Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bacteriocins — a viable alternative to antibiotics?

Subjects

Key Points

  • Solutions are urgently required for the growing number of infections caused by antibiotic-resistant bacteria and to address the fact that broad-spectrum antibiotics can considerably harm the commensal human microbiota.

  • Bacteriocins are potential alternatives to traditional antibiotics. These peptides, which are produced by many bacteria, can have a high potency and a low toxicity, can be produced in situ by probiotics and can be bioengineered. Both broad- and narrow-spectrum bacteriocins exist.

  • Bacteriocins function through different mechanisms that are frequently distinct from those used by antibiotics. Bacteriocins can be broadly classified into those that target the cell membrane and those that function within the cell, targeting DNA, RNA and protein metabolism.

  • Resistance to bacteriocins is a potential problem. In some cases, resistance arises at a sufficiently low rate to allow commercialization of the peptide in its natural form. In other cases, knowledge of the potential resistance mechanisms could be crucial for minimizing the emergence of resistance when clinical applications commence.

  • Many bacteriocins possess properties which suggest that these peptides could be of value in clinical settings. However, to date, the primary focus for their use has been on animal, rather than human, health.

  • A lack of sufficient investment has been a significant problem with respect to the medical application of bacteriocins. Notably, however, there is evidence to suggest that issue is finally being addressed.

Abstract

Solutions are urgently required for the growing number of infections caused by antibiotic-resistant bacteria. Bacteriocins, which are antimicrobial peptides produced by certain bacteria, might warrant serious consideration as alternatives to traditional antibiotics. These molecules exhibit significant potency against other bacteria (including antibiotic-resistant strains), are stable and can have narrow or broad activity spectra. Bacteriocins can even be produced in situ in the gut by probiotic bacteria to combat intestinal infections. Although the application of specific bacteriocins might be curtailed by the development of resistance, an understanding of the mechanisms by which such resistance could emerge will enable researchers to develop strategies to minimize this potential problem.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Narrow-spectrum activity of thuricin CD.
Figure 2: Probiotic delivery of bacteriocins.
Figure 3: Mechanism of action of representative bacteriocins.

References

  1. 1

    White, A. R. Effective antibacterials: at what cost? The economics of antibacterial resistance and its control. J. Antimicrob. Chemother. 66, 1948–1953 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. 2

    Cooper, M. A. & Shlaes, D. Fix the antibiotics pipeline. Nature 472, 32 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. 3

    Blaser, M. Antibiotic overuse: stop the killing of beneficial bacteria. Nature 476, 393–394 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. 4

    Willing, B. P., Russell, S. L. & Finlay, B. B. Shifting the balance: antibiotic effects on host–microbiota mutualism. Nature Rev. Microbiol. 9, 233–243 (2011).

    Article  CAS  Google Scholar 

  5. 5

    Cotter, P. D., Stanton, C., Ross, R. P. & Hill, C. The impact of antibiotics on the gut microbiota as revealed by high throughput DNA sequencing. Discov. Med. 13, 193–199 (2012).

    PubMed  Google Scholar 

  6. 6

    Savoia, D. Plant-derived antimicrobial compounds: alternatives to antibiotics. Future Microbiol. 7, 979–990 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. 7

    Burrowes, B., Harper, D. R., Anderson, J., McConville, M. & Enright, M. C. Bacteriophage therapy: potential uses in the control of antibiotic-resistant pathogens. Expert Rev. Anti Infect. Ther. 9, 775–785 (2011).

    Article  PubMed  Google Scholar 

  8. 8

    Kole, R., Krainer, A. R. & Altman, S. RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nature Rev. Drug Discov. 11, 125–140 (2012).

    Article  CAS  Google Scholar 

  9. 9

    Shanahan, F. Probiotics in perspective. Gastroenterology 139, 1808–1812 (2010).

    Article  PubMed  Google Scholar 

  10. 10

    Li, Y., Xiang, Q., Zhang, Q., Huang, Y. & Su, Z. Overview on the recent study of antimicrobial peptides: origins, functions, relative mechanisms and application. Peptides 37, 207–215 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. 11

    Cotter, P. D., Hill, C. & Ross, R. P. Bacteriocins: developing innate immunity for food. Nature Rev. Microbiol. 3, 777–788 (2005).

    Article  CAS  Google Scholar 

  12. 12

    Rea, M. C. et al. Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. Proc. Natl Acad. Sci. USA 107, 9352–9357 (2010).

    Article  Google Scholar 

  13. 13

    Boakes, S. et al. Generation of an actagardine A variant library through saturation mutagenesis. Appl. Microbiol. Biotechnol. 95, 1509–1517 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. 14

    Svetoch, E. A. & Stern, N. J. Bacteriocins to control Campylobacter spp. in poultry—a review. Poult. Sci. 89, 1763–1768 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. 15

    Desriac, F. et al. Bacteriocin as weapons in the marine animal-associated bacteria warfare: inventory and potential applications as an aquaculture probiotic. Mar. Drugs 8, 1153–1177 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Piper, C., Cotter, P. D., Ross, R. P. & Hill, C. Discovery of medically significant lantibiotics. Curr. Drug Discov. Technol. 6, 1–18 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. 17

    Zhang, C. et al. Thiazomycins, thiazolyl peptide antibiotics from Amycolatopsis fastidiosa. J. Nat. Prod. 72, 841–847 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. 18

    Zhang, C. et al. Isolation, structure, and antibacterial activity of philipimycin, a thiazolyl peptide discovered from Actinoplanes philippinensis MA7347. J. Am. Chem. Soc. 130, 12102–12110 (2008).

    Article  CAS  Google Scholar 

  19. 19

    Singh, S. B. et al. Antibacterial evaluations of thiazomycin — a potent thiazolyl peptide antibiotic from Amycolatopsis fastidiosa. J. Antibiot. 60, 565–571 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. 20

    Morris, R. P. et al. Ribosomally synthesized thiopeptide antibiotics targeting elongation factor Tu. J. Am. Chem. Soc. 131, 5946–5955 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Leeds, J. A., Sachdeva, M., Mullin, S., Dzink-Fox, J. & Lamarche, M. J. Mechanism of action of, and mechanism of reduced susceptibility to the novel anti-Clostridium difficile compound LFF571. Antimicrob. Agents Chemother. 56, 4463–4465 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Shelburne, C. E. et al. The spectrum of antimicrobial activity of the bacteriocin subtilosin A. J. Antimicrob. Chemother. 59, 297–300 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. 23

    Noll, K. S., Sinko, P. J. & Chikindas, M. L. Elucidation of the molecular mechanisms of action of the natural antimicrobial peptide subtilosin against the bacterial vaginosis-associated pathogen Gardnerella vaginalis. Probiotics Antimicrob. Proteins 3, 41–47 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Paik, S. H., Chakicherla, A. & Hansen, J. N. Identification and characterization of the structural and transporter genes for, and the chemical and biological properties of, sublancin 168, a novel lantibiotic produced by Bacillus subtilis 168. J. Biol. Chem. 273, 23134–23142 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. 25

    Freeman, M. F. et al. Metagenome mining reveals polytheonamides as posttranslationally modified ribosomal peptides. Science 338, 387–390 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. 26

    Kobayashi, Y. et al. Bottromycin derivatives: efficient chemical modifications of the ester moiety and evaluation of anti-MRSA and anti-VRE activities. Bioorg. Med. Chem. Lett. 20, 6116–6120 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. 27

    Eijsink, V. G., Skeie, M., Middelhoven, P. H., Brurberg, M. B. & Nes, I. F. Comparative studies of class IIa bacteriocins of lactic acid bacteria. Appl. Environ. Microbiol. 64, 3275–3281 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Drider, D., Fimland, G., Hechard, Y., McMullen, L. M. & Prevost, H. The continuing story of class IIa bacteriocins. Microbiol. Mol. Biol. Revs 70, 564–582 (2006).

    Article  CAS  Google Scholar 

  29. 29

    Sanchez-Hidalgo, M. et al. AS-48 bacteriocin: close to perfection. Cell. Mol. Life Sci. 68, 2845–2857 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. 30

    Sandiford, S. & Upton, M. Identification, characterization, and recombinant expression of epidermicin NI01, a novel unmodified bacteriocin produced by Staphylococcus epidermidis that displays potent activity against staphylococci. Antimicrob. Agents Chemother. 56, 1539–1547 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Garcia-Bustos, J. F., Pezzi, N. & Mendez, E. Structure and mode of action of microcin 7, an antibacterial peptide produced by Escherichia coli. Antimicrob. Agents Chemother. 27, 791–797 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Destoumieux-Garzon, D. et al. The iron-siderophore transporter FhuA is the receptor for the antimicrobial peptide microcin J25: role of the microcin Val11–Pro16β-hairpin region in the recognition mechanism. Biochem. J. 389, 869–876 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Soudy, R., Wang, L. & Kaur, K. Synthetic peptides derived from the sequence of a lasso peptide microcin J25 show antibacterial activity. Bioorg. Med. Chem. 20, 1794–1800 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. 34

    Asensio, C. & Perez-Diaz, J. C. A new family of low molecular weight antibiotics from enterobacteria. Biochem. Biophys. Res. Commun. 69, 7–14 (1976).

    Article  CAS  PubMed  Google Scholar 

  35. 35

    Baquero, F. & Moreno, F. The microcins. FEMS Microbiol. Lett. 23, 117–124 (1984).

    Article  CAS  Google Scholar 

  36. 36

    Havarstein, L. S., Holo, H. & Nes, I. F. The leader peptide of colicin V shares consensus sequences with leader peptides that are common among peptide bacteriocins produced by Gram-positive bacteria. Microbiology 140, 2383–2389 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. 37

    Pons, A. M. et al. Genetic analysis and complete primary structure of microcin L. Antimicrob. Agents Chemother. 48, 505–513 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Thomas, X. et al. Siderophore peptide, a new type of post-translationally modified antibacterial peptide with potent activity. J. Biol. Chem. 279, 28233–28242 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. 39

    Vassiliadis, G., Destoumieux-Garzon, D., Lombard, C., Rebuffat, S. & Peduzzi, J. Isolation and characterization of two members of the siderophore-microcin family, microcins M and H47. Antimicrob. Agents Chemother. 54, 288–297 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. 40

    Kuwano, K. et al. Dual antibacterial mechanisms of nisin Z against Gram-positive and Gram-negative bacteria. Int. J. Antimicrob. Agents 26, 396–402 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. 41

    Morency, H., Mota-Meira, M., LaPointe, G., Lacroix, C. & Lavoie, M. C. Comparison of the activity spectra against pathogens of bacterial strains producing a mutacin or a lantibiotic. Can. J. Microbiol. 47, 322–331 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. 42

    Svetoch, E. A. et al. Inactivating methicillin-resistant Staphylococcus aureus and other pathogens by use of bacteriocins OR-7 and E 50–52. J. Clin. Microbiol. 46, 3863–3865 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  43. 43

    Giacometti, A., Cirioni, O., Barchiesi, F. & Scalise, G. In-vitro activity and killing effect of polycationic peptides on methicillin-resistant Staphylococcus aureus and interactions with clinically used antibiotics. Diagn. Microbiol. Infect. Dis. 38, 115–118 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. 44

    Brumfitt, W., Salton, M. R. & Hamilton-Miller, J. M. Nisin, alone and combined with peptidoglycan-modulating antibiotics: activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci. J. Antimicrob. Chemother. 50, 731–734 (2002).

    Article  CAS  Google Scholar 

  45. 45

    Pomares, M. F., Delgado, M. A., Corbalan, N. S., Farias, R. N. & Vincent, P. A. Sensitization of microcin J25-resistant strains by a membrane-permeabilizing peptide. Appl. Environ. Microbiol. 76, 6837–6842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Salvucci, E., Hebert, E. M., Sesma, F. & Saavedra, L. Combined effect of synthetic enterocin CRL35 with cell wall, membrane-acting antibiotics and muranolytic enzymes against Listeria cells. Lett. Appl. Microbiol. 51, 191–195 (2010).

    CAS  PubMed  Google Scholar 

  47. 47

    Noll, K. S., Prichard, M. N., Khaykin, A., Sinko, P. J. & Chikindas, M. L. The natural antimicrobial peptide subtilosin acts synergistically with glycerol monolaurate, lauric arginate, and ɛ-poly-l-lysine against bacterial vaginosis-associated pathogens but not human lactobacilli. Antimicrob. Agents Chemother. 56, 1756–1761 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. 48

    Fontana, M. B., de Bastos Mdo, C. & Brandelli, A. Bacteriocins Pep5 and epidermin inhibit Staphylococcus epidermidis adhesion to catheters. Curr. Microbiol. 52, 350–353 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. 49

    Goldstein, B. P., Wei, J., Greenberg, K. & Novick, R. Activity of nisin against Streptococcus pneumoniae, in vitro, and in a mouse infection model. J. Antimicrob. Chemother. 42, 277–278 (1998).

    Article  CAS  Google Scholar 

  50. 50

    van Staden, A. D., Brand, A. M. & Dicks, L. M. Nisin F-loaded brushite bone cement prevented the growth of Staphylococcus aureus in vivo. J. Appl. Microbiol. 112, 831–840 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. 51

    De Kwaadsteniet, M., Doeschate, K. T. & Dicks, L. M. Nisin F in the treatment of respiratory tract infections caused by Staphylococcus aureus. Lett. Appl. Microbiol. 48, 65–70 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. 52

    Brand, A. M., de Kwaadsteniet, M. & Dicks, L. M. The ability of nisin F to control Staphylococcus aureus infection in the peritoneal cavity, as studied in mice. Lett. Appl. Microbiol. 51, 645–649 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. 53

    Mota-Meira, M., Morency, H. & Lavoie, M. C. In vivo activity of mutacin B-Ny266. J. Antimicrob. Chemother. 56, 869–871 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. 54

    Chatterjee, S. et al. Mersacidin, a new antibiotic from Bacillus. In vitro and in vivo antibacterial activity. J. Antibiot. (Tokyo) 45, 839–845 (1992).

    Article  CAS  Google Scholar 

  55. 55

    Kruszewska, D. et al. Mersacidin eradicates methicillin-resistant Staphylococcus aureus (MRSA) in a mouse rhinitis model. J. Antimicrob. Chemother. 54, 648–653 (2004).

    Article  CAS  Google Scholar 

  56. 56

    Niu, W. W. & Neu, H. C. Activity of mersacidin, a novel peptide, compared with that of vancomycin, teicoplanin, and daptomycin. Antimicrob. Agents Chemother. 35, 998–1000 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Castiglione, F. et al. A novel lantibiotic acting on bacterial cell wall synthesis produced by the uncommon actinomycete Planomonospora sp. Biochemistry 46, 5884–5895 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Haste, N. M. et al. Activity of the thiopeptide antibiotic nosiheptide against contemporary strains of methicillin-resistant Staphylococcus aureus. J. Antibiot. (Tokyo) 10 Oct 2012 (doi:10.1038/ja.2012.77).

    Google Scholar 

  59. 59

    Xu, L. et al. Nocathiacin analogs: synthesis and antibacterial activity of novel water-soluble amides. Bioorg. Med. Chem. Lett. 19, 3531–3535 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. 60

    Trzasko, A., Leeds, J. A., Praestgaard, J., Lamarche, M. J. & McKenney, D. The efficacy of LFF571 in the hamster model of Clostridium difficile infection. Antimicrob. Agents Chemother. 56, 4459–4462 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Rihakova, J. et al. In vivo activities of recombinant divercin V41 and its structural variants against Listeria monocytogenes. Antimicrob. Agents Chemother. 54, 563–564 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. 62

    Salvucci, E., Saavedra, L., Hebert, E. M., Haro, C. & Sesma, F. Enterocin CRL35 inhibits Listeria monocytogenes in a murine model. Foodborne Pathog. Dis. 9, 68–74 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. 63

    Sosunov, V. et al. Antimycobacterial activity of bacteriocins and their complexes with liposomes. J. Antimicrob. Chemother. 59, 919–925 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. 64

    Lopez, F. E., Vincent, P. A., Zenoff, A. M., Salomon, R. A. & Farias, R. N. Efficacy of microcin J25 in biomatrices and in a mouse model of Salmonella infection. J. Antimicrob. Chemother. 59, 676–680 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. 65

    Maher, S. & McClean, S. Investigation of the cytotoxicity of eukaryotic and prokaryotic antimicrobial peptides in intestinal epithelial cells in vitro. Biochem. Pharmacol. 71, 1289–1298 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. 66

    Cox, C. R., Coburn, P. S. & Gilmore, M. S. Enterococcal cytolysin: a novel two component peptide system that serves as a bacterial defense against eukaryotic and prokaryotic cells. Curr. Protein Pept. Sci. 6, 77–84 (2005).

    Article  CAS  Google Scholar 

  67. 67

    Sivonen, K., Leikoski, N., Fewer, D. P. & Jokela, J. Cyanobactins—ribosomal cyclic peptides produced by cyanobacteria. Appl. Microbiol. Biotechnol. 86, 1213–1225 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Murinda, S. E., Rashid, K. A. & Roberts, R. F. In vitro assessment of the cytotoxicity of nisin, pediocin, and selected colicins on simian virus 40-transfected human colon and Vero monkey kidney cells with trypan blue staining viability assays. J. Food Prot. 66, 847–853 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. 69

    Jasniewski, J., Cailliez-Grimal, C., Chevalot, I., Milliere, J. B. & Revol-Junelles, A. M. Interactions between two carnobacteriocins Cbn BM1 and Cbn B2 from Carnobacterium maltaromaticum CP5 on target bacteria and Caco-2 cells. Food Chem. Toxicol. 47, 893–897 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. 70

    Hetz, C., Bono, M. R., Barros, L. F. & Lagos, R. Microcin E492, a channel-forming bacteriocin from Klebsiella pneumoniae, induces apoptosis in some human cell lines. Proc. Natl Acad. Sci. USA 99, 2696–2701 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. 71

    Lagos, R., Tello, M., Mercado, G., Garcia, V. & Monasterio, O. Antibacterial and antitumorigenic properties of microcin E492, a pore-forming bacteriocin. Curr. Pharm. Biotechnol. 10, 74–85 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. 72

    Nelson, R. L. et al. Antibiotic treatment for Clostridium difficile-associated diarrhea in adults. Cochrane Database Syst. Rev. 7 Sep 2011 (doi:10.1002/14651858.CD004610.pub4).

  73. 73

    Rea, M. C. et al. Effect of broad- and narrow-spectrum antimicrobials on Clostridium difficile and microbial diversity in a model of the distal colon. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4639–4644 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  74. 74

    Dabour, N., Zihler, A., Kheadr, E., Lacroix, C. & Fliss, I. In vivo study on the effectiveness of pediocin PA-1 and Pediococcus acidilactici UL5 at inhibiting Listeria monocytogenes. Int. J. Food Microbiol. 133, 225–233 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. 75

    Le Blay, G., Lacroix, C., Zihler, A. & Fliss, I. In vitro inhibition activity of nisin A, nisin Z, pediocin PA-1 and antibiotics against common intestinal bacteria. Lett. Appl. Microbiol. 45, 252–257 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. 76

    Bernbom, N. et al. Pediocin PA-1 and a pediocin producing Lactobacillus plantarum strain do not change the HMA rat microbiota. Int. J. Food Microbiol. 130, 251–257 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. 77

    Sutyak, K. E., Wirawan, R. E., Aroutcheva, A. A. & Chikindas, M. L. Isolation of the Bacillus subtilis antimicrobial peptide subtilosin from the dairy product-derived Bacillus amyloliquefaciens. J. Appl. Microbiol. 104, 1067–1074 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. 78

    McCormick, B. A., Franklin, D. P., Laux, D. C. & Cohen, P. S. Type 1 pili are not necessary for colonization of the streptomycin-treated mouse large intestine by type 1-piliated Escherichia coli F-18 and E. coli K-12. Infect. Immun. 57, 3022–3029 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Dobson, A., Cotter, P. D., Ross, R. P. & Hill, C. Bacteriocin production: a probiotic trait? Appl. Environ. Microbiol. 78, 1–6 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    O'Shea, E. F., Cotter, P. D., Stanton, C., Ross, R. P. & Hill, C. Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: bacteriocins and conjugated linoleic acid. Int. J. Food Microbiol. 152, 189–205 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. 81

    Su, P., Henriksson, A. & Mitchell, H. Prebiotics enhance survival and prolong the retention period of specific probiotic inocula in an in vivo murine model. J. Appl. Microbiol. 103, 2392–2400 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. 82

    Su, P., Henriksson, A. & Mitchell, H. Survival and retention of the probiotic Lactobacillus casei LAFTI L26 in the gastrointestinal tract of the mouse. Lett. Appl. Microbiol. 44, 120–125 (2007).

    Article  CAS  Google Scholar 

  83. 83

    Gotteland, M. et al. Modulation of Helicobacter pylori colonization with cranberry juice and Lactobacillus johnsonii La1 in children. Nutrition 24, 421–426 (2008).

    Article  PubMed  Google Scholar 

  84. 84

    Casey, P. G. et al. A five-strain probiotic combination reduces pathogen shedding and alleviates disease signs in pigs challenged with Salmonella enterica serovar Typhimurium. Appl. Environ. Microbiol. 73, 1858–1863 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Walsh, M. C. et al. Predominance of a bacteriocin-producing Lactobacillus salivarius component of a five-strain probiotic in the porcine ileum and effects on host immune phenotype. FEMS Microbiol. Ecol. 64, 317–327 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. 86

    Corr, S. C. et al. Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc. Natl Acad. Sci. USA 104, 7617–7621 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    O'Callaghan, J., Butto, L. F., Macsharry, J., Nally, K. & O'Toole, P. W. Adhesion and bacteriocin production by Lactobacillus salivarius influence the intestinal epithelial cell transcriptional response. Appl. Environ. Microbiol. 78, 5196–5203 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Millette, M. et al. Capacity of human nisin- and pediocin-producing lactic acid bacteria to reduce intestinal colonization by vancomycin-resistant enterococci. Appl. Environ. Microbiol. 74, 1997–2003 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Zschuttig, A. et al. Identification and characterization of microcin S, a new antibacterial peptide produced by probiotic Escherichia coli G3/10. PLoS ONE 7, e33351 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Hillman, J. D., Mo, J., McDonell, E., Cvitkovitch, D. & Hillman, C. H. Modification of an effector strain for replacement therapy of dental caries to enable clinical safety trials. J. Appl. Microbiol. 102, 1209–1219 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. 91

    Hillman, J. D. Genetically modified Streptococcus mutans for the prevention of dental caries. Antonie Van Leeuwenhoek 82, 361–366 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. 92

    Burton, J. P., Chilcott, C. N., Moore, C. J., Speiser, G. & Tagg, J. R. A preliminary study of the effect of probiotic Streptococcus salivarius K12 on oral malodour parameters. J. Appl. Microbiol. 100, 754–764 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. 93

    Tagg, J. R. Prevention of streptococcal pharyngitis by anti-Streptococcus pyogenes bacteriocin-like inhibitory substances (BLIS) produced by Streptococcus salivarius. Indian J. Med. Res. 119 (Suppl.), 13–16 (2004).

    CAS  PubMed  Google Scholar 

  94. 94

    Dover, S. E., Aroutcheva, A. A., Faro, S. & Chikindas, M. L. Natural antimicrobials and their role in vaginal health: a short review. Int. J. Probiotics Prebiotics 3, 219–230 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Sekirov, I., Russell, S. L., Antunes, L. C. & Finlay, B. B. Gut microbiota in health and disease. Physiol. Rev. 90, 859–904 (2010).

    Article  CAS  Google Scholar 

  97. 97

    Murphy, E. F. et al. Divergent metabolic outcomes arising from targeted manipulation of the gut microbiota in diet-induced obesity. Gut 16 Feb 2012 (doi:10.1136/gutjnl-2011-300705).

  98. 98

    Riboulet-Bisson, E. et al. Effect of Lactobacillus salivarius bacteriocin Abp118 on the mouse and pig intestinal microbiota. PLoS ONE 7, e31113 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Meijerink, M. et al. Identification of genetic loci in Lactobacillus plantarum that modulate the immune response of dendritic cells using comparative genome hybridization. PLoS ONE 5, e10632 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    van Hemert, S. et al. Identification of Lactobacillus plantarum genes modulating the cytokine response of human peripheral blood mononuclear cells. BMC Microbiol. 10, 293 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. 101

    Levengood, M. R., Knerr, P. J., Oman, T. J. & van der Donk, W. A. In vitro mutasynthesis of lantibiotic analogues containing nonproteinogenic amino acids. J. Am. Chem. Soc. 131, 12024–12025 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. 102

    Field, D., Hill, C., Cotter, P. D. & Ross, R. P. The dawning of a 'Golden era' in lantibiotic bioengineering. Mol. Microbiol. 78, 1077–1087 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. 103

    Ross, A. C., McKinnie, S. M. & Vederas, J. C. The synthesis of active and stable diaminopimelate analogues of the lantibiotic peptide lactocin S. J. Am. Chem. Soc. 134, 2008–2011 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. 104

    Arnusch, C. J. et al. The vancomycin-nisin(1-12) hybrid restores activity against vancomycin resistant enterococci. Biochemistry 47, 12661–12663 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. 105

    Citron, D. M., Tyrrell, K. L., Merriam, C. V. & Goldstein, E. J. Comparative in vitro activities of LFF571 against Clostridium difficile and 630 other intestinal strains of aerobic and anaerobic bacteria. Antimicrob. Agents Chemother. 56, 2493–2503 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Zamble, D. B. et al. In vitro characterization of DNA gyrase inhibition by microcin B17 analogs with altered bisheterocyclic sites. Proc. Natl Acad. Sci. USA 98, 7712–7717 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. 107

    Van de Vijver, P. et al. Synthetic microcin C analogs targeting different aminoacyl-tRNA synthetases. J. Bacteriol. 191, 6273–6280 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Lohans, C. T. & Vederas, J. C. Development of Class IIa bacteriocins as therapeutic agents. Int. J. Microbiol. 2012, 386410 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. 109

    Fimland, G. et al. A C-terminal disulfide bridge in pediocin-like bacteriocins renders bacteriocin activity less temperature dependent and is a major determinant of the antimicrobial spectrum. J. Bacteriol. 182, 2643–2648 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. 110

    Tominaga, T. & Hatakeyama, Y. Development of innovative pediocin PA-1 by DNA shuffling among class IIa bacteriocins. Appl. Environ. Microbiol. 73, 5292–5299 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. 111

    Kazazic, M., Nissen-Meyer, J. & Fimland, G. Mutational analysis of the role of charged residues in target-cell binding, potency and specificity of the pediocin-like bacteriocin sakacin P. Microbiology 148, 2019–2027 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. 112

    O'Shea, E. F., O'Connor, P. M., Cotter, P. D., Ross, R. P. & Hill, C. Synthesis of trypsin-resistant variants of the Listeria-active bacteriocin salivaricin P. Appl. Environ. Microbiol. 76, 5356–5362 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. 113

    Velasquez, J. E. & van der Donk, W. A. Genome mining for ribosomally synthesized natural products. Curr. Opin. Chem. Biol. 15, 11–21 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. 114

    Begley, M., Cotter, P. D., Hill, C. & Ross, R. P. Identification of a novel two-peptide lantibiotic, lichenicidin, following rational genome mining for LanM proteins. Appl. Environ. Microbiol. 75, 5451–5460 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. 115

    Marsh, A. J., O'Sullivan, O., Ross, R. P., Cotter, P. D. & Hill, C. In silico analysis highlights the frequency and diversity of type 1 lantibiotic gene clusters in genome sequenced bacteria. BMC Genomics 11, 679 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. 116

    Wieland Brown, L. C. Acker, M. G., Clardy, J., Walsh, C. T. & Fischbach, M. A. Thirteen posttranslational modifications convert a 14-residue peptide into the antibiotic thiocillin. Proc. Natl Acad. Sci. USA 106, 2549–2553 (2009).

    Article  PubMed  Google Scholar 

  117. 117

    Li, J. et al. ThioFinder: a web-based tool for the identification of thiopeptide gene clusters in DNA sequences. PLoS ONE 7, e45878 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. 118

    Claesen, J. & Bibb, M. Genome mining and genetic analysis of cypemycin biosynthesis reveal an unusual class of posttranslationally modified peptides. Proc. Natl Acad. Sci. USA 107, 16297–16302 (2010).

    Article  PubMed  Google Scholar 

  119. 119

    Stepper, J. et al. Cysteine S-glycosylation, a new post-translational modification found in glycopeptide bacteriocins. FEBS Lett. 585, 645–650 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. 120

    Wang, H., Fewer, D. P. & Sivonen, K. Genome mining demonstrates the widespread occurrence of gene clusters encoding bacteriocins in cyanobacteria. PLoS ONE 6, e22384 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. 121

    Kjos, M. et al. Target recognition, resistance, immunity and genome mining of class II bacteriocins from Gram-positive bacteria. Microbiology 157, 3256–3267 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. 122

    Garg, N., Tang, W., Goto, Y., Nair, S. K. & van der Donk, W. A. Lantibiotics from Geobacillus thermodenitrificans. Proc. Natl Acad. Sci. USA 109, 5241–5246 (2012).

    Article  Google Scholar 

  123. 123

    Majchrzykiewicz, J. A. et al. Production of a class II two-component lantibiotic of Streptococcus pneumoniae using the class I nisin synthetic machinery and leader sequence. Antimicrob. Agents Chemother. 54, 1498–1505 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. 124

    Bierbaum, G. & Sahl, H. G. Lantibiotics: mode of action, biosynthesis and bioengineering. Curr. Pharm. Biotechnol. 10, 2–18 (2009).

    Article  CAS  Google Scholar 

  125. 125

    Martin, N. I. & Breukink, E. Expanding role of lipid II as a target for lantibiotics. Future Microbiol. 2, 513–525 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. 126

    Piper, C., Draper, L. A., Cotter, P. D., Ross, R. P. & Hill, C. A comparison of the activities of lacticin 3147 and nisin against drug-resistant Staphylococcus aureus and Enterococcus species. J. Antimicrob. Chemother. 64, 546–551 (2009).

    Article  CAS  PubMed  Google Scholar 

  127. 127

    Diep, D. B., Skaugen, M., Salehian, Z., Holo, H. & Nes, I. F. Common mechanisms of target cell recognition and immunity for class II bacteriocins. Proc. Natl Acad. Sci. USA 104, 2384–2389 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. 128

    Destoumieux-Garzon, D., Peduzzi, J., Thomas, X., Djediat, C. & Rebuffat, S. Parasitism of iron-siderophore receptors of Escherichia coli by the siderophore-peptide microcin E492m and its unmodified counterpart. Biometals 19, 181–191 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. 129

    Marki, F., Hanni, E., Fredenhagen, A. & van Oostrum, J. Mode of action of the lanthionine-containing peptide antibiotics duramycin, duramycin B and C, and cinnamycin as indirect inhibitors of phospholipase A2. Biochem. Pharmacol. 42, 2027–2035 (1991).

    Article  CAS  PubMed  Google Scholar 

  130. 130

    Kouwen, T. R. et al. The large mechanosensitive channel MscL determines bacterial susceptibility to the bacteriocin sublancin 168. Antimicrob. Agents Chemother. 53, 4702–4711 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. 131

    Parks, W. M., Bottrill, A. R., Pierrat, O. A., Durrant, M. C. & Maxwell, A. The action of the bacterial toxin, microcin B17, on DNA gyrase. Biochimie 89, 500–507 (2007).

    Article  CAS  Google Scholar 

  132. 132

    Vincent, P. A. & Morero, R. D. The structure and biological aspects of peptide antibiotic microcin J25. Curr. Med. Chem. 16, 538–549 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. 133

    Novikova, M. et al. The Escherichia coli Yej transporter is required for the uptake of translation inhibitor microcin C. J. Bacteriol. 189, 8361–8365 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. 134

    Kazakov, T. et al. Escherichia coli peptidase A, B, or N can process translation inhibitor microcin C. J. Bacteriol. 190, 2607–2610 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. 135

    Metlitskaya, A. et al. Aspartyl-tRNA synthetase is the target of peptide nucleotide antibiotic microcin C. J. Biol. Chem. 281, 18033–18042 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. 136

    Bagley, M. C., Dale, J. W., Merritt, E. A. & Xiong, X. Thiopeptide antibiotics. Chem. Rev. 105, 685–714 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. 137

    Collins, B., Curtis, N., Cotter, P. D., Hill, C. & Ross, R. P. The ABC transporter AnrAB contributes to the innate resistance of Listeria monocytogenes to nisin, bacitracin, and various β-lactam antibiotics. Antimicrob. Agents Chemother. 54, 4416–4423 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. 138

    Kramer, N. E., van Hijum, S. A., Knol, J., Kok, J. & Kuipers, O. P. Transcriptome analysis reveals mechanisms by which Lactococcus lactis acquires nisin resistance. Antimicrob. Agents Chemother. 50, 1753–1761 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. 139

    Kjos, M., Nes, I. F. & Diep, D. B. Mechanisms ofesistance to bacteriocins targeting the mannose phosphotransferase system. Appl. Environ. Microbiol. 77, 3335–3342 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. 140

    Yuzenkova, J. et al. Mutations of bacterial RNA polymerase leading to resistance to microcin J25. J. Biol. Chem. 277, 50867–50875 (2002).

    Article  CAS  PubMed  Google Scholar 

  141. 141

    del Castillo, F. J., del Castillo, I. & Moreno, F. Construction and characterization of mutations at codon 751 of the Escherichia coli gyrB gene that confer resistance to the antimicrobial peptide microcin B17 and alter the activity of DNA gyrase. J. Bacteriol. 183, 2137–2140 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. 142

    Baumann, S. et al. Molecular determinants of microbial resistance to thiopeptide antibiotics. J. Am. Chem. Soc. 132, 6973–6981 (2010).

    Article  CAS  PubMed  Google Scholar 

  143. 143

    Draper, L. A. et al. Cross-immunity and immune mimicry as mechanisms of resistance to the lantibiotic lacticin 3147. Mol. Microbiol. 71, 1043–1054 (2009).

    Article  CAS  PubMed  Google Scholar 

  144. 144

    Sun, Z. et al. Novel mechanism for nisin resistance via proteolytic degradation of nisin by the nisin resistance protein NSR. Antimicrob. Agents Chemother. 53, 1964–1973 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. 145

    Nocek, B. et al. Structural and functional characterization of microcin C resistance peptidase MccF from Bacillus anthracis. J. Mol. Biol. 420, 366–383 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. 146

    Butcher, B. G. & Helmann, J. D. Identification of Bacillus subtilis sigma-dependent genes that provide intrinsic resistance to antimicrobial compounds produced by bacilli. Mol. Microbiol. 60, 765–782 (2006).

    Article  CAS  PubMed  Google Scholar 

  147. 147

    Rink, R. et al. To protect peptide pharmaceuticals against peptidases. J. Pharmacol. Toxicol. Methods 61, 210–218 (2010).

    Article  CAS  PubMed  Google Scholar 

  148. 148

    Febbraro, S., Hancock, A., Boyd, A. & Dawson, M. J. A phase I, double-blind, randomised, placebo-controlled, dose escalating study to assess the safety, tolerability, and pharmacokinetics of single and multiple doses of NVB302 administered orally to healthy volunteers. 52nd Interscience Conference on Antimicrobial Agents and Chemotherapy, 2012. Abstract F-1540c (http://www.icaac.org/images/icaac_2012_finalprogram_web4a.pdf).

  149. 149

    Donadio, S., Maffioli, S., Monciardini, P., Sosio, M. & Jabes, D. Sources of novel antibiotics—aside the common roads. Appl. Microbiol. Biotechnol. 88, 1261–1267 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. 150

    Duquesne, S., Destoumieux-Garzon, D., Peduzzi, J. & Rebuffat, S. Microcins, gene-encoded antibacterial peptides from enterobacteria. Nat. Prod. Rep. 24, 708–734 (2007).

    Article  CAS  Google Scholar 

  151. 151

    Arnison, P. G. et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 19 Nov 2012 (doi:10.1039/C2NP20085F).

  152. 152

    Willey, J. M. & van der Donk, W. A. Lantibiotics: peptides of diverse structure and function. Annu. Rev. Microbiol. 61, 477–501 (2007).

    Article  CAS  Google Scholar 

  153. 153

    Melby, J. O., Nard, N. J. & Mitchell, D. A. Thiazole/oxazole-modified microcins: complex natural products from ribosomal templates. Curr. Opin. Chem. Biol. 15, 369–378 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. 154

    Li, C. & Kelly, W. L. Recent advances in thiopeptide antibiotic biosynthesis. Nat. Prod. Rep. 27, 153–164 (2010).

    Article  CAS  PubMed  Google Scholar 

  155. 155

    Knappe, T. A., Linne, U., Xie, X. & Marahiel, M. A. The glucagon receptor antagonist BI-32169 constitutes a new class of lasso peptides. FEBS Lett. 584, 785–789 (2010).

    Article  CAS  PubMed  Google Scholar 

  156. 156

    Murphy, K. et al. Genome mining for radical SAM protein determinants reveals multiple sactibiotic-like gene clusters. PLoS ONE 6, e20852 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. 157

    Hou, Y. et al. Structure and biosynthesis of the antibiotic bottromycin d. Org. Lett. 14, 5050–5053 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. 158

    Hsieh, Y. S. et al. Synthesis of the bacteriocin glycopeptide sublancin 168 and S-glycosylated variants. Org. Lett. 14, 1910–1913 (2012).

    Article  CAS  PubMed  Google Scholar 

  159. 159

    Oman, T. J., Boettcher, J. M., Wang, H., Okalibe, X. N. & van der Donk, W. A. Sublancin is not a lantibiotic but an S-linked glycopeptide. Nature Chem. Biol. 7, 78–80 (2011).

    Article  CAS  Google Scholar 

  160. 160

    Severinov, K. & Nair, S. K. Microcin C: biosynthesis and mechanisms of bacterial resistance. Future Microbiol. 7, 281–289 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. 161

    Leikoski, N. et al. Highly diverse cyanobactins in strains of the genus Anabaena. Appl. Environ. Microbiol. 76, 701–709 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Related work in the authors' laboratories is supported by the Irish Government under the National Development Plan; by the Irish Research Council for Science Engineering; by Enterprise Ireland; and by the Science Foundation Ireland (SFI) through the Alimentary Pharmabiotic Centre, University College Cork, Ireland (which is supported by the SFI-funded Centre for Science, Engineering and Technology) and through two Principal Investigator grants, to P.D.C. and to C.H. and R.P.R.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Paul D. Cotter or R. Paul Ross or Colin Hill.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Paul D. Cotter's homepage

R. Paul Ross' homepage

Colin Hill's homepage

Homepage of the Alimentary Pharmabiotic Centre

Protein Data Bank

Glossary

Probiotics

Live microorganisms that confer a health benefit on the host when administered in adequate amounts.

Median effective dose

The amount of an antimicrobial that is required to produce a specific effect in half an animal population.

Pathobionts

Microbial components of the gastrointestinal tract that have the potential to cause disease.

Isogenic

Pertaining to a microbial strain derivative: identical to the parental strain except for a defined mutation.

Siderophore

A low-molecular-mass compound that binds ferric iron extracellularly to form a stable chelate for transport of iron into the cell.

Porin

A large protein that crosses a cellular membrane and acts as a pore through which molecules can diffuse.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cotter, P., Ross, R. & Hill, C. Bacteriocins — a viable alternative to antibiotics?. Nat Rev Microbiol 11, 95–105 (2013). https://doi.org/10.1038/nrmicro2937

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing