Working memory: looking back and looking forward

Key Points

  • The concept of working memory assumes that a limited capacity system temporarily stores information and thereby supports human thought processes. One prevalent model of working memory comprises three components: a central executive, a verbal storage system called the phonological loop, and a visual storage system called the visuospatial sketchpad.

  • The phonological loop consists of a store that can hold memory traces for a few seconds, and an articulatory rehearsal process. Retrieval and re-articulation are used to refresh memory traces, and the span of working memory is limited by the amount of material that can be articulated before the first item fades from the store. Word length and similarity between items strongly influence performance on tests of verbal working memory.

  • Various models have been proposed to account for how serial order is remembered. In chaining models, each item is a cue for the next item, but these models run into problems with sequences in which an item recurs and with similarity effects. Contextual models assume that successive items are associated with a contextual cue or that recall of order is based on positional associations between items.

  • It has been proposed that the phonological loop evolved to facilitate the acquisition of language. In support of this, phonological loop capacity is a good predictor of second language learning. Future studies seem likely to link the phonological loop more closely to theories of language perception and production.

  • The visuospatial sketchpad is less well understood than the phonological loop. Spatial and visual working memory also have limited capacity and the two can be dissociated. Visuospatial working memory predicts success in fields such as architecture and engineering.

  • One model proposes that the sketchpad is divided into two components, a visual cache and a retrieval and rehearsal process called the 'inner scribe', analogous to the storage and articulatory components of the phonological loop.

  • The central executive is the least understood component of working memory. In one model, control is divided between 'automatic' habits or schemas, and an attentional system called the supervisory activating system that intervenes to overrule habitual control.

  • To move our concept of the supervisory activating system beyond a simple 'homunculus', we need to specify the processes attributed to it, and then to explain them. The processes needed are to focus, divide and switch attention, and to connect working memory with long-term memory. To account for the latter capacity, a fourth component of working memory has been proposed: the episodic buffer, a limited capacity store that binds information to form integrated episodes.

  • Neuroimaging and neuropsychology have provided evidence for localization of the components of working memory. The phonological loop is associated with the left temporoparietal region, and visuospatial working memory with analogous areas in the right hemisphere. The central executive is probably associated with the frontal lobes.

  • Work on the phonological loop, the visuospatial sketchpad and the central executive should be more closely linked to studies on language, visual processing and motor control, and executive control, respectively. In addition, more work is needed on what drives working memory.

Abstract

The concept of working memory proposes that a dedicated system maintains and stores information in the short term, and that this system underlies human thought processes. Current views of working memory involve a central executive and two storage systems: the phonological loop and the visuospatial sketchpad. Although this basic model was first proposed 30 years ago, it has continued to develop and to stimulate research and debate. The model and the most recent results are reviewed in this article.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The three-component model of working memory.
Figure 2: A functional model of the phonological loop.
Figure 3: Visual and spatial short-term memory tasks.
Figure 4: The task devised by L. H. Brooks to study the role of visual imagery in verbal recall.
Figure 5: The multi-component working memory revision.
Figure 6: A tentative mapping of the working memory model components onto the brain.

References

  1. 1

    Andrade, J. Working Memory in Context (Psychology, Hove, Sussex, 2001).

    Google Scholar 

  2. 2

    Miyake, A. & Shah, P. (eds) Models of Working Memory: Mechanisms of Active Maintenance and Executive Control (Cambridge Univ. Press, New York, 1999).

    Google Scholar 

  3. 3

    Conway, A. R. A., Jarrold, C., Kane, M. J., Miyake, A. & Towse, J. N. Variation in Working Memory (Oxford Univ. Press, Oxford, in the press). References 1–3 provide excellent accounts of the current states of research on working memory, with reference 2 representing a range of theoretical approaches and highlighting their common features, reference 1 containing the view of a range of young British researchers on the strengths and weaknesses of the multi-component model, and reference 3 having more North American contributors and better reflecting approaches based on individual differences.

  4. 4

    Miyake, A. & Shah, P. in Models of Working Memory: Mechanisms of Active Maintenance and Executive Control (eds Miyake, A. & Shah, P.) 28–61 (Cambridge Univ. Press, New York, 1999).

    Google Scholar 

  5. 5

    Cowan, N. in Models of Working Memory: Mechanisms of Active Maintenance and Executive Control (eds Miyake, A. & Shah, P.) 62–101 (Cambridge Univ. Press, New York, 1999). An alternative approach to working memory that focuses on attentional control. This leads to a different emphasis, but is not in any fundamental sense incompatible with a multi-component model.

    Google Scholar 

  6. 6

    Nairne, J. S. A feature model of immediate memory. Mem. Cogn. 18, 251–269 (1990).

    CAS  Article  Google Scholar 

  7. 7

    Neath, I. Modeling the effects of irrelevant speech on memory. Psychon. Bull. Rev. 7, 403–423 (2000).

    CAS  Article  PubMed  Google Scholar 

  8. 8

    Nairne, J. S. Remembering over the short-term: the case against the standard model. Annu. Rev. Psychol. 53, 53–81 (2002).

    Article  PubMed  Google Scholar 

  9. 9

    Miller, G. A., Galanter, E. & Pribram, K. H. Plans and the Structure of Behavior (Holt, Rinehart & Winston, New York, 1960).

    Google Scholar 

  10. 10

    Baddeley, A. D. & Hitch, G. J. in Recent Advances in Learning and Motivation (ed. Bower, G. A.) 47–89 (Academic, New York, 1974).

    Google Scholar 

  11. 11

    Hebb, D. O. The Organization of Behavior (Wiley, New York, 1949).

    Google Scholar 

  12. 12

    Brown, J. Some tests of the decay theory of immediate memory. Q. J. Exp. Psychol. 10, 12–21 (1958).

    Article  Google Scholar 

  13. 13

    Peterson, L. R. & Peterson, M. J. Short-term retention of individual verbal items. J. Exp. Psychol. 58, 193–198 (1959).

    CAS  Article  PubMed  Google Scholar 

  14. 14

    Melton, A. W. Implications of short-term memory for a general theory of memory. J. Verbal Learn. Verbal Behav. 2, 1–21 (1963).

    Article  Google Scholar 

  15. 15

    Baddeley, A. D. Human Memory: Theory and Practice 2nd edn (Psychology, Hove, Sussex, 1997).

    Google Scholar 

  16. 16

    Atkinson, R. C. & Shiffrin, R. M. in The Psychology of Learning and Motivation: Advances in Research and Theory (ed. Spence, K. W.) 89–195 (Academic, New York, 1968).

    Google Scholar 

  17. 17

    Craik, F. I. M. & Lockhart, R. S. Levels of processing: a framework for memory research. J. Verbal Learn. Verbal Behav. 11, 671–684 (1972).

    Article  Google Scholar 

  18. 18

    Shallice, T. & Warrington, E. K. Independent functioning of verbal memory stores: a neuropsychological study. Q. J. Exp. Psychol. 22, 261–273 (1970).

    CAS  Article  PubMed  Google Scholar 

  19. 19

    Vallar, G. & Papagno, C. in Handbook of Memory Disorders (eds Baddeley, A. D., Kopelman, M. D. & Wilson, B. A.) 249–270 (Wiley, Chichester, 2002). An excellent summary of the implications of the study of phonological working memory of neuropsychological patient studies.

    Google Scholar 

  20. 20

    Conrad, R. Acoustic confusion in immediate memory. B. J. Psychol. 55, 75–84 (1964).

    Article  Google Scholar 

  21. 21

    Conrad, R. & Hull, A. J. Information, acoustic confusion and memory span. B. J. Psychol. 55, 429–432 (1964).

    CAS  Article  Google Scholar 

  22. 22

    Baddeley, A. D. Short-term memory for word sequences as a function of acoustic, semantic and formal similarity. Q. J. Exp. Psychol. 18, 362–365 (1966).

    CAS  Article  PubMed  Google Scholar 

  23. 23

    Baddeley, A. D. The influence of acoustic and semantic similarity on long-term memory for word sequences. Q. J. Exp. Psychol. 18, 302–309 (1966).

    CAS  Article  PubMed  Google Scholar 

  24. 24

    Baddeley, A. D. Thomson, N. & Buchanan, M. Word length and the structure of short-term memory. J. Verbal Learn. Verbal Behav. 14, 575–589 (1975).

    Article  Google Scholar 

  25. 25

    Murray, D. J. Articulation and acoustic confusability in short-term memory. J. Exp. Psychol. 78, 679–684 (1968).

    Article  Google Scholar 

  26. 26

    Vallar, G. & Baddeley, A. D. Fractionation of working memory. Neuropsychological evidence for a phonological short-term store. J. Verbal Learn. Verbal Behav. 23, 151–161 (1984).

    Article  Google Scholar 

  27. 27

    Baddeley, A. D. & Wilson, B. Phonological coding and short-term memory in patients without speech. J. Mem. Lang. 24, 490–502 (1985).

    Article  Google Scholar 

  28. 28

    Caplan, D., Rochon, E. & Waters, G. S. Articulatory and phonological determinants of word-length effects in span tasks. Q. J. Exp. Psychol. 45, 177–192 (1992).

    CAS  Article  Google Scholar 

  29. 29

    Henson, R. N. A. in Working Memory in Perspective (ed. Andrade, J.) 151–174 (Psychology, Hove, Sussex, 2001). Offers a clear and useful summary of neuroimaging research viewed from a working memory perspective.

    Google Scholar 

  30. 30

    Henson, R. N. A., Norris, D. G., Page, M. P. A. & Baddeley, A. D. Unchained memory: error patterns rule out chaining models of immediate serial recall. Q. J. Exp. Psychol. 49, 80–115 (1996).

    Article  Google Scholar 

  31. 31

    Brown, G. D. A. Preece, T. & Hulme, C. Oscillator-based memory for serial order. Psychol. Rev. 107, 127–181 (2000).

    CAS  Article  PubMed  Google Scholar 

  32. 32

    Murdock, B. B. TODAM2: A model for the storage and retrieval of item, associative, and serial order information. Psychol. Rev. 100, 183–203 (1993).

    CAS  Article  PubMed  Google Scholar 

  33. 33

    Henson, R. N. A. Item repetition in short-term memory: Ranschburg repeated. J. Exp. Psychol. Learning Mem. Cogn. 24, 1162–1181 (1998).

    CAS  Article  Google Scholar 

  34. 34

    Baddeley, A. D. How does acoustic similarity influence short-term memory? Q. J. Psychol. 20, 249–264 (1968).

    CAS  Google Scholar 

  35. 35

    Burgess, N. & Hitch, G. J. Towards a network model of the articulatory loop. J. Mem. Lang. 31, 429–460 (1992).

    Article  Google Scholar 

  36. 36

    Burgess, N. & Hitch, G. J. Memory for serial order: a network model of the phonological loop and its timing. Psychol. Rev. 106, 551–581 (1999). A good example of one of a range of applications of computational modelling to the study of working memory.

    Article  Google Scholar 

  37. 37

    Henson, R. N. A. Short-term memory for serial order. The start–end model. Cogn. Psychol. 36, 73–137 (1998).

    CAS  Article  PubMed  Google Scholar 

  38. 38

    Page, M. A. & Norris, D. The primacy model: a new model of immediate serial recall. Psychol. Rev. 105, 761–781 (1998).

    CAS  Article  PubMed  Google Scholar 

  39. 39

    Logie, R. H., Della Sala, S., Laiacona, M., Chalmers, P. & Wynn, V. Group aggregates and individual reliability: the case of verbal short-term memory. Mem. Cogn. 24, 305–321 (1996). Probably the only study to attempt to quantify the magnitude and robustness of the phonological similarity and word-length effects.

    CAS  Article  Google Scholar 

  40. 40

    Larsen, J. D. & Baddeley, A. D. Disruption of verbal STM by irrelevant speech, articulatory suppression and manual tapping: do they have a common source? Q. J. Exp. Psychol. (in the press).

  41. 41

    Neath, I. Farley, L. A. & Surprenant, A. M. Directly assessing the relationship between speech and articulatory suppression. Q. J. Exp. Psychol. (in the press).

  42. 42

    Hanley, J. R. & Bakopoulou, E. Irrelevant speech, articulatory suppression and phonological similarity: a test of the phonological loop model and the feature model. Psychon. Bull. Rev. 10, 435–444 (2003). This study emphasizes the role of strategy in working memory, demonstrating powerful effects of strategic instructions to subjects.

    Article  PubMed  Google Scholar 

  43. 43

    Lovatt, P. & Avons, S. E. in Working Memory in Perspective (ed. Andrade, J.) 199–218 (Psychology, Hove, Sussex, 2001).

    Google Scholar 

  44. 44

    Brown, G. D. A. & Hulme, C. Modeling item length effects in memory span: no rehearsal needed? J. Mem. Lang. 34, 594–621 (1995).

    Article  Google Scholar 

  45. 45

    Neath, I. & Nairne, J. S. Word-length effects in immediate memory: overwriting trace-decay theory. Psychon. Bull. Rev. 2, 429–441 (1995).

    CAS  Article  PubMed  Google Scholar 

  46. 46

    Cowan, N., Baddeley, A. D., Elliott, E. M. & Norris, J. List composition and the word length effect in immediate recall: a comparison of localist and globalist assumptions. Psychol. Bull. Rev. 10, 74–79 (2003).

    Article  Google Scholar 

  47. 47

    Baddeley, A. D., Chincotta, D., Stafford, L. & Turk, D. Is the word length effect in STM entirely attributable to output delay? Evidence from serial recognition. Q. J. Exp. Psychol. 55A, 353–369 (2002).

    Article  Google Scholar 

  48. 48

    Dosher, B. A. & Ma, J. J. Output loss or rehearsal loop? Output-time versus pronunciation-time limits in immediate recall for forgetting-matched materials. J. Exp. Psychol. Learn. 24, 316–335 (1998).

    CAS  Article  Google Scholar 

  49. 49

    Lovatt, P., Avons, S. E. & Masterson, J. The word length effect and disyllabic words. Q. J. Exp. Psychol. 53, 1–22 (2000).

    CAS  Article  Google Scholar 

  50. 50

    Baddeley, A. D. & Andrade, J. Reversing the word-length effect: a comment on Caplan, Rochon and Waters. Q. J. Exp. Psychol. 47A, 1047–1054 (1994).

    Article  Google Scholar 

  51. 51

    Caplan, D. & Waters, G. S. Articulatory length and phonological similarity in span tasks: a reply to Baddeley and Andrade. Q. J. Exp. Psychol. 47A, 1055–1062 (1994).

    Article  Google Scholar 

  52. 52

    Service, E. Effect of word length on immediate serial recall depends on phonological complexity, not articulatory duration. Q. J. Exp. Psychol. 51A, 283–304 (1998).

    Article  Google Scholar 

  53. 53

    Mueller, S. T., Seymour, T. L., Kieras, D. E. & Meyer, D. E. Theoretical implications of articulatory duration, phonological similarity, and phonological complexity in verbal working memory. J. Exp. Psychol. Learn. Mem. Cogn. (in the press). The most careful and sophisticated analysis of the roles of spoken duration and phonological similarity in verbal STM, leading to a clear and simple theoretical conclusion. A good account of potential pitfalls in this area of research is also provided.

  54. 54

    Colle, H. A. Auditory encoding in visual short-term recall: effects of noise intensity and spatial location. J. Verbal Learn. Verbal Behav. 19, 722–735 (1980).

    Article  Google Scholar 

  55. 55

    Jones, D. M. in Attention: Selection, Awareness and Control (eds Baddeley, A. D. & Weiskrantz, L.) 87–104 (Clarendon, Oxford, 1993).

    Google Scholar 

  56. 56

    Jones, D. M. & Macken, W. J. Irrelevant tones produce an irrelevant speech effect: implications for phonological coding in working memory. J. Exp. Psychol. Learn. Mem. Cogn. 19, 369–381 (1993).

    Article  Google Scholar 

  57. 57

    Salame, P. & Baddeley, A. D. Disruption of short-term memory by unattended speech: implications for the structure of working memory. J. Verbal Learn. Verbal Behav. 21, 150–164 (1982).

    Article  Google Scholar 

  58. 58

    Colle, H. A. & Welsh, A. Acoustic masking in primary memory. J. Verbal Learn. Verbal Behav. 15, 17–32 (1976).

    Article  Google Scholar 

  59. 59

    Salame, P. & Baddeley, A. D. Phonological factors in STM: similarity and the unattended speech effect. Bull. Psychon. Soc. 24, 263–265 (1986).

    Article  Google Scholar 

  60. 60

    Jones, D. M. & Macken, W. J. Phonological similarity in the irrelevant speech effect. Within- or between-stream similarity? J. Exp. Psychol. Learn. Mem. Cogn. 21, 103–115 (1995).

    Article  Google Scholar 

  61. 61

    Larsen, J. D. Baddeley, A. D. & Andrade, J. Phonological similarity and the irrelevant speech effect: implications for models of short-term verbal memory. Memory 8, 145–157 (2000).

    CAS  Article  PubMed  Google Scholar 

  62. 62

    Le Compte, D. C. & Shaibe, D. M. On the irrelevance of phonological similarity to the irrelevant speech effect. Q. J. Exp. Psychol. 50A, 100–118 (1997).

    Article  Google Scholar 

  63. 63

    Jones, D., Beaman, M. & Macken, W. J. in Models of Short-Term Memory (ed. Gathercole, S.) 209–237 (Psychology, Hove, Sussex, 1996).

    Google Scholar 

  64. 64

    Page, M. A. & Norris, D. The irrelevant sound effect: what needs modeling and a tentative model. Q. J. Exp. Psychol. (in the press).

  65. 65

    Macken, W. J. & Jones, D. M. Reification of phonological storage. Q. J. Exp. Psychol. (in the press).

  66. 66

    Baddeley, A. D., Gathercole, S. E. & Papagno, C. The phonological loop as a language learning device. Psychol. Rev. 105, 158–173 (1998). Summarizes the evidence supporting the view that the phonological loop serves as a device for facilitating language acquisition.

    CAS  Article  PubMed  Google Scholar 

  67. 67

    Papagno, C., Valentine, T. & Baddeley, A. D. Phonological short-term memory and foreign language vocabulary learning. J. Mem. Lang. 30, 331–347 (1991).

    Article  Google Scholar 

  68. 68

    Papagno, C. & Vallar, G. Phonological short-term memory and the learning of novel words: the effect of phonological similarity and item length. Q. J. Exp. Psychol. 44A, 47–67 (1992).

    Article  Google Scholar 

  69. 69

    Service, E. Phonology, working memory and foreign-language learning. Q. J. Exp. Psychol. 45A, 21–50 (1992).

    Article  Google Scholar 

  70. 70

    Atkins, W. B. & Baddeley, A. D. Working memory and distributed vocabulary learning. App. Psycholinguistics 19, 537–552 (1998).

    Article  Google Scholar 

  71. 71

    Gathercole, S. E. & Adams, A. M. Children's phonological working memory: contributions of long-term knowledge and rehearsal. J. Mem. Lang. 33, 672–788 (1994).

    Article  Google Scholar 

  72. 72

    Gathercole, S. E. & Baddeley, A. D. Evaluation of the role of phonological STM in the development of vocabulary in children: a longitudinal study. J. Mem. Lang. 28, 200–213 (1989).

    Article  Google Scholar 

  73. 73

    Gathercole, S. E. & Baddeley, A. D. Phonological memory deficits in language-disordered children: is there a causal connection? J. Mem. Lang. 29, 336–360 (1990).

    Article  Google Scholar 

  74. 74

    Gathercole, S. E., Pickering, S., Hall, M. & Peaker, S. Dissociable lexical and phonological influences on serial recognition and serial recall. Q. J. Exp. Psychol. 54A, 1–30 (2001).

    Article  Google Scholar 

  75. 75

    Houghton, G. Hartley, T. & Glasspool, D. W. in Models of Short-Term Memory (ed. Gathercole, S. E.) 101–128 (Psychology, Hove, Sussex, 1996).

    Google Scholar 

  76. 76

    Gathercole, S. E. Is nonword repetition a test of phonological memory or long-term knowledge? It all depends on the nonwords. Mem. Cogn. 23, 83–94 (1995).

    CAS  Article  Google Scholar 

  77. 77

    Thorn, A. S. C., Gathercole, S. E. & Frankish, C. R. Language familiarity effects in short-term memory: the role of output delay and long-term knowledge. Q. J. Exp. Psychol. 55A, 1363–1383 (2002).

    Article  Google Scholar 

  78. 78

    O'Regan, J. K., Rensink, R. A. & Clark, J. J. Change-blindness as a result of 'mudsplashes'. Nature 398, 34–34 (1999).

    CAS  Article  PubMed  Google Scholar 

  79. 79

    Simons, D. J. & Levin, D. T. Change blindness. Trends Cogn. Sci. 1, 261–267 (1997).

    CAS  Article  PubMed  Google Scholar 

  80. 80

    O'Regan, J. K. Solving the real mysteries of visual-perception — the world as an outside memory. Can. J. Psychol. 46, 461–488 (1992).

    CAS  Article  PubMed  Google Scholar 

  81. 81

    Luck, S. J. & Vogel, E. K. The capacity of visual working memory for features and conjunctions. Nature 390, 279–281 (1997).

    CAS  Article  PubMed  Google Scholar 

  82. 82

    Vogel, E. K., Woodman, G. F. & Luck, S. J. Storage of features, conjunctions and objects in visual working memory. J. Exp. Psychol. Hum. Percept. Perf. 27, 92–114 (2001).

    CAS  Article  Google Scholar 

  83. 83

    Wheeler, M. E. & Treisman, A. M. Binding in short-term visual memory. J. Exp. Psychol. Gen. 131, 48–64 (2002). A good example of the recent tendency for prominent researchers in visual attention to analyse related processes of visuospatial working memory.

    Article  PubMed  Google Scholar 

  84. 84

    Milner, B. Inter-hemispheric differences in the locatisation of psychological processes in man. B. Med. Bull. 27, 272–277 (1971).

    CAS  Article  Google Scholar 

  85. 85

    Della Sala, S., Gray, C., Baddeley, A. D., Allamano, N. & Wilson, L. Pattern span: a tool for unwelding visuo-spatial memory. Neuropsychologia 37, 1189–1199 (1999).

    CAS  Article  PubMed  Google Scholar 

  86. 86

    Della Sala, S. & Logie, R. H. in Handbook of Memory Disorders (eds Baddeley, A. D., Kopelman, M. D. & Wilson, B. A.) 271–292 (Wiley, Chichester, 2002)

    Google Scholar 

  87. 87

    Smith, E. E. et al. Spatial versus object working memory: PET investigations. J. Cogn. Neurosci. 7, 337–358 (1995).

    CAS  Article  PubMed  Google Scholar 

  88. 88

    Mishkin, M., Ungerleider, L. G. & Macko, K. O. Object vision and spatial vision: two cortical pathways. Trends Neurosci. 6, 414 (1983).

    Article  Google Scholar 

  89. 89

    Pickering, S. J. Cognitive approaches to the fractionation of visuo-spatial working memory. Cortex 37, 470–473 (2001).

    Article  Google Scholar 

  90. 90

    Smyth, M. M. & Pendleton, L. R. Space and movement in working memory. Q. J. Exp. Psychol. 42A, 291–304 (1990).

    Article  Google Scholar 

  91. 91

    Logie, R. H. Visuo-spatial processing in working memory. Q. J. Exp. Psychol. 38A, 229–247 (1986).

    Article  Google Scholar 

  92. 92

    Quinn, G. & McConnell, J. Irrelevant pictures in visual working memory. Q. J. Exp. Psychol. 49A, 200–215 (1996).

    Article  Google Scholar 

  93. 93

    Purcell, A. T. & Gero, J. S. Drawings and the design process. Design Studies 19, 389–430 (1998).

    Article  Google Scholar 

  94. 94

    Verstijnen, I. M., van Leeuwen, C., Goldschimdt, G., Haeml, R. & Hennessey, J. M. Creative discovery in imagery and perception: combining is relatively easy, restructuring takes a sketch. Acta Psychol. 99, 177–200 (1998).

    CAS  Article  Google Scholar 

  95. 95

    Ghiselin, B. The Creative Process (Mentor, New York, 1952).

    Google Scholar 

  96. 96

    Finke, R. & Slayton, K. Explorations of creative visual synthesis in mental imagery. Mem. Cogn. 16, 252–257 (1988).

    CAS  Article  Google Scholar 

  97. 97

    Finke, R., Ward, T. B. & Smith, S. M. Creative Cognition: Theory, Research and Applications (MIT Press, Cambridge, Massachusetts, 1992)

    Google Scholar 

  98. 98

    Pearson, D. G., Logie, R. H. & Gilhooly, K. Verbal representations and spatial manipulation during mental synthesis. Eur. J. Cogn. Psychol. 11, 295–314 (1999).

    Article  Google Scholar 

  99. 99

    Pearson, D. G. in Working Memory in Perspective (ed. Andrade, J.) 33–59 (Psychology, Hove, Sussex, 2001).

    Google Scholar 

  100. 100

    Brandimonte, M. & Gerbino, W. Mental image reversal and verbal recoding: when ducks become rabbits. Mem. Cogn. 21, 23–33 (1993).

    CAS  Article  Google Scholar 

  101. 101

    Brandimonte, M., Hitch, G. J. & Bishop, D. Verbal recoding of visual stimuli in pairs mental image transformations. Mem. Cogn. 20, 449–455 (1992).

    CAS  Article  Google Scholar 

  102. 102

    Logie, R. H. Visuo-spatial Working Memory (Lawrence Erlbaum, Hove, Sussex, 1995).

    Google Scholar 

  103. 103

    Goldman-Rakic, P. W. Topography of cognition: parallel distributed networks in primate association cortex. Annu. Rev. Neurosci. 11, 137–156 (1988). A review of studies in which single-unit recording in awake monkeys is used to analyse the nature of visuospatial working memory.

    CAS  Article  PubMed  Google Scholar 

  104. 104

    Goldman-Rakic, S. The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive. Phil. Trans. R. Soc. Lond. B 351, 1445–1453 (1996).

    CAS  Article  Google Scholar 

  105. 105

    Baddeley, A. D. Working Memory (Oxford Univ. Press, Oxford, 1986).

    Google Scholar 

  106. 106

    Norman, D. A. & Shallice, T. in Consciousness and Self-regulation. Advances in Research and Theory (eds Davidson, R. J., Schwarts, G. E. & Shapiro, D.) 1–18 (Plenum, New York, 1986).

    Google Scholar 

  107. 107

    Shallice, T. From Neuropsychology to Mental Structure (Cambridge Univ. Press, Cambridge, 1988).

    Google Scholar 

  108. 108

    Shallice, T. in Principles of Frontal Lobe Function (eds Stuss, D. T. & Knight, R. T.) 261–277 (Oxford Univ. Press, New York, 2002).

    Google Scholar 

  109. 109

    Shallice, T. & Burgess, P. W. Deficits in strategy application following frontal lobe damage in men. Brain 114, 727–741 (1991).

    Article  PubMed  Google Scholar 

  110. 110

    Bargh, J. A. & Ferguson, M. J. Beyond behaviorism: on the automaticity of higher mental processes. Psychol. Bull. 126, 925–945 (2000). This article makes a strong case for the importance of implicit factors in determining social behaviour.

    CAS  Article  PubMed  Google Scholar 

  111. 111

    Bargh, J. A., Chen, M. & Burrows, L. Automaticity of social behavior: direct effects of trait construct and stereotype activation on action. J. Personality Soc. Psychol. 71, 230–244 (1996).

    CAS  Article  Google Scholar 

  112. 112

    Chartrand, T. L. & Bargh, J. A. The chameleon effect: the perception-behavior link and social interaction. J. Personality Soc. Psychol. 76, 893–910 (1999).

    CAS  Article  Google Scholar 

  113. 113

    Chartrand, T. L. & Bargh, J. A. in Self and Motivation: Emerging Psychological Perspectives (eds Tesser, A., Stapel, D. A. & Wood, J. V.) 13–41 (American Psychological Association, Washington DC, 2002).

    Google Scholar 

  114. 114

    Baumeister, R. F. & Exline, J. J. Self control, morality and human strength. J. Soc. Clin. Psychol. 19, 29–42 (2000).

    Article  Google Scholar 

  115. 115

    Baumeister, R. F., Bratslavsky, E., Muraven, M. & Tice, D. M. Ego-depletion: is the active self a limited resource? J. Personality Soc. Psychol. 74, 1252–1265 (1998).

    CAS  Article  Google Scholar 

  116. 116

    Muraven, M. & Baumeister, R. F. Self regulation and depletion of limited resources: does self control resemble a muscle? Psychol. Bull. 126, 247–259 (2000).

    CAS  Article  PubMed  Google Scholar 

  117. 117

    McDougall, W. Outline of Psychology (Scribner, New York, 1923)

    Google Scholar 

  118. 118

    Attneave, F. in Sensory Communication (ed. Rosenblith, W.) 777–782 (MIT Press, Cambridge, Massachussetts, 1960).

    Google Scholar 

  119. 119

    Baddeley, A. D. Exploring the central executive. Q. J. Exp. Psychol. 49A, 5–28 (1996).

    Article  Google Scholar 

  120. 120

    Baddeley, A. D., Bressi, S., Della Sala, S., Logie, R. & Spinnler, H. The decline of working memory in Alzheimer's disease: a longitudinal study. Brain 114, 2521–2542 (1991).

    Article  PubMed  Google Scholar 

  121. 121

    Baddeley, A. D., Baddeley, H. A., Bucks, R. S. & Wilcock, G. K. Attentional control in Alzheimer's disease. Brain 124, 1492–1508 (2001).

    CAS  Article  PubMed  Google Scholar 

  122. 122

    Baddeley, A. D. & Wilson, B. A. Prose recall and amnesia: implications for the structure of working memory. Neuropsychologia 40, 1737–1743 (2002).

    Article  PubMed  Google Scholar 

  123. 123

    Logie, R. H., Della Sala, S., Wynn, V. & Baddeley, A. D. Visual similarity effects in immediate serial recall. Q. J. Exp. Psychol. 53A, 626–646 (2000).

    Article  Google Scholar 

  124. 124

    Baddeley, A. D. & Andrade, J. Working memory and the vividness of imagery. J. Exp. Psychol. Gen. 129, 126–145 (2000).

    CAS  Article  PubMed  Google Scholar 

  125. 125

    Baddeley, A. D. The episodic buffer: a new component of working memory? Trends Cogn. Sci. 4, 417–423 (2000). This gives a brief account of the argument for assuming a fourth component to the working memory model.

    CAS  Article  PubMed  Google Scholar 

  126. 126

    Baars, B. J. A Cognitive Theory of Consciousness (Cambridge Univ. Press, Cambridge, 1988).

    Google Scholar 

  127. 127

    Baars, B. J. The conscious access hypothesis: origins and recent evidence. Trends Cogn. Sci. 6, 47–52 (2002).

    Article  PubMed  Google Scholar 

  128. 128

    Dehaene, S. & Naccache, L. Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework. Cognition 79, 1–37 (2001). An excellent review of the neuropsychological and neuroimaging evidence for a limited capacity work-space system that is associated with conscious awareness.

    CAS  Article  PubMed  Google Scholar 

  129. 129

    Ericsson, K. A. & Kintsch, W. Long-term working memory. Psychol. Rev. 102, 211–245 (1995).

    CAS  Article  PubMed  Google Scholar 

  130. 130

    Warrington, E. J., Logue, V. & Pratt, R. T. C. The anatomical localisation of selective impairment of auditory verbal short-term memory. Neuropsychologia 9, 377–387 (1971).

    CAS  Article  PubMed  Google Scholar 

  131. 131

    Vallar, G., DiBetta, A. M. & Silveri, M. C. The phonological short-term store-rehearsal system: patterns of impairment and neural correlates. Neuropsychologia 35, 795–812 (1997).

    CAS  Article  PubMed  Google Scholar 

  132. 132

    Paulesu, E., Frith, C. D. & Frackowiak, R. S. J. The neural correlates of the verbal component of working memory. Nature 362, 342–345 (1993).

    CAS  Article  PubMed  Google Scholar 

  133. 133

    Jonides, J. et al. in The Psychology of Learning and Motivation (ed. Medin, D.) 43–88 (Academic, London, 1996). A good account of this group's work on applying neuroimaging to the study of both the phonological and visuospatial subsystems of working memory.

    Google Scholar 

  134. 134

    Jonides, J. & Smith, E. E. in Cognitive Neuroscience (ed. Rugg, M. D.) 243–276 (Psychology, Hove, Sussex, 1997).

    Google Scholar 

  135. 135

    Awh, E. et al. Dissociation of storage and retrieval in verbal working memory: evidence from positron emission tomography. Psychol. Sci. 7, 25–31 (1996).

    Article  Google Scholar 

  136. 136

    Smith, E. E. & Jonides, J. Working memory: a view from neuroimaging. Cogn. Psychol. 33, 5–42 (1997).

    CAS  Article  PubMed  Google Scholar 

  137. 137

    Smith, E., Jonides, J. & Koeppe, R. A. Dissociating verbal and spatial working memory using PET. Cereb. Cortex 6, 11–20 (1996).

    CAS  Article  PubMed  Google Scholar 

  138. 138

    DeRenzi, E. & Nichelli, P. Verbal and non-verbal short-term memory impairment following hemispheric damage. Cortex 11, 341–353 (1975).

    CAS  Article  Google Scholar 

  139. 139

    Hanley, J. R., Young, A. W. & Pearson, N. A. Impairment of the visuospatial sketch pad. Q. J. Exp. Psychol. 43A, 101–125 (1991).

    Article  Google Scholar 

  140. 140

    Kosslyn, S. M. et al. Visual mental imagery activates topographically organised cortex: PET investigations. J. Cogn. Neurosci. 5, 263–287 (1993).

    CAS  Article  PubMed  Google Scholar 

  141. 141

    Jonides, J. et al. Spatial working memory in humans as revealed by PET. Nature 363, 623–625 (1993).

    CAS  Article  PubMed  Google Scholar 

  142. 142

    Awh, E., Jonides, J. & Reuter-Lorenz, P. A. Rehearsal in spatial working memory. J. Exp. Psychol. Hum. Percept. Perf. 24, 780–790 (1998).

    CAS  Article  Google Scholar 

  143. 143

    Wilson, F. A. W. Scalaidhe, S. & Goldman-Rakic, S. Dissociation of object and spatial processing domains in primate prefrontal cortex. Science 260, 1955–1958 (1993).

    CAS  Article  PubMed  Google Scholar 

  144. 144

    Levin, D. N. Warach, J. & Farah M. J. Two visual systems in mental imagery: dissociation of 'what' and 'where' in imagery disorders due to bilateral posterior cerebral lesions. Neurology 35, 1010–1018 (1985).

    Article  Google Scholar 

  145. 145

    Owen, A. M. The functional organisation of working memory processes within the human lateral frontal cortex: the contribution of functional neuroimaging. Eur. J. Neurosci. 9, 1329–1339 (1997).

    CAS  Article  PubMed  Google Scholar 

  146. 146

    Stuss, D. T. & Knight, R. T. Principles of Frontal Lobe Function (Oxford Univ. Press, New York, 2002).

    Google Scholar 

  147. 147

    Braver, T. S. et al. A parametric study of prefrontal cortex involvement in human working memory. Neuroimage 5, 49–62 (1997).

    CAS  Article  PubMed  Google Scholar 

  148. 148

    Cohen, J. D. et al. Temporal dynamics of brain activation during a working memory task. Nature 386, 604–608 (1997).

    CAS  Article  PubMed  Google Scholar 

  149. 149

    Frith, C. D., Friston, K. J., Liddle, P. F. & Frackowiak, R. S. J. Willed action in the prefrontal cortex in man: a study with PET. Proc. R. Soc. Lond. B 244, 241–246 (1991).

    CAS  Article  Google Scholar 

  150. 150

    Jahanshahi, M., Dirnberger, G., Fuller, R. & Frith, C. D. The role of the dorsolateral prefrontal cortex in random number generation: a study with positron emission tomography. Neuroimage 12, 713–725 (2000).

    CAS  Article  PubMed  Google Scholar 

  151. 151

    Baddeley, A. D. Emslie, H., Kolodny, J. & Duncan, J. Random generation and the executive control of working memory. Q. J. Exp. Psychol. 51A, 818–852 (1998).

    Google Scholar 

  152. 152

    Duncan, J. & Owen, A. M. Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci. 23, 475–483 (2000). A meta-analysis of neuroimaging studies of attentional control that argues for the dependence of diverse executive processes on a limited anatomical region of the right frontal lobe.

    CAS  Article  PubMed  Google Scholar 

  153. 153

    D'Esposito, M. et al. The neural basis of the central executive system of working memory. Nature 378, 279–281 (1995).

    CAS  Article  PubMed  Google Scholar 

  154. 154

    Klingberg, T. Concurrent performance of two working memory tasks: potential mechanisms of interference. Cereb. Cortex 8, 593–601 (1998).

    CAS  Article  PubMed  Google Scholar 

  155. 155

    Fletcher, T. C. et al. Brain systems for encoding and retrieval of auditory-verbal memory: an in vivo study in humans. Brain 118, 401–416 (1995).

    Article  PubMed  Google Scholar 

  156. 156

    Goldberg, T. E. et al. Uncoupling cognitive workload and prefrontal cortical physiology: a PET rCBF study. Neuroimage 7, 296–303 (1998).

    CAS  Article  PubMed  Google Scholar 

  157. 157

    Damasio, A. R. Descarte's Error: Emotion, Reason, and the Human Brain (Putnam, New York, 1994).

    Google Scholar 

  158. 158

    Hume, D. An Enquiry Concerning Human Understanding (Hackett, Indianapolis, 1772/1993).

    Google Scholar 

  159. 159

    Lewin, K. Field Theory in Social Science (Harper, New York, 1951).

    Google Scholar 

  160. 160

    Kennard, C. & Swash, M. (Eds) Hierarchies in Neurology: reappraisal of Jacksonian Concept (Springer, Berlin, 1989).

    Google Scholar 

  161. 161

    Craik, K. J. W. The Nature of Explanation (Cambridge Univ. Press, London, 1943).

    Google Scholar 

  162. 162

    Broadbent, D. E. Levels, hierarchies and the locus of control. Q. J. Exp. Psychol. 29, 181–201 (1977).

    Article  Google Scholar 

  163. 163

    Frith, C. D., Blakemore, S. J. & Wolpert, D. M. Abnormalities in the awareness and control of action. Phil. Trans. R. Soc. Lond. B 355, 1771–1788 (2000). A stimulating attempt to provide an account of the control of action based on a range of experimental phenomena and neuropsychological deficits. It makes a potentially important case for the possible extension of a model of motor control to the more general control of action and behaviour.

    CAS  Article  Google Scholar 

  164. 164

    Daneman, M. & Carpenter, A. Individual differences in working memory and reading. J. Verbal Learn. Verbal Behav. 19, 450–466 (1980).

    Article  Google Scholar 

  165. 165

    Daneman, M. & Merikle, M. Working memory and language comprehension: A meta-analysis. Psychon. Bull. Rev. 3, 422–433 (1996).

    CAS  Article  PubMed  Google Scholar 

  166. 166

    Turner, M. L. & Engle, R. W. Is working memory capacity task-dependent? J. Mem. Lang. 28, 127–154 (1989).

    Article  Google Scholar 

  167. 167

    Bayliss, D. M., Jarrold, C., Gunn, D. M. & Baddeley, A. D. The complexities of complex span: Explaining individual differences in working memory in children and adults. J. Exp. Psychol. Gen. 132, 71–92 (2003).

    Article  PubMed  Google Scholar 

  168. 168

    Ormrod, J. E. & Cochran, K. F. Relationship of verbal ability and working memory to spelling achievement and learning to spell. Reading Res. Instruction 28, 33–43 (1988).

    Article  Google Scholar 

  169. 169

    Kyllonen, C. & Stephens, D. L. Cognitive abilities as the determinants of success in acquiring logic skills. Learn. Individual Diff. 2, 129–160 (1990).

    Article  Google Scholar 

  170. 170

    Kiewra, K. A. & Benton, S. L. The relationship between information processing ability and note-taking. Contemp. Edu. Psychol. 13, 3–44 (1988).

    Google Scholar 

  171. 171

    Engle, R. W. Carullo, J. J. & Collins, K. W. Individual differences in working memory for comprehension and following directions. J. Edu. Res. 84, 253–262 (1991).

    Article  Google Scholar 

  172. 172

    Kyllonen, C. & Christal, R. E. Reasoning ability is (little more than) working memory capacity. Intelligence 14, 389–433 (1990).

    Article  Google Scholar 

  173. 173

    Engle, R. W. Kane, M. J. & Tuholski, S. W. in Models of Working Memory: Mechanisms of Active Maintenance and Executive Control (eds Miyake, A. & Shah, P.) 102–134 (Cambridge Univ. Press, Cambridge, 1999).

    Google Scholar 

  174. 174

    Miyake, A., Friedman, N. P., Rettinger, D. A., Shah, P. & Heggarty, M. How are visuo-spatial working memory, executive functioning, and spatial abilities related: latent-variable analysis. J. Exp. Psychol. Gen. 130, 621–640 (2001).

    Article  PubMed  Google Scholar 

  175. 175

    Miyake, A. et al. The unity and diversity of executive functions and their contributions to complex 'frontal lobe' tasks: a latent variable analysis. Cogn. Psychol. 41, 49–100 (2000). A clear account of the application of the statistical technique of latent variable analysis to the analysis of executive processes in working memory.

    CAS  Article  PubMed  Google Scholar 

  176. 176

    Kane, M. J. & Engle, R. W. The role of prefrontal cortex in working-memory capacity, executive attention and general fluid intelligence: an individual differences perspective. Psychon. Bull. Rev. 4, 637–671 (2002).

    Article  Google Scholar 

  177. 177

    Spearman, C. The Abilities of Man (Macmillan, London, 1927).

    Google Scholar 

  178. 178

    Thurstone, L. L. Primary Mental Abilities (Univ. Chicago Press, Chicago, 1938).

    Google Scholar 

  179. 179

    Carroll, J. B. Human Cognitive Abilities (Cambridge Univ. Press, Cambridge, 1993).

    Google Scholar 

  180. 180

    Herrnstein, R. J. & Murray, C. The Bell Curve: Intelligence and Class Structure in American Life (Free Press, New York, 1994).

    Google Scholar 

  181. 181

    Kamin, L. J. Intelligence: The Battle for the Mind (H. J. Eysenck versus Leon Kamin) (Macmillan, London, 1981).

    Google Scholar 

  182. 182

    Brooks, L. R. Spatial and verbal components in the act of recall. Can. J. Psychol. 22, 349–368 (1968).

    Article  Google Scholar 

  183. 183

    Martin, J. H. Neuroanatomy: Text and Atlas 2nd edn (Appleton & Lange, Stamford, Connecticut, 1996).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

MIT Encyclopedia of Cognitive Sciences

neural basis of working memory

working memory

Glossary

BRODMANN AREAS

(BA). Korbinian Brodmann (1868–1918) was an anatomist who divided the cerebral cortex into numbered subdivisions on the basis of cell arrangements, types and staining properties (for example, the dorsolateral prefrontal cortex contains subdivisions, including BA 46, BA 9 and others). Modern derivatives of his maps are commonly used as the reference system for discussion of brain-imaging findings.

ANARTHRIC

Unable to speak because of defective articulation.

DYSPRAXIC

Having an impairment of the ability to perform certain voluntary movements, often including speech.

CONATIVE PSYCHOLOGY

McDougall proposed the term 'conative' to denote the activity of mental striving or the will, as opposed to cognitive and affective or emotional processes.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baddeley, A. Working memory: looking back and looking forward. Nat Rev Neurosci 4, 829–839 (2003). https://doi.org/10.1038/nrn1201

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing