Medicine (eds Forbes, J., Tweedie, A. & Conolly, J.) 10–32; 847–875 (Sherwood, Gilbert and Piper, London, 1833–1835).

    Google Scholar 

  20. 20

    Welt, L. Ueber charackterveranderungen des menschen. Dtsch Arch. Klin. Med. 42, 339–390 (1888).

    Google Scholar 

  21. 21

    Macmillan, M. An Odd Kind of Fame: Stories of Phineas Gage (MIT Press, Cambridge, Massachusetts, USA, 2000).

    Google Scholar 

  22. 22

    Grafman, J. et al. Frontal lobe injuries, violence, and aggression: a report of the Vietnam Head Injury Study. Neurology 46, 1231–1238 (1996).

    Article  CAS  Google Scholar 

  23. 23

    Eslinger, P. J. & Damasio, A. R. Severe disturbance of higher cognition after bilateral frontal lobe ablation: patient EVR. Neurology 35, 1731–1741 (1985).

    Article  CAS  Google Scholar 

  24. 24

    Anderson, S. W., Bechara, A., Damasio, H., Tranel, D. & Damasio, A. R. Impairment of social and moral behavior related to early damage in human prefrontal cortex. Nature Neurosci. 2, 1032–1037 (1999).

    Article  CAS  Google Scholar 

  25. 25

    Eslinger, P. J., Grattan, L. M., Damasio, H. & Damasio, A. R. Developmental consequences of childhood frontal lobe damage. Arch. Neurol. 49, 764–769 (1992).

    Article  CAS  Google Scholar 

  26. 26

    Cleckley, H. The Mask of Sanity (CV Mosby, St Louis, Missouri, USA, 1964).

    Google Scholar 

  27. 27

    Hare, R. D. Psychopathy: Theory and Research (John Wiley, New York, USA, 1970).

    Google Scholar 

  28. 28

    Miller, B. L., Chang, L., Mena, I., Boone, K. & Lesser, I. M. Progressive right frontotemporal degeneration: clinical, neuropsychological and SPECT characteristics. Dementia 4, 204–213 (1993).

    CAS  PubMed  Google Scholar 

  29. 29

    Perry, R. J. et al. Hemispheric dominance for emotions, empathy and social behaviour: evidence from right and left handers with frontotemporal dementia. Neurocase 7, 145–160 (2001).

    Article  CAS  Google Scholar 

  30. 30

    Tranel, D., Bechara, A. & Denburg, N. L. Asymmetric functional roles of right and left ventromedial prefrontal cortices in social conduct, decision-making, and emotional processing. Cortex 38, 589–612 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31

    Eslinger, P. J. Adolescent neuropsychological development after early right prefrontal cortex damage. Dev. Neuropsychol. 18, 297–329 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Kruesi, M. J., Casanova, M. F., Mannheim, G. & Johnson-Bilder, A. Reduced temporal lobe volume in early onset conduct disorder. Psychiatry Res. 132, 1–11 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33

    Allison, T., Puce, A. & McCarthy, G. Social perception from visual cues: role of the STS region. Trends Cogn. Sci. 4, 267–278 (2000).

    Article  CAS  Google Scholar 

  34. 34

    Frith, C. D. & Frith, U. Interacting minds — a biological basis. Science 286, 1692–1695 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Burns, J. M. & Swerdlow, R. H. Right orbitofrontal tumor with pedophilia symptom and constructional apraxia sign. Arch. Neurol. 60, 437–440 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  36. 36

    Weissenberger, A. A. et al. Aggression and psychiatric comorbidity in children with hypothalamic hamartomas and their unaffected siblings. J. Am. Acad. Child Adolesc. Psychiatry 40, 696–703 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Muller, J. L. et al. Abnormalities in emotion processing within cortical and subcortical regions in criminal psychopaths: evidence from a functional magnetic resonance imaging study using pictures with emotional content. Biol. Psychiatry 54, 152–162 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38

    Soderstrom, H. et al. Reduced frontotemporal perfusion in psychopathic personality. Psychiatry Res 114, 81–94 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39

    Kiehl, K. A. et al. Limbic abnormalities in affective processing by criminal psychopaths as revealed by functional magnetic resonance imaging. Biol. Psychiatry 50, 677–684 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Raine, A., Lencz, T., Bihrle, S., LaCasse, L. & Colletti, P. Reduced prefrontal gray matter volume and reduced autonomic activity in antisocial personality disorder. Arch. Gen. Psychiatry 57, 119–127; discussion 128–129 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Beer, J. S., Heerey, E. A., Keltner, D., Scabini, D. & Knight, R. T. The regulatory function of self-conscious emotion: insights from patients with orbitofrontal damage. J. Pers. Soc. Psychol. 85, 594–604 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  42. 42

    Camille, N. et al. The involvement of the orbitofrontal cortex in the experience of regret. Science 304, 1167–1170 (2004).

    Article  CAS  Google Scholar 

  43. 43

    Moll, J., Eslinger, P. J. & Oliveira-Souza, R. Frontopolar and anterior temporal cortex activation in a moral judgment task: preliminary functional MRI results in normal subjects. Arq. Neuropsiquiatr. 59, 657–664 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Moll, J., de Oliveira-Souza, R., Bramati, I. E. & Grafman, J. Functional networks in emotional moral and nonmoral social judgments. Neuroimage 16, 696–703 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45

    Heekeren, H. R., Wartenburger, I., Schmidt, H., Schwintowski, H. P. & Villringer, A. An fMRI study of simple ethical decision-making. Neuroreport 14, 1215–1219 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46

    Greene, J. D., Sommerville, R. B., Nystrom, L. E., Darley, J. M. & Cohen, J. D. An fMRI investigation of emotional engagement in moral judgment. Science 293, 2105–2108 (2001).

    Article  CAS  Google Scholar 

  47. 47

    Greene, J. D., Nystrom, L. E., Engell, A. D., Darley, J. M. & Cohen, J. D. The neural bases of cognitive conflict and control in moral judgment. Neuron 44, 389–400 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Moll, J. et al. The neural correlates of moral sensitivity: a functional magnetic resonance imaging investigation of basic and moral emotions. J. Neurosci. 22, 2730–2736 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Shin, L. M. et al. Activation of anterior paralimbic structures during guilt-related script-driven imagery. Biol. Psychiatry 48, 43–50 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Takahashi, H. et al. Brain activation associated with evaluative processes of guilt and embarrassment: an fMRI study. Neuroimage 23, 967–974 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  51. 51

    Berthoz, S., Armony, J. L., Blair, R. J. & Dolan, R. J. An fMRI study of intentional and unintentional (embarrassing) violations of social norms. Brain 125, 1696–1708 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Dougherty, D. D. et al. Anger in healthy men: a PET study using script-driven imagery. Biol. Psychiatry 46, 466–472 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Heekeren, H. R. et al. Influence of bodily harm on neural correlates of semantic and moral decision-making. Neuroimage 24, 887–897 (2005).

    Article  Google Scholar 

  54. 54

    Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001).

    Article  CAS  Google Scholar 

  55. 55

    Fellows, L. K. & Farah, M. J. Is anterior cingulate cortex necessary for cognitive control? Brain 128, 788–796 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  56. 56

    Damasio, A. R., Tranel, D. & Damasio, H. Individuals with sociopathic behavior caused by frontal damage fail to respond autonomically to social stimuli. Behav. Brain Res. 41, 81–94 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Newman, J. P., Patterson, C. M. & Kosson, D. S. Response perseveration in psychopaths. J. Abnorm. Psychol. 96, 145–148 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Bechara, A., Damasio, H., Tranel, D. & Damasio, A. R. Deciding advantageously before knowing the advantageous strategy. Science 275, 1293–1295 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Bechara, A., Tranel, D. & Damasio, H. Characterization of the decision-making deficit of patients with ventromedial prefrontal cortex lesions. Brain 123, 2189–2202 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  60. 60

    Zahn, T. P., Grafman, J. & Tranel, D. Frontal lobe lesions and electrodermal activity: effects of significance. Neuropsychologia 37, 1227–1241 (1999).

    Article  CAS  Google Scholar 

  61. 61

    Maia, T. V. & McClelland, J. L. A reexamination of the evidence for the somatic marker hypothesis: what participants really know in the Iowa gambling task. Proc. Natl Acad. Sci. USA 101, 16075–16080 (2004).

    Article  CAS  Google Scholar 

  62. 62

    Blair, R. J. & Cipolotti, L. Impaired social response reversal. A case of 'acquired sociopathy'. Brain 123, 1122–1141 (2000).

    Article  Google Scholar 

  63. 63

    Fellows, L. K. & Farah, M. J. Different underlying impairments in decision-making following ventromedial and dorsolateral frontal lobe damage in humans. Cereb. Cortex 15, 58–63 (2005).

    Article  Google Scholar 

  64. 64

    Rolls, E. T., Hornak, J., Wade, D. & McGrath, J. Emotion-related learning in patients with social and emotional changes associated with frontal lobe damage. J. Neurol. Neurosurg. Psychiatry 57, 1518–1524 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Rolls, E. T. The orbitofrontal cortex and reward. Cereb. Cortex 10, 284–294 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Kringelbach, M. L. & Rolls, E. T. Neural correlates of rapid reversal learning in a simple model of human social interaction. Neuroimage 20, 1371–1383 (2003).

    Article  Google Scholar 

  67. 67

    O'Doherty, J., Kringelbach, M. L., Rolls, E. T., Hornak, J. & Andrews, C. Abstract reward and punishment representations in the human orbitofrontal cortex. Nature Neurosci. 4, 95–102 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Hornak, J. et al. Reward-related reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans. J. Cogn. Neurosci. 16, 463–478 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Blair, R. J. Neurocognitive models of aggression, the antisocial personality disorders, and psychopathy. J. Neurol. Neurosurg. Psychiatry 71, 727–731 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Blair, R. J. The roles of orbital frontal cortex in the modulation of antisocial behavior. Brain Cogn. 55, 198–208 (2004).

    Article  CAS  Google Scholar 

  71. 71

    Adolphs, R., Tranel, D. & Damasio, A. R. The human amygdala in social judgment. Nature 393, 470–474 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Miller, B. L., Darby, A., Benson, D. F., Cummings, J. L. & Miller, M. H. Aggressive, socially disruptive and antisocial behaviour associated with fronto-temporal dementia. Br. J. Psychiatry 170, 150–154 (1997).

    Article  CAS  Google Scholar 

  73. 73

    Rankin, K. P. et al. Right and left medial orbitofrontal volumes show an opposite relationship to agreeableness in FTD. Dement. Geriatr. Cogn. Disord. 17, 328–332 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  74. 74

    Mendez, M. F., Chow, T., Ringman, J., Twitchell, G. & Hinkin, C. H. Pedophilia and temporal lobe disturbances. J. Neuropsychiatry Clin. Neurosci. 12, 71–76 (2000).

    Article  CAS  Google Scholar 

  75. 75

    Bozeat, S., Gregory, C. A., Ralph, M. A. & Hodges, J. R. Which neuropsychiatric and behavioural features distinguish frontal and temporal variants of frontotemporal dementia from Alzheimer's disease? J. Neurol. Neurosurg. Psychiatry 69, 178–186 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Lough, S., Gregory, C. & Hodges, J. R. Dissociation of social cognition and executive function in frontal variant frontotemporal dementia. Neurocase 7, 123–130 (2001).

    Article  CAS  Google Scholar 

  77. 77

    Baron-Cohen, S. Out of sight or out of mind? Another look at deception in autism. J. Child Psychol. Psychiatry 33, 1141–1155 (1992).

    Article  CAS  Google Scholar 

  78. 78

    Richell, R. A. et al. Theory of mind and psychopathy: can psychopathic individuals read the 'language of the eyes'? Neuropsychologia 41, 523–526 (2003).

    Article  CAS  Google Scholar 

  79. 79

    Ruchkin, D. S., Grafman, J., Cameron, K. & Berndt, R. S. Working memory retention systems: a state of activated long-term memory. Behav. Brain Sci. 26, 709–728; discussion 728–777 (2003).

    PubMed  Google Scholar 

  80. 80

    Wood, J. N., Romero, S. G., Knutson, K. M. & Grafman, J. Representation of attitudinal knowledge: role of prefrontal cortex, amygdala and parahippocampal gyrus. Neuropsychologia 43, 249–259 (2005).

    Article  Google Scholar 

  81. 81

    Wood, J. N., Romero, S. G., Makale, M. & Grafman, J. Category-specific representations of social and nonsocial knowledge in the human prefrontal cortex. J. Cogn. Neurosci. 15, 236–248 (2003).

    Article  CAS  Google Scholar 

  82. 82

    Mah, L. W., Arnold, M. C. & Grafman, J. Deficits in social knowledge following damage to ventromedial prefrontal cortex. J. Neuropsychiatry Clin. Neurosci. 17, 66–74 (2005).

    Article  Google Scholar 

  83. 83

    Mah, L., Arnold, M. C. & Grafman, J. Impairment of social perception associated with lesions of the prefrontal cortex. Am. J. Psychiatry 161, 1247–1255 (2004).

    Article  Google Scholar 

  84. 84

    Koechlin, E., Basso, G., Pietrini, P., Panzer, S. & Grafman, J. The role of the anterior prefrontal cortex in human cognition. Nature 399, 148–151 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Koechlin, E., Corrado, G., Pietrini, P. & Grafman, J. Dissociating the role of the medial and lateral anterior prefrontal cortex in human planning. Proc. Natl Acad. Sci. USA 97, 7651–7656 (2000).

    Article  CAS  Google Scholar 

  86. 86

    Knutson, K. M., Wood, J. N. & Grafman, J. Brain activation in processing temporal sequence: an fMRI study. Neuroimage 23, 1299–1307 (2004).

    Article  Google Scholar 

  87. 87

    Wood, J. N., Knutson, K. M. & Grafman, J. Psychological structure and neural correlates of event knowledge. Cereb. Cortex (2004).

  88. 88

    Tanaka, S. C. et al. Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops. Nature Neurosci. 7, 887–893 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Thomson, J. J. Rights, Restitution, and Risk: Essays, in Moral Theory (Harvard Univ. Press, Cambridge, Massachusetts, USA, 1986).

    Google Scholar 

  90. 90

    Fiddick, L., Cosmides, L. & Tooby, J. No interpretation without representation: the role of domain-specific representations and inferences in the Wason selection task. Cognition 77, 1–79 (2000).

    Article  CAS  Google Scholar 

  91. 91

    Cosmides, L. & Tooby, J. Dissecting the computational architecture of social inference mechanisms. Ciba Found. Symp. 208, 132–156; discussion 156–161 (1997).

    CAS  PubMed  Google Scholar 

  92. 92

    Goel, V. & Dolan, R. J. Explaining modulation of reasoning by belief. Cognition 87, B11–B22 (2003).

    Article  Google Scholar 

  93. 93

    Goel, V. & Dolan, R. J. Reciprocal neural response within lateral and ventral medial prefrontal cortex during hot and cold reasoning. Neuroimage 20, 2314–2321 (2003).

    Article  Google Scholar 

  94. 94

    Wason, P. C. Reasoning about a rule. Q. J. Exp. Psychol. 20, 273–281 (1968).

    Article  CAS  Google Scholar 

  95. 95

    Fuster, J. M. The Prefrontal Cortex: Anatomy, Physiology, and Neuropsychology of the Frontal Lobe (Raven, New York, USA, 1997).

    Google Scholar 

  96. 96

    MacLean, P. A Triune Concept of the Brain and Behaviour: Hincks Memorial Lecture (Univ. Toronto Press, Toronto, Canada, 1973).

    Google Scholar 

  97. 97

    Eslinger, P. J. & Geder, L. in Behavior and Mood Disorders in Focal Frontal Lobe Lesions (eds Bogousslavsky, J. & Cummings, J. L.) 217–260 (Cambridge Univ. Press, Cambridge, Massachusetts, USA, 2000).

    Google Scholar 

  98. 98

    Fiddick, L. Domains of deontic reasoning: resolving the discrepancy between the cognitive and moral reasoning literatures. Q. J. Exp. Psychol. A 57, 447–474 (2004).

    Article  Google Scholar 

  99. 99

    Stone, V. E., Cosmides, L., Tooby, J., Kroll, N. & Knight, R. T. Selective impairment of reasoning about social exchange in a patient with bilateral limbic system damage. Proc. Natl Acad. Sci. USA 99, 11531–11536 (2002).

    Article  CAS  Google Scholar 

  100. 100

    Hornak, J. et al. Changes in emotion after circumscribed surgical lesions of the orbitofrontal and cingulate cortices. Brain 126, 1691–1712 (2003).

    Article  CAS  Google Scholar 

  101. 101

    Wilkinson, D. & Halligan, P. The relevance of behavioural measures for functional-imaging studies of cognition. Nature Rev. Neurosci. 5, 67–73 (2004).

    Article  CAS  Google Scholar 

  102. 102

    Nisbett, R. E. & Masuda, T. Culture and point of view. Proc. Natl Acad. Sci. USA 100, 11163–11170 (2003).

    Article  CAS  Google Scholar 

  103. 103

    Ehrlich, P. R. Human Natures: Genes, Cultures, and the Human Prospect (Island, Washington DC, USA, 2000).

    Google Scholar 

  104. 104

    Nichols, S. Norms with feeling: towards a psychological account of moral judgment. Cognition 84, 221–236 (2002).

    Article  Google Scholar 

  105. 105

    Fehr, E. & Fischbacher, U. Social norms and human cooperation. Trends Cogn. Sci. 8, 185–190 (2004).

    Article  Google Scholar 

  106. 106

    Grattan, L. M. & Eslinger, P. J. Long-term psychological consequences of childhood frontal lobe lesion in patient DT. Brain Cogn. 20, 185–195 (1992).

    Article  CAS  Google Scholar 

  107. 107

    Eslinger, P. J., Flaherty-Craig, C. V. & Benton, A. L. Developmental outcomes after early prefrontal cortex damage. Brain Cogn. 55, 84–103 (2004).

    Article  Google Scholar 

  108. 108

    Weingartner, H., Grafman, J., Boutelle, W., Kaye, W. & Martin, P. R. Forms of memory failure. Science 221, 380–382 (1983).

    Article  CAS  Google Scholar 

  109. 109

    Singer, W. Consciousness and the binding problem. Ann. NY Acad. Sci. 929, 123–146 (2001).

    Article  CAS  Google Scholar 

  110. 110

    O'Reilly, R. C. & Rudy, J. W. Computational principles of learning in the neocortex and hippocampus. Hippocampus 10, 389–397 (2000).

    Article  CAS  Google Scholar 

  111. 111

    Okuda, J. et al. Thinking of the future and past: the roles of the frontal pole and the medial temporal lobes. Neuroimage 19, 1369–1380 (2003).

    Article  Google Scholar 

  112. 112

    Eslinger, P. J. & Grattan, L. M. Altered serial position learning after frontal lobe lesion. Neuropsychologia 32, 729–739 (1994).

    Article  CAS  Google Scholar 

  113. 113

    Goel, V., Grafman, J., Tajik, J., Gana, S. & Danto, D. A study of the performance of patients with frontal lobe lesions in a financial planning task. Brain 120, 1805–1822 (1997).

    Article  Google Scholar 

  114. 114

    Ramnani, N. & Owen, A. M. Anterior prefrontal cortex: insights into function from anatomy and neuroimaging. Nature Rev. Neurosci. 5, 184–194 (2004).

    Article  CAS  Google Scholar 

  115. 115

    Milne, E. & Grafman, J. Ventromedial prefrontal cortex lesions in humans eliminate implicit gender stereotyping. J. Neurosci. 21, RC150 (2001).

    Article  CAS  Google Scholar 

  116. 116

    Pietrini, P., Guazzelli, M., Basso, G., Jaffe, K. & Grafman, J. Neural correlates of imaginal aggressive behavior assessed by positron emission tomography in healthy subjects. Am. J. Psychiatry 157, 1772–1781 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. 117

    Cunningham, W. A., Raye, C. L. & Johnson, M. K. Implicit and explicit evaluation: fMRI correlates of valence, emotional intensity, and control in the processing of attitudes. J. Cogn. Neurosci. 16, 1717–1729 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  118. 118

    McClelland, J. L. & Rogers, T. T. The parallel distributed processing approach to semantic cognition. Nature Rev. Neurosci. 4, 310–322 (2003).

    Article  CAS  Google Scholar 

  119. 119

    Martin, A. & Chao, L. L. Semantic memory and the brain: structure and processes. Curr. Opin. Neurobiol. 11, 194–201 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. 120

    Caramazza, A. & Mahon, B. Z. The organization of conceptual knowledge: the evidence from category-specific semantic deficits. Trends Cogn. Sci. 7, 354–361 (2003).

    Article  Google Scholar 

  121. 121

    Frith, U. Mind blindness and the brain in autism. Neuron 32, 969–979 (2001).

    Article  CAS  Google Scholar 

  122. 122

    Boddaert, N. et al. Superior temporal sulcus anatomical abnormalities in childhood autism: a voxel-based morphometry MRI study. Neuroimage 23, 364–369 (2004).

    Article  CAS  Google Scholar 

  123. 123

    Hodges, J. R., Bozeat, S., Lambon Ralph, M. A., Patterson, K. & Spatt, J. The role of conceptual knowledge in object use evidence from semantic dementia. Brain 123, 1913–1925 (2000).

    Article  Google Scholar 

  124. 124

    Lu, L. H. et al. Category-specific naming deficits for objects and actions: semantic attribute and grammatical role hypotheses. Neuropsychologia 40, 1608–1621 (2002).

    Article  Google Scholar 

  125. 125

    Kiehl, K. A. et al. Temporal lobe abnormalities in semantic processing by criminal psychopaths as revealed by functional magnetic resonance imaging. Psychiatry Res. 130, 27–42 (2004).

    Article  Google Scholar 

  126. 126

    Saper, C. B. Hypothalamic connections with the cerebral cortex. Prog. Brain Res. 126, 39–48 (2000).

    Article  CAS  Google Scholar 

  127. 127

    Stellar, E. The physiology of motivation. 1954. Psychol. Rev. 101, 301–311 (1994).

    Article  CAS  Google Scholar 

  128. 128

    Haugh, R. M. & Markesbery, W. R. Hypothalamic astrocytoma. Syndrome of hyperphagia, obesity, and disturbances of behavior and endocrine and autonomic function. Arch. Neurol. 40, 560–563 (1983).

    Article  CAS  Google Scholar 

  129. 129

    Bejjani, B. P. et al. Aggressive behavior induced by intraoperative stimulation in the triangle of Sano. Neurology 59, 1425–1427 (2002).

    Article  CAS  Google Scholar 

  130. 130

    Brodal, P. The Central Nervous System: Structure and Function (Oxford Univ. Press, New York, USA, 2003).

    Google Scholar 

  131. 131

    Haidt, J. in Handbook of Affective Sciences (eds Davidson, R. J., Scherer, K. R. & Goldsmith, H. H.) 852–870 (Oxford Univ. Press, Oxford, USA, 2003).

    Google Scholar 

  132. 132

    Tangney, J. P. in Self and Motivation: Emerging Psychological Perspectives (eds Tesser, A., Stapel, D. A. & Wood, J. V.) 97–117 (American Psychological Association, Washington DC, USA, 2002).

    Google Scholar 

  133. 133

    Fessler, D. in Beyond Nature or Nurture: Biocultural Approaches to the Emotions (ed. Hinton, A.) 75–116 (Cambridge Univ. Press, New York, USA, 1999).

    Google Scholar 

  134. 134

    Haidt, J. The emotional dog and its rational tail: a social intuitionist approach to moral judgment. Psychol. Rev. 108, 814–834 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. 135

    Cunningham, W. A., Nezlek, J. B. & Banaji, M. R. Implicit and explicit ethnocentrism: revisiting the ideologies of prejudice. Pers. Soc. Psychol. Bull. 30, 1332–1346 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  136. 136

    Schultz, W. Getting formal with dopamine and reward. Neuron 36, 241–263 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. 137

    McClure, S. M., Daw, N. D. & Montague, P. R. A computational substrate for incentive salience. Trends Neurosci. 26, 423–428 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. 138

    Schultz, W. & Dickinson, A. Neuronal coding of prediction errors. Annu. Rev. Neurosci. 23, 473–500 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. 139

    Kahneman, D. & Tversky, A. Prospect theory: an analysis of decision under risk. Econometrica 47, 263–291 (1979).

    Article  Google Scholar 

  140. 140

    Fukatsu, R., Fujii, T., Yamadori, A., Nagasawa, H. & Sakurai, Y. Persisting childish behavior after bilateral thalamic infarcts. Eur. Neurol. 37, 230–235 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. 141

    Murphy, J. M. Psychiatric labeling in cross-cultural perspective. Science 191, 1019–1028 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. 142

    Henrich, J. et al. (eds) Foundations of Human Sociality (Oxford Univ. Press, London, UK, 2004).

    Google Scholar 

  143. 143

    Rilling, J. K., Sanfey, A. G., Aronson, J. A., Nystrom, L. E. & Cohen, J. D. The neural correlates of theory of mind within interpersonal interactions. Neuroimage 22, 1694–1703 (2004).

    Article  Google Scholar 

  144. 144

    Sanfey, A. G., Rilling, J. K., Aronson, J. A., Nystrom, L. E. & Cohen, J. D. The neural basis of economic decision-making in the Ultimatum Game. Science 300, 1755–1758 (2003).

    Article  CAS  Google Scholar 

  145. 145

    de Quervain, D. J. et al. The neural basis of altruistic punishment. Science 305, 1254–1258 (2004).

    Article  CAS  Google Scholar 

  146. 146

    Paciotti, B., Hadley, C., Holmes, C. & Mulder, M. B. Grass-roots justice in Tanzania: cultural evolution and game theory help to explain how a history of cooperation influences the success of social organizations. Am. Scientist 93, 58–65 (2005).

    Article  Google Scholar 

  147. 147

    University of Iowa's Virtual Hospital [online] <http://www.vh.org/> (2005).

  148. 148

    Martin, J. H. Neuroanatomy: Text and Atlas 2nd edn (Appleton & Lange, Stamford, Connecticut, 1996).

    Google Scholar 

  149. 149

    Lang, P. J., Bradley, M. M. & Cuthbert, B. N. International affective picture system (IAPS): digitized photographs, instruction manual and affective ratings. Technical Report A-6. (Univ. Florida, Gainesville, Florida, USA, 2005).

  150. 150

    Phan, K. L., Wager, T., Taylor, S. F. & Liberzon, I. Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage 16, 331–348 (2002).

    Article  Google Scholar 

  151. 151

    Moll, J. et al. The moral affiliations of disgust: a functional MRI study. Cogn. Behav. Neurol. 18, 68–78 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the LABS-D'Or Hospital Network and by the Intramural Research Program of the National Institute of Neurological Disorders and Stroke, National Institutes of Health.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jordan Grafman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Cognitive Neuroscience Section, NINDS, NIH

Cognitive and Behavioural Neuroscience Unit, LABS-D'Or Hospital Network

Glossary

ATTITUDES

Context-dependent, emotionally laden social concepts and intuitions.

BASIC EMOTIONS

A collection of emotions that are shared by most mammals (for example, fear, sadness, disgust, anger, happiness and surprise) that can readily be recognized from facial expressions (mimicry), gaze direction, voice intonation, gestures and body postures.

BINDING

Temporal synchronization of different neuronal assemblies, which correspond to stored neural representations, or codes.

EXTINCTION

The mechanism by which a previously learned automatic behavioural response is extinguished.

IOWA GAMBLING TASK

A card-sorting task designed to probe implicit mechanisms that govern individual choices in reward and punishment contexts.

MORAL EMOTIONS

Emotions that are linked to the interest or welfare of other people or society as a whole.

MORAL JUDGEMENT

A type of evaluative judgement that is based on assessments of the adequacy of one's own and others' behaviours according to socially shaped ideas of right and wrong.

MORAL REASONING

The thinking mechanism through which moral judgements are attained.

MORAL VALUES

Culturally shaped concepts and attitudes that code for personal and societal preferences and standards.

NEUROECONOMICS

An interdisciplinary field that aims to understand cognitive and neurobiological mechanisms that underlie choice behaviour and utility estimation.

PERCEPTUAL GESTALT

Simultaneous perception of sensory stimuli in one or more sensory modalities, experienced as a unified, integrated pattern.

PSYCHOPATHY

A severe form of antisocial personality disorder, characterized by callousness and lack of empathy.

RESPONSE REVERSAL

A change in a learned behavioural response following a change in reinforcement contingencies.

SECOND-ORDER FALSE BELIEF TASKS

Sophisticated mind-reading tasks that require the evaluation of what another person believes that a third person is thinking.

THEORY OF MIND

A specific cognitive ability that allows one to understand other people as intentional, perceptive and emotional agents, or to interpret their minds in terms of intentional, perceptual or feeling states.

UTILITARIANISM

A moral philosophical theory according to which the best decisions are those that lead to the higher overall degree of happiness or well-being for the greatest number of people.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Moll, J., Zahn, R., de Oliveira-Souza, R. et al. The neural basis of human moral cognition. Nat Rev Neurosci 6, 799–809 (2005). https://doi.org/10.1038/nrn1768

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing