Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The roles of attention, executive function and knowledge in cognitive ageing of working memory

Abstract

Working memory is an ensemble of components that temporarily hold information in a heightened state of availability for use in ongoing information processing. Working memory is crucial for everyday behaviours such as remembering names and faces, following recipes, remembering the gist of a conversation, and making decisions based on multiple factors. In this Review, we examine how working memory relates to other aspects of information processing to understand age-related decline in working memory. We first contrast several theoretical approaches to working memory. We then discuss benchmark behavioural findings on working memory during ageing and describe general underlying mechanisms that might explain age-related declines and stability. In particular, we emphasize how attention and executive function interact with knowledge. Finally, we assess the relevance of these findings for theories of working memory. Even as executive functions decrease in efficiency with age, some basic attention functions and preserved knowledge can help to blunt the effects of ageing on working memory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Use of executive function and knowledge in a simple working memory task.
Fig. 2: Three-legged stool metaphor for working memory in ageing.

Similar content being viewed by others

References

  1. Cowan, N. The many faces of working memory and short-term storage. Psychon. Bull. Rev. 24, 1158–1170 (2017).

    Article  PubMed  Google Scholar 

  2. Miller, G. A. The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol. Rev. 63, 81–97 (1956).

    Article  PubMed  Google Scholar 

  3. Cowan, N. The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behav. Brain Sci. 24, 87–114 (2001).

    Article  PubMed  Google Scholar 

  4. Cowan, N., Rouder, J. N., Blume, C. L. & Saults, J. S. Models of verbal working memory capacity: what does it take to make them work? Psychol. Rev. 119, 480–499 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Welford, A. T. Ageing and Human Skill (Oxford Univ. Press, 1958).

  6. Rosen, V. M. & Engle, R. W. The role of working memory capacity in retrieval. J. Exp. Psychol. Gen. 126, 211–227 (1997).

    Article  PubMed  Google Scholar 

  7. Bopp, K. L. & Verhaeghen, P. Aging and verbal memory span: a meta-analysis. J. Gerontol. B 60, P223–P233 (2005). This meta-analysis assesses age differences in eight verbal span tasks and concludes that larger age effects occur for more complex span tasks.

    Article  Google Scholar 

  8. Fabiani, M., Zimmerman, B. & Gratton, G. in Mechanisms Of Sensory Working Memory: Attention And Performance XXV (eds Jolicoeur, C., Lefebre, C. & Matinez-Trujillo, J.) 131–148 (Elsevier, 2015). This chapter shows how ageing effects on working memory can occur via noise from diminished bottom-up perceptual processing, and via difficulty using top-down inhibitory processing to overcome that noise.

  9. Jaroslawska, A. J. & Rhodes, S. Adult age differences in the effects of processing on storage in working memory: a meta-analysis. Psychol. Aging 34, 512–530 (2019).

    Article  PubMed  Google Scholar 

  10. Park, D. C. et al. Models of visuospatial and verbal memory across the adult life span. Psychol. Aging 17, 299–320 (2002).

    Article  PubMed  Google Scholar 

  11. Reuter-Lorenz, P. A. & Sylvester, C.-Y. in Cognitive Neuroscience of Aging: Linking Cognitive and Cerebral Aging (eds Cabeza, R., Nyberg, L. & Park, D.) 186–217 (Oxford Univ. Press, 2005). This chapter reviews the cognitive neuroscience of working memory in ageing.

  12. Cowan, N. Short-term memory based on activated long-term memory: a review in response to Norris (2017). Psychol. Bull. 145, 822–847 (2019). This review summarizes evidence for an updated version of the embedded-processes theory, in which storage depends on activated long-term memory and the current focus of attention, without a separate short-term memory copy.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Baddeley, A. D., Hitch, G. & Allen, R. in Working Memory: State Of The Science (eds Logie, R. H., Camos, V. & Cowan, N.) 10–43 (Oxford Univ. Press, 2021). This chapter presents an updated version of the multicomponent model of working memory, providing a broad theoretical framework enabling more detailed analysis of its components, and demonstrating its use beyond the laboratory.

  14. Barrouillet, P. & Camos, V. Working Memory: Loss And Reconstruction (Psychology Press, 2015).

  15. Conway, A. R. A. et al. Working memory span tasks: a methodological review and user’s guide. Psychon. Bull. Rev. 12, 769–786 (2005).

    Article  PubMed  Google Scholar 

  16. Craik, F. I. M. Remembering: an activity of mind and brain. Annu. Rev. Psychol. 71, 1–24 (2020).

    Article  PubMed  Google Scholar 

  17. Logie, R. H. Retiring the central executive. Q. J. Exp. Psychol. 69, 2093–2109 (2016). This article suggests that executive control in working memory might arise from the interaction among multiple different functions in cognition that use different, but overlapping, brain networks.

    Article  Google Scholar 

  18. Oberauer, K. & Lin, H.-Y. An interference model of visual working memory. Psychol. Rev. 124, 21–59 (2017).

    Article  PubMed  Google Scholar 

  19. Baddeley, A. D. & Hitch, G. in Psychology of Learning and Motivation Vol. 8 (ed. Bower, G. H.) 47–89 (Elsevier, 1974).

  20. Baddeley, A. D. Working Memory (Clarendon, 1986).

  21. Baddeley, A. The episodic buffer: a new component of working memory? Trends Cogn. Sci. 4, 417–423 (2000).

    Article  PubMed  Google Scholar 

  22. Miller, G. A., Galanter, E. & Pribram, K. H. Plans And The Structure Of Behavior (Holt, Rinehart & Winston, 1960).

  23. Cocchini, G., Logie, R. H., Sala, S. D., MacPherson, S. E. & Baddeley, A. D. Concurrent performance of two memory tasks: evidence for domain-specific working memory systems. Mem. Cogn. 30, 1086–1095 (2002).

    Article  Google Scholar 

  24. Vandierendonck, A. A working memory system with distributed executive control. Perspect. Psychol. Sci. 11, 74–100 (2016).

    Article  PubMed  Google Scholar 

  25. Cowan, N. Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information-processing system. Psychol. Bull. 104, 163–191 (1988).

    Article  PubMed  Google Scholar 

  26. Cowan, N. in Models Of Working Memory: Mechanisms Of Active Maintenance And Executive Control (eds Miyake, A. & Shah, P.) 62–101 (Cambridge Univ. Press, 1999).

  27. Greene, N. R., Naveh-Benjamin, M. & Cowan, N. Adult age differences in working memory capacity: spared central storage but deficits in ability to maximize peripheral storage. Psychol. Aging 35, 866–880 (2020). This study quantifies working memory capacities in young and older adults in a dual-task paradigm, showing that the ageing deficit is in storing visual and acoustic patterns independent of attention.

    Article  PubMed  Google Scholar 

  28. Cowan, N., Saults, J. S. & Blume, C. L. Central and peripheral components of working memory storage. J. Exp. Psychol. Gen. 143, 1806–1836 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Li, Y. & Cowan, N. Attention effects in working memory that are asymmetric across sensory modalities. Mem. Cogn. 49, 1050–1065 (2021).

    Article  Google Scholar 

  30. Uittenhove, K., Chaabi, L., Camos, V. & Barrouillet, P. Is working memory storage intrinsically domain-specific? J. Exp. Psychol. Gen. 148, 2027–2057 (2019). This article assesses dual-task costs of visual–verbal storage and reports strong interference between modalities using a recall task, favouring the role of general attention in working memory storage.

    Article  PubMed  Google Scholar 

  31. Kirova, A.-M., Bays, R. B. & Lagalwar, S. Working memory and executive function decline across normal aging, mild cognitive impairment, and Alzheimer’s disease. BioMed. Res. Int. 2015, 748212 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Peterson, D. J., Decker, R. & Naveh-Benjamin, M. The effects of divided attention and of stimulus repetition on item–item binding in verbal working memory. J. Exp. Psychol. Learn. Mem. Cogn. 45, 1955–1969 (2019).

    Article  PubMed  Google Scholar 

  33. Adam, K. C. S., Vogel, E. K. & Awh, E. Clear evidence for item limits in visual working memory. Cogn. Psychol. 97, 79–97 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Luck, S. J. & Vogel, E. K. The capacity of visual working memory for features and conjunctions. Nature 390, 279–281 (1997).

    Article  PubMed  Google Scholar 

  35. Zhang, W. & Luck, S. J. Discrete fixed-resolution representations in visual working memory. Nature 453, 233–235 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bays, P. M. & Husain, M. Dynamic shifts of limited working memory resources in human vision. Science 321, 851–854 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ma, W. J., Husain, M. & Bays, P. M. Changing concepts of working memory. Nat. Neurosci. 17, 347–356 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Schurgin, M. W., Wixted, J. T. & Brady, T. F. Psychophysical scaling reveals a unified theory of visual memory strength. Nat. Hum. Behav. 4, 1156–1172 (2020).

    Article  PubMed  Google Scholar 

  39. Rhodes, S. et al. Storage and processing in working memory: assessing dual-task performance and task prioritization across the adult lifespan. J. Exp. Psychol. Gen. 148, 1204–1227 (2019). This article analyses attention-sharing effects, showing an increase with age in the cost of coordinating working memory storage with an interleaved processing task, but with no additional cost in the ability to prioritize storage or processing.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Li, S.-C. & Sikström, S. Integrative neurocomputational perspectives on cognitive aging, neuromodulation, and representation. Neurosci. Biobehav. Rev. 26, 795–808 (2002).

    Article  PubMed  Google Scholar 

  41. Craik, F. I. M. Two components in free recall. J. Verbal Learn. Verbal Behav. 7, 996–1004 (1968). This study assesses the contribution of short-term and long-term memory to the primacy and recency effects of the serial position curve and shows that age affects long-term but not short-term storage.

    Article  Google Scholar 

  42. Floden, D., Stuss, D. T. & Craik, F. I. M. Age differences in performance on two versions of the Brown–Peterson task. Aging Neuropsychol. Cogn. 7, 245–259 (2000).

    Article  Google Scholar 

  43. Raymond, B. J. Free recall among the aged. Psychol. Rep. 29, 1179–1182 (1971).

    Article  PubMed  Google Scholar 

  44. Daneman, M. & Carpenter, P. A. Individual differences in working memory and reading. J. Verbal Learn. Verbal Behav. 19, 450–466 (1980).

    Article  Google Scholar 

  45. Cowan, N. et al. On the capacity of attention: its estimation and its role in working memory and cognitive aptitudes. Cogn. Psychol. 51, 42–100 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bunting, M. F., Cowan, N. & Colflesh, G. H. The deployment of attention in short-term memory tasks: trade-offs between immediate and delayed deployment. Mem. Cogn. 36, 799–812 (2008).

    Article  Google Scholar 

  47. Broadway, J. M. & Engle, R. W. Validating running memory span: measurement of working memory capacity and links with fluid intelligence. Behav. Res. Methods 42, 563–570 (2010).

    Article  PubMed  Google Scholar 

  48. Fozard, J. L. in The Aging Brain: Communication In The Elderly (ed. Ulatowska, H. K.) 87–107 (College-Hill, 1985).

  49. Welford, A. T. in New Directions In Memory And Aging (eds Poon, L. W., Fozard, J. L., Cermak, L. S., Arenberg, D. & Thompson, L. W.) 1–17 (Lawrence Erlbaum, 1980).

  50. Wingfield, A. & Stine, E. A. L. in Memory, Aging, And Dementia: Theory, Assessment And Treatment (eds Gilmore, G. C., Whitehouse, P. J. & Wykle, M. L.) 4–40 (Springer, 1989).

  51. Craik, F. I. M. in Human Aging And Behavior (ed. Talland, G. A.) 131–168 (Academic, 1968).

  52. Taub, H. A. Mode of presentation, age, and short-term memory. J. Gerontol. 30, 56–59 (1975).

    Article  PubMed  Google Scholar 

  53. Botwinick, J. & Storandt, M. Memory, Related Functions, And Age (Charles C. Thomas, 1974).

  54. Hooper, F. H., Hooper, J. O. & Colbert, K. K. Personality and memory correlates of intellectual functioning. Contrib. Hum. Dev. 11, 112 (1984).

    Google Scholar 

  55. Salthouse, T. A. & Babcock, R. L. Decomposing adult age differences in working memory. Dev. Psychol. 27, 763–776 (1991). This article discusses working memory mechanisms and concludes that many of the age differences in working memory might be mediated by age-related reductions in the speed of executing elementary operations.

    Article  Google Scholar 

  56. Craik, F. I. M. Age differences in recognition memory. Q. J. Exp. Psychol. 23, 316–323 (1971).

    Article  Google Scholar 

  57. Brébion, G. Working memory, language comprehension, and aging: four experiments to understand the deficit. Exp. Aging Res. 29, 269–301 (2003).

    Article  PubMed  Google Scholar 

  58. Campbell, J. I. D. & Charness, N. Age-related declines in working-memory skills: evidence from a complex calculation task. Dev. Psychol. 26, 879–888 (1990).

    Article  Google Scholar 

  59. Craik, F. I. M. in Cognitive Aging: A Primer (eds Park, D. C. & Schwarz, N.) 75–92 (Psychology, 2000).

  60. Zeintl, M. & Kliegel, M. How do verbal distractors influence age-related operation span performance? A manipulation of inhibitory control demands. Exp. Aging Res. 33, 163–175 (2007).

    Article  PubMed  Google Scholar 

  61. Zeintl, M. & Kliegel, M. The role of inhibitory control in age-related operation span performance. Eur. J. Ageing 4, 213–217 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Verhaeghen, P. The Elements Of Cognitive Aging: Meta-Analyses Of Age-Related Differences In Processing Speed And Their Consequences (Oxford Univ. Press, 2014).

  63. Parkinson, S. R. Aging and amnesia: a running span analysis. Bull. Psychon. Soc. 15, 215–217 (1980).

    Article  Google Scholar 

  64. Fallon, M., Kuchinsky, S. & Wingfield, A. The salience of linguistic clauses in young and older adults’ running memory for speech. Exp. Aging Res. 30, 359–371 (2004).

    Article  PubMed  Google Scholar 

  65. Norman, S., Kemper, S., Kynette, D., Cheung, H. & Anagnopoulos, C. Syntactic complexity and adults’ running memory span. J. Gerontol. 46, P346–P351 (1991).

    Article  PubMed  Google Scholar 

  66. Verhaeghen, P., Steitz, D. W., Sliwinski, M. J. & Cerella, J. Aging and dual-task performance: a meta-analysis. Psychol. Aging 18, 443–460 (2003).

    Article  PubMed  Google Scholar 

  67. MacPherson, S. E., Sala, S. D., Logie, R. H. & Wilcock, G. K. Specific AD impairment in concurrent performance of two memory tasks. Cortex 43, 858–865 (2007).

    Article  PubMed  Google Scholar 

  68. Logie, R. H., Sala, S. D., MacPherson, S. E. & Cooper, J. Dual task demands on encoding and retrieval processes: evidence from healthy adult ageing. Cortex 43, 159–169 (2007).

    Article  PubMed  Google Scholar 

  69. Somberg, B. L. & Salthouse, T. A. Divided attention abilities in young and old adults. J. Exp. Psychol. Hum. Percept. Perform. 8, 651–663 (1982).

    Article  PubMed  Google Scholar 

  70. Jaroslawska, A. J. et al. What affects the magnitude of age-related dual-task costs in working memory? The role of stimulus domain and access to semantic representations. Q. J. Exp. Psychol. 74, 682–704 (2021).

    Article  Google Scholar 

  71. Rhodes, S. et al. Exploring the influence of temporal factors on age differences in working memory dual task costs. Psychol. Aging 36, 200–213 (2021).

    Article  PubMed  Google Scholar 

  72. Kirchner, W. K. Age differences in short-term retention of rapidly changing information. J. Exp. Psychol. 55, 352–358 (1958).

    Article  PubMed  Google Scholar 

  73. Dobbs, A. R. & Rule, B. G. Adult age differences in working memory. Psychol. Aging 4, 500–503 (1989).

    Article  PubMed  Google Scholar 

  74. Bopp, K. L. & Verhaeghen, P. Aging and n-back performance: a meta-analysis. J. Gerontol. Ser. B 75, 229–240 (2018).

    Google Scholar 

  75. Wheeler, M. E. & Treisman, A. M. Binding in short-term visual memory. J. Exp. Psychol. Gen. 131, 48–64 (2002).

    Article  PubMed  Google Scholar 

  76. Naveh-Benjamin, M. Adult age differences in memory performance: tests of an associative deficit hypothesis. J. Exp. Psychol. Learn. Mem. Cogn. 26, 1170–1187 (2000).

    Article  PubMed  Google Scholar 

  77. Brown, L. A. & Brockmole, J. R. The role of attention in binding visual features in working memory: evidence from cognitive ageing. Q. J. Exp. Psychol. 63, 2067–2079 (2010).

    Article  Google Scholar 

  78. Chen, T. & Naveh-Benjamin, M. Assessing the associative deficit of older adults in long-term and short-term/working memory. Psychol. Aging 27, 666–682 (2012).

    Article  PubMed  Google Scholar 

  79. Old, S. R. & Naveh-Benjamin, M. Differential effects of age on item and associative measures of memory: a meta-analysis. Psychol. Aging 23, 104–118 (2008).

    Article  PubMed  Google Scholar 

  80. Cowan, N., Naveh-Benjamin, M., Kilb, A. & Saults, J. S. Life-span development of visual working memory: when is feature binding difficult? Dev. Psychol. 42, 1089–1102 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Mitchell, K. J., Johnson, M. K., Raye, C. L., Mather, M. & D’Esposito, M. Aging and reflective processes of working memory: binding and test load deficits. Psychol. Aging 15, 527–541 (2000).

    Article  PubMed  Google Scholar 

  82. Peich, M.-C., Husain, M. & Bays, P. M. Age-related decline of precision and binding in visual working memory. Psychol. Aging 28, 729–743 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Peterson, D. J. & Naveh-Benjamin, M. The role of aging in intra-item and item-context binding processes in visual working memory. J. Exp. Psychol. Learn. Mem. Cogn. 42, 1713–1730 (2016).

    Article  PubMed  Google Scholar 

  84. Rhodes, S., Abbene, E. E., Meierhofer, A. M. & Naveh-Benjamin, M. Age differences in the precision of memory at short and long delays. Psychol. Aging 35, 1073–1089 (2020).

    Article  PubMed  Google Scholar 

  85. Sander, M. C., Werkle-Bergner, M. & Lindenberger, U. Binding and strategic selection in working memory: a lifespan dissociation. Psychol. Aging 26, 612–624 (2011).

    Article  PubMed  Google Scholar 

  86. Bopp, K. L. & Verhaeghen, P. Working memory and aging: separating the effects of content and context. Psychol. Aging 24, 968–980 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Brockmole, J. R., Parra, M. A., Sala, S. D. & Logie, R. H. Do binding deficits account for age-related decline in visual working memory? Psychon. Bull. Rev. 15, 543–547 (2008).

    Article  PubMed  Google Scholar 

  88. Parra, M. A. et al. Short-term memory binding deficits in Alzheimer’s disease. Brain 132, 1057–1066 (2008).

    Article  Google Scholar 

  89. Rhodes, S., Parra, M. A., Cowan, N. & Logie, R. H. Healthy aging and visual working memory: the effect of mixing feature and conjunction changes. Psychol. Aging 32, 354–366 (2017).

    Article  PubMed  Google Scholar 

  90. Brockmole, J. R. & Logie, R. H. Age-related change in visual working memory: a study of 55,753 participants aged 8–75. Front. Psychol. 4, 12 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Johnson, W., Logie, R. H. & Brockmole, J. R. Working memory tasks differ in factor structure across age cohorts: implications for dedifferentiation. Intelligence 38, 513–528 (2010). This study administered a working-memory test battery to over 95,000 adults across the lifespan and showed larger age-related declines in visual–spatial than in verbal working memory.

    Article  Google Scholar 

  92. Hale, S. et al. The structure of working memory abilities across the adult life span. Psychol. Aging 26, 92–110 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Bailey, H., Dunlosky, J. & Hertzog, C. Does differential strategy use account for age-related deficits in working-memory performance? Psychol. Aging 24, 82–92 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Bailey, H. R., Dunlosky, J. & Hertzog, C. Does strategy training reduce age-related deficits in working memory? Gerontology 60, 346–356 (2014).

    Article  PubMed  Google Scholar 

  95. Zahodne, L. B. et al. Education does not slow cognitive decline with aging: 12-year evidence from the Victoria Longitudinal Study. J. Int. Neuropsychol. Soc. 17, 1039–1046 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Zarantonello, L., Schiff, S., Amodio, P. & Bisiacchi, P. The effect of age, educational level, gender and cognitive reserve on visuospatial working memory performance across adult life span. Aging Neuropsychol. Cogn. 27, 302–319 (2020).

    Article  Google Scholar 

  97. Speer, M. E. & Soldan, A. Cognitive reserve modulates ERPs associated with verbal working memory in healthy younger and older adults. Neurobiol. Aging 36, 1424–1434 (2015).

    Article  PubMed  Google Scholar 

  98. Baddeley, A., Logie, R., Bressi, S., Sala, S. D. & Spinnler, H. Dementia and working memory. Q. J. Exp. Psychol. A 38, 603–618 (1986).

    Article  PubMed  Google Scholar 

  99. Aurtenetxe, S. et al. Interference impacts working memory in mild cognitive impairment. Front. Neurosci. 10, 443 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Miyake, A. et al. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cogn. Psychol. 41, 49–100 (2000).

    Article  PubMed  Google Scholar 

  101. Hasher, L. & Zacks, R. T. in Psychology Of Learning And Motivation Vol. 22, 193–225 (Elsevier, 1988). This chapter presents findings that challenge age-related capacity decline of working memory and instead suggests that older adults have a deficit in down-regulating and inhibiting activation.

  102. Lustig, C., May, C. P. & Hasher, L. Working memory span and the role of proactive interference. J. Exp. Psychol. Gen. 130, 199–207 (2001).

    Article  PubMed  Google Scholar 

  103. Gazzaley, A., Cooney, J. W., Rissman, J. & D’Esposito, M. Top-down suppression deficit underlies working memory impairment in normal aging. Nat. Neurosci. 8, 1298–1300 (2005).

    Article  PubMed  Google Scholar 

  104. De Beni, R. & Palladino, P. Decline in working memory updating through ageing: intrusion error analyses. Memory 12, 75–89 (2004).

    Article  PubMed  Google Scholar 

  105. Oberauer, K. Removing irrelevant information from working memory: a cognitive aging study with the modified Sternberg task. J. Exp. Psychol. Learn. Mem. Cogn. 27, 948–957 (2001).

    Article  PubMed  Google Scholar 

  106. Duarte, A. et al. Retrospective attention enhances visual working memory in the young but not the old: an ERP study: retrospective attention and aging. Psychophysiology 50, 465–476 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Oberauer, K. Binding and inhibition in working memory: individual and age differences in short-term recognition. J. Exp. Psychol. Gen. 134, 368–387 (2005).

    Article  PubMed  Google Scholar 

  108. Yi, Y., Driesen, N. & Leung, H.-C. Behavioral and neural correlates of memory selection and interference resolution during a digit working memory task. Cogn. Affect. Behav. Neurosci. 9, 249–259 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Yi, Y. & Friedman, D. Age-related differences in working memory: ERPs reveal age-related delays in selection- and inhibition-related processes. Aging Neuropsychol. Cogn. 21, 483–513 (2014).

    Article  Google Scholar 

  110. May, C. P., Hasher, L. & Kane, M. J. The role of interference in memory span. Mem. Cogn. 27, 759–767 (1999).

    Article  Google Scholar 

  111. Braver, T. S. & West, R. in The Handbook Of Aging And Cognition (eds Craik, F. I. M. & Salthouse, T. A.) 311–372 (Psychology, 2008).

  112. Mayr, U. Age differences in the selection of mental sets: the role of inhibition, stimulus ambiguity, and response-set overlap. Psychol. Aging 16, 96–109 (2001).

    Article  PubMed  Google Scholar 

  113. Reimers, S. & Maylor, E. A. Task switching across the life span: effects of age on general and specific switch costs. Dev. Psychol. 41, 661–671 (2005).

    Article  PubMed  Google Scholar 

  114. Oberauer, K. Selective attention to elements in working memory. Exp. Psychol. 50, 257–269 (2003).

    Article  PubMed  Google Scholar 

  115. Verhaeghen, P. in Memory And Aging: Current Issues And Future Directions (eds. Naveh-Benjamin, M. & Ohta, N.) 3–30 (Psychology, 2012).

  116. Verhaeghen, P. & Basak, C. Ageing and switching of the focus of attention in working memory: results from a modified N-back task. Q. J. Exp. Psychol. A 58, 134–154 (2005). This study suggests that switching the focus of attention is a process that shows a specific age-related deficit that is observed through inaccuracies in responding.

    Article  PubMed  Google Scholar 

  117. Salthouse, T. A. The processing-speed theory of adult age differences in cognition. Psychol. Rev. 103, 403–428 (1996).

    Article  PubMed  Google Scholar 

  118. Craik, F. I. M. & Byrd, M. i Aging And Cognitive Processes (eds Craik, F. I. M. & Stuss, D. T.) 191–211 (Plenum, 1982).

  119. Hasher, L. & Zacks, R. T. Automatic and effortful processes in memory. J. Exp. Psychol. Gen. 108, 356–388 (1979).

    Article  Google Scholar 

  120. Greene, N. R. & Naveh-Benjamin, M. The formation of specific and gist associative episodic memory during encoding: effects of rate of presentation. J. Exp. Psychol. Learn. Mem. Cogn. https://doi.org/10.1037/xlm0001173 (2022).

    Article  PubMed  Google Scholar 

  121. Kramer, A. F. & Madden, D. J. in The Handbook Of Aging And Cognition (eds Craik, F. I. M. & Salthouse, T. A.) 189–249 (Psychology, 2008).

  122. Peterson, D. J., Decker, R. & Naveh-Benjamin, M. Further studies on the role of attention and stimulus repetition in item–item binding processes in visual working memory. J. Exp. Psychol. Learn. Mem. Cogn. 45, 56–70 (2019).

    Article  PubMed  Google Scholar 

  123. Graham, E. R. & Burke, D. M. Aging increases inattentional blindness to the gorilla in our midst. Psychol. Aging 26, 162–166 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Naveh-Benjamin, M. et al. Older adults do not notice their names: a new twist to a classic attention task. J. Exp. Psychol. Learn. Mem. Cogn. 40, 1540–1550 (2014). This article shows that older adults were much less able than younger adults to notice their name in an unattended auditory channel while shadowing information in an attended channel, in line with a decline in the scope of attention.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Craik, F. I. M. & Rose, N. S. Memory encoding and aging: a neurocognitive perspective. Neurosci. Biobehav. Rev. 36, 1729–1739 (2012).

    Article  PubMed  Google Scholar 

  126. Bartsch, L. M., Loaiza, V. M., Jäncke, L., Oberauer, K. & Lewis-Peacock, J. A. Dissociating refreshing and elaboration and their impacts on memory. NeuroImage 199, 585–597 (2019).

    Article  PubMed  Google Scholar 

  127. Bartsch, L. M. & Oberauer, K. The effects of elaboration on working memory and long-term memory across age. J. Mem. Lang. 118, 104215 (2021).

    Article  Google Scholar 

  128. Kynette, D., Kemper, S., Norman, S. & Cheung, H. Adults’ word recall and word repetition. Exp. Aging Res. 16, 117–121 (1990).

    Article  PubMed  Google Scholar 

  129. Chevalère, J., Lemaire, P. & Camos, V. Age-related changes in verbal working memory strategies. Exp. Aging Res. 46, 93–127 (2020).

    Article  PubMed  Google Scholar 

  130. Guerrero, L. et al. Effect of self-reported internal memory strategy use on age-related episodic and working memory decline: contribution of control processes. Can. J. Exp. Psychol. Can. Psychol. Expérimentale 75, 348–361 (2021).

    Article  Google Scholar 

  131. Grady, C. The cognitive neuroscience of ageing. Nat. Rev. Neurosci. 13, 491–505 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Rönnlund, M., Nyberg, L., Bäckman, L. & Nilsson, L.-G. Stability, growth, and decline in adult life span development of declarative memory: cross-sectional and longitudinal data from a population-based study. Psychol. Aging 20, 3–18 (2005).

    Article  PubMed  Google Scholar 

  133. Nyberg, L., Backman, L., Erngrund, K., Olofsson, U. & Nilsson, L.-G. Age differences in episodic memory, semantic memory, and priming: relationships to demographic, intellectual, and biological factors. J. Gerontol. B 51B, P234–P240 (1996).

    Article  Google Scholar 

  134. Singer, T., Verhaeghen, P., Ghisletta, P., Lindenberger, U. & Baltes, P. B. The fate of cognition in very old age: six-year longitudinal findings in the Berlin Aging Study (BASE). Psychol. Aging 18, 318–331 (2003).

    Article  PubMed  Google Scholar 

  135. Verhaeghen, P. Aging and vocabulary score: a meta-analysis. Psychol. Aging 18, 332–339 (2003).

    Article  PubMed  Google Scholar 

  136. Miller, L. M. S., Cohen, J. A. & Wingfield, A. Contextual knowledge reduces demands on working memory during reading. Mem. Cognit. 34, 1355–1367 (2006).

    Article  PubMed  Google Scholar 

  137. Soederberg Miller, L. M., Gibson, T. N., Applegate, E. A. & de Dios, J. Mechanisms underlying comprehension of health information in adulthood: the roles of prior knowledge and working memory capacity. J. Health Psychol. 16, 794–806 (2011).

    Article  PubMed  Google Scholar 

  138. Miller, L. M. S., Zirnstein, M. & Chan, P. K. Knowledge differentially supports memory for nutrition information in later life. J. Health Psychol. 18, 1141–1152 (2013).

    Article  PubMed  Google Scholar 

  139. Badham, S. P., Hay, M., Foxon, N., Kaur, K. & Maylor, E. A. When does prior knowledge disproportionately benefit older adults’ memory? Aging Neuropsychol. Cogn. 23, 338–365 (2016).

    Article  Google Scholar 

  140. Loaiza, V. M., Rhodes, M. G. & Anglin, J. The influence of age-related differences in prior knowledge and attentional refreshing opportunities on episodic memory. J. Gerontol. B 70, 729–736 (2015).

    Article  Google Scholar 

  141. Loaiza, V. M. & Srokova, S. Semantic relatedness corrects the age-related binding deficit in working memory and episodic memory. J. Gerontol. Ser. B 75, 1841–1849 (2020).

    Article  Google Scholar 

  142. Lindenberger, U. & Baltes, P. B. Sensory functioning and intelligence in old age: a strong connection. Psychol. Aging 9, 339–355 (1994).

    Article  PubMed  Google Scholar 

  143. Naveh-Benjamin, M. & Kilb, A. Age-related differences in associative memory: the role of sensory decline. Psychol. Aging 29, 672–683 (2014).

    Article  PubMed  Google Scholar 

  144. Schneider, B. A. & Pichora-Fuller, M. K. in The Handbook Of Aging And Cognition (eds Craik, F. I. M. & Salthouse, T. A.) 155–219 (Lawrence Erlbaum, 2000).

  145. Thorn, A. S. C., Gathercole, S. E. & Frankish, C. R. Redintegration and the benefits of long-term knowledge in verbal short-term memory: an evaluation of Schweickert’s (1993) multinomial processing tree model. Cogn. Psychol. 50, 133–158 (2005).

    Article  PubMed  Google Scholar 

  146. Rey-Mermet, A. & Gade, M. Inhibition in aging: what is preserved? What declines? A meta-analysis. Psychon. Bull. Rev. 25, 1695–1716 (2018).

    Article  PubMed  Google Scholar 

  147. Verhaeghen, P. Aging and executive control: reports of a demise greatly exaggerated. Curr. Dir. Psychol. Sci. 20, 174–180 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Salthouse, T. A., Mitchell, D. R., Skovronek, E. & Babcock, R. L. Effects of adult age and working memory on reasoning and spatial abilities. J. Exp. Psychol. Learn. Mem. Cogn. 15, 507–516 (1989).

    Article  PubMed  Google Scholar 

  149. Salthouse, T. A. Why Are there different age relations in cross-sectional and longitudinal comparisons of cognitive functioning? Curr. Dir. Psychol. Sci. 23, 252–256 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Niedźwieńska, A., Sołga, J., Zagaja, P. & Żołnierz, M. Everyday memory failures across adulthood: implications for the age prospective memory paradox. PLoS One 15, e0239581 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Henry, J. D. et al. Implementation intentions and prospective memory function in late adulthood. Psychol. Aging 35, 1105–1114 (2020).

    Article  PubMed  Google Scholar 

  152. Halford, G. S., Cowan, N. & Andrews, G. Separating cognitive capacity from knowledge: a new hypothesis. Trends Cogn. Sci. 11, 236–242 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Ding, D. et al. Belief bias effect in older adults: roles of working memory and need for cognition. Front. Psychol. 10, 2940 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Rosemann, S. & Thiel, C. M. Neural signatures of working memory in age-related hearing loss. Neuroscience 429, 134–142 (2020).

    Article  PubMed  Google Scholar 

  155. Schubotz, L., Holler, J., Drijvers, L. & Özyürek, A. Aging and working memory modulate the ability to benefit from visible speech and iconic gestures during speech-in-noise comprehension. Psychol. Res. 85, 1997–2011 (2021).

    Article  PubMed  Google Scholar 

  156. Kelly, M. E. et al. The impact of social activities, social networks, social support and social relationships on the cognitive functioning of healthy older adults: a systematic review. Syst. Rev. 6, 259 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Forsberg, A., Guitard, D. & Cowan, N. Working memory limits severely constrain long-term retention. Psychon. Bull. Rev. 28, 537–547 (2021).

    Article  PubMed  Google Scholar 

  158. Colcombe, S. & Kramer, A. F. Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol. Sci. 14, 125–130 (2003). This meta-analysis assesses effects of aerobic fitness training on the cognitive vitality of older adults, showing that fitness training has selective benefits for cognition that are most robust for executive control.

    Article  PubMed  Google Scholar 

  159. Hoffmann, C. M., Petrov, M. E. & Lee, R. E. Aerobic physical activity to improve memory and executive function in sedentary adults without cognitive impairment: a systematic review and meta-analysis. Prev. Med. Rep. 23, 101496 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Zhidong, C., Wang, X., Yin, J., Song, D. & Chen, Z. Effects of physical exercise on working memory in older adults: a systematic and meta-analytic review. Eur. Rev. Aging Phys. Act. 18, 18 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Harrison, T. L. et al. Working memory training may increase working memory capacity but not fluid intelligence. Psychol. Sci. 24, 2409–2419 (2013).

    Article  PubMed  Google Scholar 

  162. Melby-Lervåg, M., Redick, T. S. & Hulme, C. Working memory training does not improve performance on measures of intelligence or other measures of “far transfer”: evidence from a meta-analytic review. Perspect. Psychol. Sci. 11, 512–534 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Hou, J. et al. The long-term efficacy of working memory training in healthy older adults: a systematic review and meta-analysis of 22 randomized controlled trials. J. Gerontol. Ser. B 75, e174–e188 (2020).

    Article  Google Scholar 

  164. Colzato, L. S., van den Wildenberg, W. P. M., Zmigrod, S. & Hommel, B. Action video gaming and cognitive control: playing first person shooter games is associated with improvement in working memory but not action inhibition. Psychol. Res. 77, 234–239 (2013).

    Article  PubMed  Google Scholar 

  165. Reinhart, R. M. G. & Nguyen, J. A. Working memory revived in older adults by synchronizing rhythmic brain circuits. Nat. Neurosci. 22, 820–827 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Williams, K. N., Herman, R., Gajewski, B. & Wilson, K. Elderspeak communication: impact on dementia care. Am. J. Alzheimers Dis. Demen. 24, 11–20 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank F. Craik for extensive help in writing this Review, and N. Greene for help with the citations and the references.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Moshe Naveh-Benjamin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Psychology thanks Kim Uittenhove and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naveh-Benjamin, M., Cowan, N. The roles of attention, executive function and knowledge in cognitive ageing of working memory. Nat Rev Psychol 2, 151–165 (2023). https://doi.org/10.1038/s44159-023-00149-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44159-023-00149-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing