Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Leptin and the maintenance of elevated body weight

Key Points

  • The body possesses an energy homeostasis system by which it adjusts food intake to match calories burned to keep body weight stable

  • The hormone leptin, which is made by adipose tissue in approximate proportion to fat stores, plays an important role in the control of energy homeostasis. When fat stores are expended, leptin falls, causing an increase in appetite and diminishing energy expenditure to return fat stores to their previous levels

  • Because obesity results from the accretion of adipose tissue fat stores, leptin levels are high in obesity. The failure of this high leptin (and therapy with exogenous leptin) in the obese state to decrease feeding and return adipose mass to normal has suggested the existence of leptin resistance, in which obesity impairs leptin action

  • Obesity provokes a number of changes to hypothalamic anatomy and physiology, many of which have been invoked as potential mediators of leptin resistance. These include the leptin-induced expression of leptin signalling inhibitors, hypothalamic inflammatory signalling and gliosis and endoplasmic reticulum stress

  • A variety of data suggest that early steps in leptin signalling are appropriately enhanced in response to the high leptin levels in obesity and that elevated leptin itself may attenuate downstream leptin action. Hence, the failure of leptin to decrease food intake and body weight in obesity may result from high leptin levels producing changes that act downstream of the initial steps in leptin signalling to create a functional ceiling for leptin action

  • The available data suggest that leptin functions primarily in defence against decreased body weight rather than in limiting increases in body weight

Abstract

Obesity represents the single most important risk factor for early disability and death in developed societies, and the incidence of obesity remains at staggering levels. CNS systems that modulate energy intake and expenditure in response to changes in body energy stores serve to maintain constant body adiposity; the adipocyte-derived hormone leptin and its receptor (LEPR) represent crucial regulators of these systems. As in the case of insulin resistance, a variety of mechanisms (including feedback inhibition, inflammation, gliosis and endoplasmic reticulum stress) have been proposed to interfere with leptin action and impede the systems that control body energy homeostasis to promote or maintain obesity, although the relative importance and contribution of each of these remain unclear. However, LEPR signalling may be increased (rather than impaired) in common obesity, suggesting that any obesity-associated defects in leptin action must result from lesions somewhere other than the initial LEPR signal. It is also possible that increased LEPR signalling could mediate some of the obesity-associated changes in hypothalamic function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Leptin action.
Figure 2: Leptin signalling and mechanisms that mediate its inhibition.
Figure 3: CNS leptin action.
Figure 4: Hypothalamic leptin action and changes during diet-induced obesity.

Similar content being viewed by others

References

  1. Cutler, D. M., Glaeser, E. L. & Shapiro, J. M. Why have Americans become more obese? J. Econ. Perspect. 17, 93–118 (2003).

    Article  Google Scholar 

  2. Cawley, J. & Meyerhoefer, C. The medical care costs of obesity: an instrumental variables approach. J. Health Econ. 31, 219–230 (2012).

    Article  PubMed  Google Scholar 

  3. Schwartz, M. W., Woods, S. C., Porte, D., Seeley, R. J. & Baskin, D. G. Central nervous system control of food intake. Nature 404, 661–671 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Rosenbaum, M. et al. Low-dose leptin reverses skeletal muscle, autonomic, and neuroendocrine adaptations to maintenance of reduced weight. J. Clin. Invest. 115, 3579–3586 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ingalls, A. M., Dickie, M. M. & Snell, G. D. Obese, a new mutation in the house mouse. J. Hered. 41, 317–318 (1950).

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994). This article describes the original cloning of leptin, showing that it is a hormone that is made by white adipose tissue and that it can decrease food intake in normal and leptin-deficient mice.

    Article  CAS  PubMed  Google Scholar 

  7. Frederich, R. C. et al. Leptin levels reflect body lipid-content in mice — evidence for diet-induced resistance to leptin action. Nat. Med. 1, 1311–1314 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Farooqi, S. et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N. Engl. J. Med. 341, 879–884 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Chua, S. C. Jr et al. Phenotypes of mouse diabetes and rat fatty due to mutations in the ob (leptin) receptor. Science 271, 994–996 (2016).

    Article  Google Scholar 

  10. Flak, J. N. & Myers, M. G. Minireview: CNS mechanisms of leptin action. Mol Endocrinol. 30, 3–12 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. De Luca, C. et al. Complete rescue of obesity, diabetes, and infertility in db/db mice by neuron-specific LEPR-B transgenes. J. Clin. Invest. 115, 3484–3493 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lou, P.-H. et al. Reduced body weight and increased energy expenditure in transgenic mice over-expressing soluble leptin receptor. PLoS ONE 5, e11669 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Ahima, R. S. et al. Role of leptin in the neuroendocrine response to fasting. Nature 382, 250–252 (1996). This study treated fasted mice with leptin, reversing many components of the neuroendocrine starvation response (hypercortisolism, hypothyroidism, decreased energy expenditure and infertility). Thus, the decrease in leptin that accompanies calorific restriction contributes to the activation of the neuroendocrine starvation response.

    Article  CAS  PubMed  Google Scholar 

  14. Allison, M. B. & Myers, M. G. Connecting leptin signaling to biological function. J. Endocrinol. 223, T25–T35 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Piper, M. L., Unger, E. K., Myers, M. G. & Xu, A. W. Specific physiological roles for signal transducer and activator of transcription 3 in leptin receptor-expressing neurons. Mol. Endocrinol. 22, 751–759 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Bates, S. H. et al. STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature 421, 856–859 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Jiang, L. et al. Tyrosine-dependent and -independent actions of leptin receptor in control of energy balance and glucose homeostasis. Proc. Natl Acad. Sci. USA 105, 18619–18624 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Niswender, K. D. et al. Intracellular signalling: key enzyme in leptin-induced anorexia. Nature 413, 794–795 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Wang, Y. et al. Role of astrocytes in leptin signaling. J. Mol. Neurosci. 56, 829–839 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Allison, M. B. et al. TRAP-seq defines markers for novel populations of hypothalamic and brainstem LepRb neurons. Mol. Metab. 4, 299–309 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Campbell, J. N. et al. A molecular census of arcuate hypothalamus and median eminence cell types. Nat. Neurosci. 20, 484–496 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Waterson, M. J. & Horvath, T. L. Neuronal regulation of energy homeostasis: beyond the hypothalamus and feeding. Cell Metab. 22, 962–970 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Kim, J. G. et al. Leptin signaling in astrocytes regulates hypothalamic neuronal circuits and feeding. Nat. Neurosci. 17, 908–910 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Van De Wall, E. et al. Collective and individual functions of leptin receptor modulated neurons controlling metabolism and ingestion. Endocrinology 149, 1773–1785 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Vong, L. et al. Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron 71, 142–154 (2011). This study shows that leptin acts via non-AGRP-expressing inhibitory neurons to indirectly control the activity of POMC cells, providing the first evidence of important indirect regulation of POMC neurons by leptin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Garfield, A. S. et al. Dynamic GABAergic afferent modulation of AgRP neurons. Nat. Neurosci. 19, 1628–1635 (2016). This study shows that GABAergic LEPR neurons in the DMH innervate AGRP cells to control their activity, suggesting that an important component of the regulation of AGRP neurons by leptin is indirect.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Leshan, R. L., Greenwald-Yarnell, M., Patterson, C. M., Gonzalez, I. E. & Myers, M. G. Leptin action through hypothalamic nitric oxide synthase-1-expressing neurons controls energy balance. Nat. Med. 18, 820–823 (2012). This study shows that non-POMC LEPR neurons that express Nos1 control gene expression in POMC cells, revealing that leptin controls many aspects of POMC neuron function indirectly.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rezai-Zadeh, K. et al. Leptin receptor neurons in the dorsomedial hypothalamus are key regulators of energy expenditure and body weight, but not food intake. Mol. Metab. 3, 681–693 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dodd, G. T. et al. The thermogenic effect of leptin is dependent on a distinct population of prolactin-releasing peptide neurons in the dorsomedial hypothalamus. Cell Metab. 20, 639–649 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dhillon, H. et al. Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. Neuron 49, 191–203 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Hawke, Z. et al. PACAP neurons in the hypothalamic ventromedial nucleus are targets of central leptin signaling. J. Neurosci. 29, 14828–14835 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Leinninger, G. M. et al. Leptin action via neurotensin neurons controls orexin, the mesolimbic dopamine system and energy balance. Cell Metab. 14, 313–323 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Laque, A. et al. Leptin modulates nutrient reward via inhibitory galanin action on orexin neurons. Mol. Metab. 4, 706–717 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu, J., Perez, S. M., Zhang, W., Lodge, D. J. & Lu, X.-Y. Selective deletion of the leptin receptor in dopamine neurons produces anxiogenic-like behavior and increases dopaminergic activity in amygdala. Mol. Psychiatry 16, 1024–1038 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Goforth, P. B., Leinninger, G. M., Patterson, C. M., Satin, L. S. & Myers, M. G. Leptin acts via lateral hypothalamic area neurotensin neurons to inhibit orexin neurons by multiple GABA-independent mechanisms. J. Neurosci. 34, 11405–11415 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Huo, L., Maeng, L., Bjørbæk, C. & Grill, H. J. Leptin and the control of food intake: neurons in the nucleus of the solitary tract are activated by both gastric distension and leptin. Endocrinology 148, 2189–2197 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Morton, G. J. et al. Leptin action in the forebrain regulates the hindbrain response to satiety signals. J. Clin. Invest. 115, 703–710 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Williams, D. L., Baskin, D. G. & Schwartz, M. W. Leptin regulation of the anorexic response to glucagon-like peptide-1 receptor stimulation. Diabetes 55, 3387–3393 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Grill, H. J. Evidence that the caudal brainstem is a target for the inhibitory effect of leptin on food intake. Endocrinology 143, 239–246 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Hayes, M. R. et al. Endogenous leptin signaling in the caudal nucleus tractus solitarius and area postrema is required for energy balance regulation. Cell Metab. 11, 77–83 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Scott, M. M. et al. Leptin targets in the mouse brain. J. Comp. Neurol. 514, 518–532 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Patterson, C. M., Leshan, R. L., Jones, J. C. & Myers, M. G. Molecular mapping of mouse brain regions innervated by leptin receptor-expressing cells. Brain Res. 1378, 18–28 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Yadav, V. K. et al. A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell 138, 976–989 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lam, D. D. et al. Leptin does not directly affect CNS serotonin neurons to influence appetite. Cell Metab. 13, 584–591 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Flak, J. N. et al. Leptin-inhibited PBN neurons enhance responses to hypoglycemia in negative energy balance. Nat. Neurosci. 17, 1744–1750 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Flak, J. N. et al. A leptin-regulated circuit controls glucose mobilization during noxious stimuli. J. Clin. Invest. 127, 3103–3113 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kanoski, S. E. & Grill, H. J. Hippocampus contributions to food intake control: mnemonic, neuroanatomical, and endocrine mechanisms. Biol. Psychiatry 81, 748–756 (2017).

    Article  PubMed  Google Scholar 

  48. El-Haschimi, K., Pierroz, D. D., Hileman, S. M., Bjørbæk, C. & Flier, J. S. Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity. J. Clin. Invest. 105, 1827–1832 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jameson, J. Hormone Resistance Syndromes. (Springer Science & Business Media, 1999).

    Book  Google Scholar 

  50. Münzberg, H., Flier, J. S. & Bjørbæk, C. Region-specific leptin resistance within the hypothalamus of diet-induced obese mice. Endocrinology 145, 4880–4889 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Bjørbaek, C., Elmquist, J. K., Frantz, J. D., Shoelson, S. E. & Flier, J. S. Identification of SOCS-3 as a potential mediator of central leptin resistance. Mol. Cell 1, 619–625 (1998).

    Article  PubMed  Google Scholar 

  52. Bjørbæk, C. et al. Divergent roles of SHP-2 in ERK activation by leptin receptors. J. Biol. Chem. 276, 4747–4755 (2001).

    Article  PubMed  Google Scholar 

  53. Bjørbæk, C., El-Haschimi, K., Frantz, J. D. & Flier, J. S. The role of SOCS-3 in leptin signaling and leptin resistance. J. Biol. Chem. 274, 30059–30065 (1999).

    Article  PubMed  Google Scholar 

  54. Bjornholm, M. et al. Mice lacking inhibitory leptin receptor signals are lean with normal endocrine function. J. Clin. Invest. 117, 1354–1360 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mori, H. et al. Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced obesity. Nat. Med. 10, 739–743 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Zabolotny, J. M. et al. PTP1B regulates leptin signal transduction in vivo. Dev. Cell 2, 489–495 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. White, C. L. et al. HF diets increase hypothalamic PTP1B and induce leptin resistance through both leptin-dependent and -independent mechanisms. AJP Endocrinol. Metab. 296, E291–E299 (2008).

    Article  CAS  Google Scholar 

  58. Bence, K. K. et al. Neuronal PTP1B regulates body weight, adiposity and leptin action. Nat. Med. 12, 917–924 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Loh, K. et al. Elevated hypothalamic TCPTP in obesity contributes to cellular leptin resistance. Cell Metab. 14, 684–699 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lumeng, C. N. & Saltiel, A. R. Inflammatory links between obesity and metabolic disease. J. Clin. Invest. 121, 2111–2117 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Thaler, J. et al. Obesity is associated with hypothalamic injury in rodents and humans. J. Clin. Invest. 122, 153 (2011). This study shows that obesity is associated with increased hypothalamic astrocyte number and activation in humans as well as in rodent models.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zhang, X. et al. Hypothalamic IKKb/NF-kB ER stress link overnutrition to energy imbalance and obesity. Cell 135, 61–73 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Benoit, S. C. et al. Palmitic acid mediates hypothalamic insulin resistance by altering PKC-θ subcellular localization in rodents. J. Clin. Invest. 119, 2577–2589 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Romanatto, T. et al. TNF-alpha acts in the hypothalamus inhibiting food intake and increasing the respiratory quotient — effects on leptin and insulin signaling pathways. Peptides 28, 1050–1058 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Arruda, A. P. et al. Low-grade hypothalamic inflammation leads to defective thermogenesis, insulin resistance, and impaired insulin secretion. Endocrinology 152, 1314–1326 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Sabio, G. et al. Role of the hypothalamic-pituitary-thyroid axis in metabolic regulation by JNK1. Genes Dev. 24, 256–264 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tsaousidou, E. et al. Distinct roles for JNK and IKK activation in agouti-related peptide neurons in the development of obesity and insulin resistance. Cell Rep. 9, 1495–1506 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Benzler, J. et al. Central inhibition of IKKb/NF-kB signaling attenuates high-fat diet-induced obesity and glucose intolerance. Diabetes 64, 2015–2027 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Milanski, M. et al. Saturated fatty acids produce an inflammatory response predominantly through the activation of TLR4 signaling in hypothalamus: implications for the pathogenesis of obesity. J. Neurosci. 29, 359–370 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Butti, E. et al. Absence of an intrathecal immune reaction to a helper-dependent adenoviral vector delivered into the cerebrospinal fluid of non-human primates. Gene Ther. 15, 233–238 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Ropelle, E. R. et al. IL-6 and IL-10 anti-inflammatory activity links exercise to hypothalamic insulin and leptin sensitivity through IKKβ and ER stress inhibition. PLoS Biol. 8, e1000465 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Dong, Z. M., Gutierrez-Ramos, J. C., Coxon, A, Mayadas, T. N. & Wagner, D. D. A new class of obesity genes encodes leukocyte adhesion receptors. Proc. Natl Acad. Sci. USA 94, 7526–7530 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Langhans, W. Signals generating anorexia during acute illness. Proc. Nutr. Soc. 66, 321–330 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Valdearcos, M. et al. Microglia dictate the impact of saturated fat consumption on hypothalamic inflammation and neuronal function. Cell Rep. 9, 2124–2139 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dorfman, M. D. et al. Sex differences in microglial CX3CR1 signalling determine obesity susceptibility in mice. Nat. Commun. 8, 14556 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Schafer, D. P. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74, 691–705 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Allen, N. J. Astrocyte regulation of synaptic behavior. Annu. Rev. Cell Dev. Biol. 30, 439–463 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Ye, J. & McGuinness, O. P. Inflammation during obesity is not all bad: evidence from animal and human studies. AJP Endocrinol. Metab. 304, E466–E477 (2013).

    Article  CAS  Google Scholar 

  79. Ozcan, L. et al. Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab. 9, 35–51 (2009). This study shows that obesity is associated with the activation of pathways associated with ER stress in the hypothalamus and that increased ER stress can blunt leptin signalling.

    Article  CAS  PubMed  Google Scholar 

  80. Back, S. H. & Kaufman, R. J. Endoplasmic reticulum stress and type 2 diabetes. Annu. Rev. Biochem. 81, 767–793 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Marciniak, S. J. & Ron, D. Endoplasmic reticulum stress signaling in disease. Physiol. Rev. 86, 1133–1149 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Williams, K. W. et al. Xbp1s in pomc neurons connects ER stress with energy balance and glucose homeostasis. Cell Metab. 20, 471–482 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Liu, J., Lee, J., Hernandez, M. A. S., Mazitschek, R. & Ozcan, U. Treatment of obesity with celastrol. Cell 161, 999–1011 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lee, J. et al. Withaferin A is a leptin sensitizer with strong antidiabetic properties in mice. Nat. Med. 22, 1023–1032 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ottaway, N. et al. Diet-induced obese mice retain endogenous leptin action. Cell Metab. 21, 877–882 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Knight, Z. A., Hannan, K. S., Greenberg, M. L. & Friedman, J. M. Hyperleptinemia is required for the development of leptin resistance. PLoS ONE 5, e11376 (2010). This study uses mice with 'clamped' leptin levels to show that obese mice that do not have high leptin levels remain sensitive to exogenous leptin. Thus, high leptin, rather than other processes associated with obesity, represents the major factor limiting leptin action in the obese state.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Flier, J. S. & Maratos-Flier, E. Leptin's physiologic role: does the emperor of energy balance have no clothes? Cell Metab. 26, 24–26 (2017).

    Article  CAS  PubMed  Google Scholar 

  88. Müller, T. D. et al. Restoration of leptin responsiveness in diet-induced obese mice using an optimized leptin analog in combination with exendin-4 or FGF21. J. Pept. Sci. 18, 383–393 (2012).

    Article  CAS  PubMed  Google Scholar 

  89. Roth, J. D. et al. Leptin responsiveness restored by amylin agonism in diet-induced obesity: evidence from nonclinical and clinical studies. Proc. Natl Acad. Sci. USA 105, 7257–7262 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Burke, L. K. & Heisler, L. K. 5-hydroxytryptamine medications for the treatment of obesity. J. Neuroendocrinol. 27, 389–398 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Solinas, G. et al. JNK1 in hematopoietically derived cells contributes to diet-induced inflammation and insulin resistance without affecting obesity. Cell Metab. 6, 386–397 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Nguyen, M. T. A. et al. A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via toll-like receptors 2 and 4 and JNK-dependent pathways. J. Biol. Chem. 282, 35279–35292 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Saberi, M. et al. Hematopoietic cell-specific deletion of Toll-like receptor 4 ameliorates hepatic and adipose tissue insulin resistance in high-fat-fed mice. Cell Metab. 10, 419–429 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang, H. et al. Deficiency of lipoprotein lipase in neurons modifies the regulation of energy balance and leads to obesity. Cell Metab. 13, 105–113 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ridaura, V. K. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Reijnders, D. et al. Effects of gut microbiota manipulation by antibiotics on host metabolism in obese humans: a randomized double-blind placebo-controlled trial. Cell Metab. 24, 63–74 (2016).

    Article  CAS  PubMed  Google Scholar 

  97. Simonds, S. E. et al. Leptin mediates the increase in blood pressure associated with obesity. Cell 159, 1404–1416 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lord, G. M. et al. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 394, 897–901 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Ron, D. & Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell. Biol. 8, 519–529 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Henry, F. E., Sugino, K., Tozer, A., Branco, T. & Sternson, S. M. Cell type-specific transcriptomics of hypothalamic energy-sensing neuron responses to weight-loss. eLife 4, e09800 (2015).

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors were supported by the Michigan Diabetes Research Center (P30 DK020572), the American Diabetes Association, the Marilyn H. Vincent Foundation, the US National Institutes of Health (DK56731 and DK78056) and the Cell and Molecular Biology (CMB) Training Grant (T32GM007315). The authors thank D. Olson, D. Sandoval, R. Seeley and members of the Myers laboratory for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

M.G.M. was involved in researching data for the article, made a substantial contribution to discussion of content and wrote, reviewed and edited the manuscript before submission. W.W.P. was involved in researching data for the article, made a substantial contribution to the discussion of content and wrote, reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Martin G. Myers Jr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Energy expenditure

The burning of calories by an organism on normal metabolism (basal metabolic rate) and activity.

Hyperphagia

Literally meaning 'eating too much', it is the consumption of more calories than needed to maintain energy homeostasis and results in the deposition of excess calories in adipose tissue.

Energy homeostasis

The process by which the number of calories eaten are matched to the number of calories burned to maintain a constant body weight; also known as energy balance.

White adipose tissue

The tissue commonly thought of as fat; major depots are found under the skin and inside the abdominal cavity.

Orexigenic

A type of stimuli that increases feeding.

Systemic inflammation

An immune response to infection or other insults that increases the activity of immune cells in the body.

Gut microbiome

The bacteria and other microorganisms that colonize the lumen of the gut.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, W., Myers, M. Leptin and the maintenance of elevated body weight. Nat Rev Neurosci 19, 95–105 (2018). https://doi.org/10.1038/nrn.2017.168

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2017.168

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing