Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Proteasomes and protein conjugation across domains of life

Key Points

  • Proteasomes (energy-dependent proteases that are important in protein quality control and cell signalling) are conserved in their basic structure and function among eukaryotes, archaea and actinobacteria.

  • In eukaryotes, proteins targeted for degradation by proteasomes are often covalently modified by the attachment of ubiquitin chains through a process termed ubiquitylation. This involves E1 ubiquitin-activating, E2 ubiquitin-conjugating and E3 ubiquitin ligase enzymes.

  • Mycobacteria (a group of actinobacteria) have a system of protein conjugation termed pupylation, which can target proteins for degradation by proteasomes. During pupylation, a small protein modifier known as prokaryotic ubiquitin-like protein (Pup) is covalently attached to the Lys residues of target proteins by an enzymatic mechanism that is distinct from ubiquitylation.

  • The archaeon Haloferax volcanii generates protein conjugates through a process called sampylation, in which ubiquitin-like protein modifiers (small archaeal modifier protein 1 (Samp1) or Samp2) are attached to substrate proteins. Sampylation requires the presence of the E1 homologue UbaA, revealing a close functional relationship between sampylation and ubiquitylation. Sampylation is predicted to be widespread among the archaea but can function in the absence of E2 and E3 enzyme homologues (at least, according to genome sequences).

  • An ongoing question is whether sampylation targets proteins for proteasome-mediated degradation and/or serves in non-proteolytic control mechanisms. Archaeal proteasomes are known to be important for cell growth and stress survival and can be regulated by post-translational modifications.

Abstract

Like other energy-dependent proteases, proteasomes, which are found across the three domains of life, are self-compartmentalized and important in the early steps of proteolysis. Proteasomes degrade improperly synthesized, damaged or misfolded proteins and hydrolyse regulatory proteins that must be specifically removed or cleaved for cell signalling. In eukaryotes, proteins are typically targeted for proteasome-mediated destruction through polyubiquitylation, although ubiquitin-independent pathways also exist. Interestingly, actinobacteria and archaea also covalently attach small proteins (prokaryotic ubiquitin-like protein (Pup) and small archaeal modifier proteins (Samps), respectively) to certain proteins, and this may serve to target the modified proteins for degradation by proteasomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Basic structures of proteasomes across domains of life.
Figure 2: Ordered reaction cycle in protein degradation by proteasomes.
Figure 3: Ubiquitylation as a signal for degradation.
Figure 4: Pupylation as a signal recognized by proteasomes in bacteria.
Figure 5: Sampylation and proteasomes in archaea.

Similar content being viewed by others

References

  1. Volker, C. & Lupas, A. N. Molecular evolution of proteasomes. Curr. Top. Microbiol. Immunol. 268, 1–22 (2002).

    CAS  PubMed  Google Scholar 

  2. Mehnert, M., Sommer, T. & Jarosch, E. ERAD ubiquitin ligases: multifunctional tools for protein quality control and waste disposal in the endoplasmic reticulum. Bioessays 32, 905–913 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Bengtson, M. H. & Joazeiro, C. A. Role of a ribosome-associated E3 ubiquitin ligase in protein quality control. Nature 467, 470–473 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Barford, D. Structure, function and mechanism of the anaphase promoting complex (APC/C). Q. Rev. Biophys. 44, 153–190 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Bader, M. & Steller, H. Regulation of cell death by the ubiquitin-proteasome system. Curr. Opin. Cell Biol. 21, 878–884 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Al Hakim, A. et al. The ubiquitous role of ubiquitin in the DNA damage response. DNA Repair (Amst.) 9, 1229–1240 (2010).

    Article  CAS  Google Scholar 

  7. Kisselev, A. F., Akopian, T. N., Woo, K. M. & Goldberg, A. L. The sizes of peptides generated from protein by mammalian 26 and 20 S proteasomes. Implications for understanding the degradative mechanism and antigen presentation. J. Biol. Chem. 274, 3363–3371 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Piwko, W. & Jentsch, S. Proteasome-mediated protein processing by bidirectional degradation initiated from an internal site. Nature Struct. Mol. Biol. 13, 691–697 (2006).

    Article  CAS  Google Scholar 

  9. Ravid, T. & Hochstrasser, M. Diversity of degradation signals in the ubiquitin-proteasome system. Nature Rev. Mol. Cell Biol. 9, 679–690 (2008).

    Article  CAS  Google Scholar 

  10. Varshavsky, A. The N-end rule pathway and regulation by proteolysis. Protein Sci. 20, 1298–1345 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hochstrasser, M. Origin and function of ubiquitin-like proteins. Nature 458, 422–429 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pearce, M. J., Mintseris, J., Ferreyra, J., Gygi, S. P. & Darwin, K. H. Ubiquitin-like protein involved in the proteasome pathway of Mycobacterium tuberculosis. Science 322, 1104–1107 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Burns, K. E. & Darwin, K. H. Pupylation versus ubiquitylation: tagging for proteasome-dependent degradation. Cell. Microbiol. 12, 424–431 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Humbard, M. A. et al. Ubiquitin-like small archaeal modifier proteins (SAMPs) in Haloferax volcanii. Nature 463, 54–60 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Miranda, H. V. et al. E1- and ubiquitin-like proteins provide a direct link between protein conjugation and sulfur transfer in archaea. Proc. Natl Acad. Sci. USA 108, 4417–4422 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Baumeister, W., Walz, J., Zuhl, F. & Seemuller, E. The proteasome: paradigm of a self-compartmentalizing protease. Cell 92, 367–380 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Smith, D. M., Benaroudj, N. & Goldberg, A. Proteasomes and their associated ATPases: a destructive combination. J. Struct. Biol. 156, 72–83 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Sharon, M. et al. 20S proteasomes have the potential to keep substrates in store for continual degradation. J. Biol. Chem. 281, 9569–9575 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Ruschak, A. M., Religa, T. L., Breuer, S., Witt, S. & Kay, L. E. The proteasome antechamber maintains substrates in an unfolded state. Nature 467, 868–871 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Maupin-Furlow, J. A. et al. Proteasomes from structure to function: perspectives from Archaea. Curr. Top. Dev. Biol. 75, 125–169 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Stadtmueller, B. M. & Hill, C. P. Proteasome activators. Mol. Cell 41, 8–19 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Humbard, M. A., Zhou, G. & Maupin-Furlow, J. A. The N-terminal penultimate residue of 20S proteasome α1 influences its Nα-acetylation and protein levels as well as growth rate and stress responses of Haloferax volcanii. J. Bacteriol. 191, 3794–3803 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kimura, Y. et al. Nα-acetylation and proteolytic activity of the yeast 20 S proteasome. J. Biol. Chem. 275, 4635–4639 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Forster, A., Whitby, F. G. & Hill, C. P. The pore of activated 20S proteasomes has an ordered 7-fold symmetric conformation. EMBO J. 22, 4356–4364 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Groll, M. et al. Structure of 20S proteasome from yeast at 2.4 Å resolution. Nature 386, 463–471 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Unno, M. et al. Structure determination of the constitutive 20S proteasome from bovine liver at 2.75 Å resolution. J. Biochem. 131, 171–173 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Kohler, A. et al. The substrate translocation channel of the proteasome. Biochimie 83, 325–332 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Religa, T. L., Sprangers, R. & Kay, L. E. Dynamic regulation of archaeal proteasome gate opening as studied by TROSY NMR. Science 328, 98–102 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Groll, M., Brandstetter, H., Bartunik, H., Bourenkow, G. & Huber, R. Investigations on the maturation and regulation of archaebacterial proteasomes. J. Mol. Biol. 327, 75–83 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Hu, G. et al. Structure of the Mycobacterium tuberculosis proteasome and mechanism of inhibition by a peptidyl boronate. Mol. Microbiol. 59, 1417–1428 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Lowe, J. et al. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 Å resolution. Science 268, 533–539 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Rabl, J. et al. Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. Mol. Cell 30, 360–368 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yu, Y. et al. Interactions of PAN's C-termini with archaeal 20S proteasome and implications for the eukaryotic proteasome-ATPase interactions. EMBO J. 29, 692–702 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Lin, G. et al. Mycobacterium tuberculosis prcBA genes encode a gated proteasome with broad oligopeptide specificity. Mol. Microbiol. 59, 1405–1416 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Li, D. et al. Structural basis for the assembly and gate closure mechanisms of the Mycobacterium tuberculosis 20S proteasome. EMBO J. 29, 2037–2047 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang, F. et al. Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol. Cell 34, 473–484 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Benaroudj, N., Zwickl, P., Seemuller, E., Baumeister, W. & Goldberg, A. L. ATP hydrolysis by the proteasome regulatory complex PAN serves multiple functions in protein degradation. Mol. Cell 11, 69–78 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Smith, D. M. et al. Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's α ring opens the gate for substrate entry. Mol. Cell 27, 731–744 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tomko, R. J. Jr & Hochstrasser, M. Order of the proteasomal ATPases and eukaryotic proteasome assembly. Cell Biochem. Biophys. 60, 13–20 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Peth, A., Uchiki, T. & Goldberg, A. L. ATP-dependent steps in the binding of ubiquitin conjugates to the 26S proteasome that commit to degradation. Mol. Cell 40, 671–681 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee, M. J., Lee, B. H., Hanna, J., King, R. W. & Finley, D. Trimming of ubiquitin chains by proteasome-associated deubiquitinating enzymes. Mol. Cell. Proteomics 10, R110.003871 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Stolz, A., Hilt, W., Buchberger, A. & Wolf, D. H. Cdc48: a power machine in protein degradation. Trends Biochem. Sci. 36, 515–523 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Striebel, F., Hunkeler, M., Summer, H. & Weber-Ban, E. The mycobacterial Mpa-proteasome unfolds and degrades pupylated substrates by engaging Pup's N-terminus. EMBO J. 29, 1262–1271 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, T. et al. Structural insights on the Mycobacterium tuberculosis proteasomal ATPase Mpa. Structure 17, 1377–1385 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zwickl, P., Ng, D., Woo, K. M., Klenk, H. P. & Goldberg, A. L. An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26 S proteasome, activates protein breakdown by 20 S proteasomes. J. Biol. Chem. 274, 26008–26014 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Tsvetkov, P., Reuven, N. & Shaul, Y. The nanny model for IDPs. Nature Chem. Biol. 5, 778–781 (2009).

    Article  CAS  Google Scholar 

  47. Smith, D. M. et al. ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins. Mol. Cell 20, 687–698 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Medalia, N. et al. Architecture and molecular mechanism of PAN, the archaeal proteasome regulatory ATPase. J. Biol. Chem. 284, 22952–22960 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zwickl, P., Kleinz, J. & Baumeister, W. Critical elements in proteasome assembly. Nature Struct. Biol. 1, 765–770 (1994).

    Article  CAS  PubMed  Google Scholar 

  50. Kwon, Y. D., Nagy, I., Adams, P. D., Baumeister, W. & Jap, B. K. Crystal structures of the Rhodococcus proteasome with and without its pro-peptides: implications for the role of the pro-peptide in proteasome assembly. J. Mol. Biol. 335, 233–245 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Gallastegui, N. & Groll, M. The 26S proteasome: assembly and function of a destructive machine. Trends Biochem. Sci. 35, 634–642 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Panasenko, O. O. & Collart, M. A. Not4 E3 ligase contributes to proteasome assembly and functional integrity in part through Ecm29. Mol. Cell. Biol. 31, 1610–1623 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Maupin-Furlow, J. A., Aldrich, H. C. & Ferry, J. G. Biochemical characterization of the 20S proteasome from the methanoarchaeon Methanosarcina thermophila. J. Bacteriol. 180, 1480–1487 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kaczowka, S. J. & Maupin-Furlow, J. A. Subunit topology of two 20S proteasomes from Haloferax volcanii. J. Bacteriol. 185, 165–174 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kusmierczyk, A. R., Kunjappu, M. J., Kim, R. Y. & Hochstrasser, M. A conserved 20S proteasome assembly factor requires a C-terminal HbYX motif for proteasomal precursor binding. Nature Struct. Mol. Biol. 18, 622–629 (2011).

    Article  CAS  Google Scholar 

  56. Djuranovic, S. et al. Structure and activity of the N-terminal substrate recognition domains in proteasomal ATPases. Mol. Cell 34, 580–590 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Wang, T., Darwin, K. H. & Li, H. Binding-induced folding of prokaryotic ubiquitin-like protein on the Mycobacterium proteasomal ATPase targets substrates for degradation. Nature Struct. Mol. Biol. 17, 1352–1357 (2010).

    Article  CAS  Google Scholar 

  58. Bohn, S. et al. Structure of the 26S proteasome from Schizosaccharomyces pombe at subnanometer resolution. Proc. Natl Acad. Sci. USA 107, 20992–20997 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang, F. et al. Mechanism of substrate unfolding and translocation by the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol. Cell 34, 485–496 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sauer, R. T. & Baker, T. A. AAA+ proteases: ATP-fueled machines of protein destruction. Annu. Rev. Biochem. 80, 587–612 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Nickell, S. et al. Insights into the molecular architecture of the 26S proteasome. Proc. Natl Acad. Sci. USA 106, 11943–11947 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bar-Nun, S. & Glickman, M. H. Proteasomal AAA-ATPases: structure and function. Biochim. Biophys. Acta 23 Jul 2011 (doi:10.1016/j.bbamcr.2011.07.009).

    Google Scholar 

  63. Smith, D. M., Fraga, H., Reis, C., Kafri, G. & Goldberg, A. L. ATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycle. Cell 144, 526–538 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Seong, I. S. et al. The C-terminal tails of HslU ATPase act as a molecular switch for activation of HslV peptidase. J. Biol. Chem. 277, 25976–25982 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Wang, J. et al. Nucleotide-dependent conformational changes in a protease-associated ATPase HsIU. Structure 9, 1107–1116 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Tomko, R. J. Jr, Funakoshi, M., Schneider, K., Wang, J. & Hochstrasser, M. Heterohexameric ring arrangement of the eukaryotic proteasomal ATPases: implications for proteasome structure and assembly. Mol. Cell 38, 393–403 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bloom, J., Amador, V., Bartolini, F., DeMartino, G. & Pagano, M. Proteasome-mediated degradation of p21 via N-terminal ubiquitinylation. Cell 115, 71–82 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Xu, P. et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137, 133–145 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Iwai, K. & Tokunaga, F. Linear polyubiquitination: a new regulator of NF-κB activation. EMBO Rep. 10, 706–713 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pickart, C. M. Targeting of substrates to the 26S proteasome. FASEB J. 11, 1055–1066 (1997).

    Article  CAS  PubMed  Google Scholar 

  71. Spence, J., Sadis, S., Haas, A. L. & Finley, D. A ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Mol. Cell. Biol. 15, 1265–1273 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kerscher, O., Felberbaum, R. & Hochstrasser, M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell Dev. Biol. 22, 159–180 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Wang, F., Liu, M., Qiu, R. & Ji, C. The dual role of ubiquitin-like protein Urm1 as a protein modifier and sulfur carrier. Protein Cell 2, 612–619 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tsvetkov, P. et al. Operational definition of intrinsically unstructured protein sequences based on susceptibility to the 20S proteasome. Proteins 70, 1357–1366 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Baugh, J. M., Viktorova, E. G. & Pilipenko, E. V. Proteasomes can degrade a significant proportion of cellular proteins independent of ubiquitination. J. Mol. Biol. 386, 814–827 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Asher, G., Tsvetkov, P., Kahana, C. & Shaul, Y. A mechanism of ubiquitin-independent proteasomal degradation of the tumor suppressors p53 and p73. Genes Dev. 19, 316–321 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kahana, C. Identification, assay, and functional analysis of the antizyme inhibitor family. Methods Mol. Biol. 720, 269–278 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Darwin, K. H. Prokaryotic ubiquitin-like protein (Pup), proteasomes and pathogenesis. Nature Rev. Microbiol. 7, 485–491 (2009).

    Article  CAS  Google Scholar 

  79. Liao, S. et al. Pup, a prokaryotic ubiquitin-like protein, is an intrinsically disordered protein. Biochem. J. 422, 207–215 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Chen, X. et al. Prokaryotic ubiquitin-like protein pup is intrinsically disordered. J. Mol. Biol. 392, 208–217 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Imkamp, F. et al. Deletion of dop in Mycobacterium smegmatis abolishes pupylation of protein substrates in vivo. Mol. Microbiol. 75, 744–754 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Striebel, F. et al. Bacterial ubiquitin-like modifier Pup is deamidated and conjugated to substrates by distinct but homologous enzymes. Nature Struct. Mol. Biol. 16, 647–651 (2009).

    Article  CAS  Google Scholar 

  83. Cerda-Maira, F. A. et al. Molecular analysis of the prokaryotic ubiquitin-like protein (Pup) conjugation pathway in Mycobacterium tuberculosis. Mol. Microbiol. 77, 1123–1135 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sutter, M., Damberger, F. F., Imkamp, F., Allain, F. H. & Weber-Ban, E. Prokaryotic ubiquitin-like protein (Pup) is coupled to substrates via the side chain of its C-terminal glutamate. J. Am. Chem. Soc. 132, 5610–5612 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Burns, K. E. et al. “Depupylation” of prokaryotic ubiquitin-like protein from mycobacterial proteasome substrates. Mol. Cell 39, 821–827 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Imkamp, F. et al. Dop functions as a depupylase in the prokaryotic ubiquitin-like modification pathway. EMBO Rep. 11, 791–797 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Burns, K. E., Pearce, M. J. & Darwin, K. H. Prokaryotic ubiquitin-like protein provides a two-part degron to Mycobacterium proteasome substrates. J. Bacteriol. 192, 2933–2935 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cerda-Maira, F. A. et al. Reconstitution of the Mycobacterium tuberculosis pupylation pathway in Escherichia coli. EMBO Rep. 12, 863–870 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Iyer, L. M., Burroughs, A. M. & Aravind, L. The prokaryotic antecedents of the ubiquitin-signaling system and the early evolution of ubiquitin-like β-grasp domains. Genome Biol. 7, R60 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Burroughs, A. M., Balaji, S., Iyer, L. M. & Aravind, L. Small but versatile: the extraordinary functional and structural diversity of the β-grasp fold. Biol. Direct. 2, 18 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Burroughs, A. M., Iyer, L. M. & Aravind, L. Natural history of the E1-like superfamily: implication for adenylation, sulfur transfer, and ubiquitin conjugation. Proteins 75, 895–910 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Burroughs, A. M., Iyer, L. M. & Aravind, L. Functional diversification of the RING finger and other binuclear treble clef domains in prokaryotes and the early evolution of the ubiquitin system. Mol. Biosyst. 7, 2261–2277 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ambroggio, X. I., Rees, D. C. & Deshaies, R. J. JAMM: a metalloprotease-like zinc site in the proteasome and signalosome. PLoS Biol. 2, e2 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Tran, H. J., Allen, M. D., Löwe, J. & Bycroft, M. Structure of the Jab1/MPN domain and its implications for proteasome function. Biochemistry 42, 11460–11465 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Makarova, K. S. & Koonin, E. V. Archaeal ubiquitin-like proteins: functional versatility and putative ancestral involvement in tRNA modification revealed by comparative genomic analysis. Archaea 2010, 710303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ranjan, N., Damberger, F. F., Sutter, M., Allain, F. H. & Weber-Ban, E. Solution structure and activation mechanism of ubiquitin-like small archaeal modifier proteins. J. Mol. Biol. 405, 1040–1055 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Jeong, Y. J., Jeong, B. C. & Song, H. K. Crystal structure of ubiquitin-like small archaeal modifier protein 1 (SAMP1) from Haloferax volcanii. Biochem. Biophys. Res. Commun. 405, 112–117 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Raiborg, C., Slagsvold, T. & Stenmark, H. A new side to ubiquitin. Trends Biochem. Sci. 31, 541–544 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Nunoura, T. et al. Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nucleic Acids Res. 39, 3204–3223 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Hoeller, D. & Dikic, I. Targeting the ubiquitin system in cancer therapy. Nature 458, 438–444 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Maupin-Furlow, J. A., Wilson, H. L., Kaczowka, S. J. & Ou, M. S. Proteasomes in the archaea: from structure to function. Front. Biosci. 5, D837–D865 (2000).

    CAS  PubMed  Google Scholar 

  102. Koonin, E. V., Wolf, Y. I. & Aravind, L. Prediction of the archaeal exosome and its connections with the proteasome and the translation and transcription machineries by a comparative-genomic approach. Genome Res. 11, 240–252 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gil, M. A., Sherwood, K. E. & Maupin-Furlow, J. A. Transcriptional linkage of Haloferax volcanii proteasomal genes with non-proteasomal gene neighbours including RNase P, MOSC domain and SAM-methyltransferase homologues. Microbiology 153, 3009–3022 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Ruepp, A., Eckerskorn, C., Bogyo, M. & Baumeister, W. Proteasome function is dispensable under normal but not under heat shock conditions in Thermoplasma acidophilum. FEBS Lett. 425, 87–90 (1998).

    Article  CAS  PubMed  Google Scholar 

  105. Reuter, C. J. & Maupin-Furlow, J. A. Analysis of proteasome-dependent proteolysis in Haloferax volcanii cells, using short-lived green fluorescent proteins. Appl. Environ. Microbiol. 70, 7530–7538 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhou, G., Kowalczyk, D., Humbard, M. A., Rohatgi, S. & Maupin-Furlow, J. A. Proteasomal components required for cell growth and stress responses in the haloarchaeon Haloferax volcanii. J. Bacteriol. 190, 8096–8105 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kirkland, P. A., Gil, M. A., Karadzic, I. M. & Maupin-Furlow, J. A. Genetic and proteomic analyses of a proteasome-activating nucleotidase A mutant of the haloarchaeon Haloferax volcanii. J. Bacteriol. 190, 193–205 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Kirkland, P. A., Reuter, C. J. & Maupin-Furlow, J. A. Effect of proteasome inhibitor clasto-lactacystin-β-lactone on the proteome of the haloarchaeon Haloferax volcanii. Microbiology 153, 2271–2280 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Kirkland, P. A. & Maupin-Furlow, J. A. Stabilization of an archaeal DNA-sliding clamp protein, PCNA, by proteasome-activating nucleotidase gene knockout in Haloferax volcanii. FEMS Microbiol. Lett. 294, 32–36 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Wilson, H. L., Aldrich, H. C. & Maupin-Furlow, J. Halophilic 20S proteasomes of the archaeon Haloferax volcanii: purification, characterization, and gene sequence analysis. J. Bacteriol. 181, 5814–5824 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Humbard, M. A., Reuter, C. J., Zuobi-Hasona, K., Zhou, G. & Maupin-Furlow, J. A. Phosphorylation and methylation of proteasomal proteins of the haloarcheon Haloferax volcanii. Archaea 2010, 481725 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Reuter, C. J., Kaczowka, S. J. & Maupin-Furlow, J. A. Differential regulation of the PanA and PanB proteasome-activating nucleotidase and 20S proteasomal proteins of the haloarchaeon Haloferax volcanii. J. Bacteriol. 186, 7763–7772 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Madding, L. S. et al. Role of the β1 subunit in the function and stability of the 20S proteasome in the hyperthermophilic archaeon Pyrococcus furiosus. J. Bacteriol. 189, 583–590 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Humbard, M. A., Stevens, S. M. Jr & Maupin-Furlow, J. A. Posttranslational modification of the 20S proteasomal proteins of the archaeon Haloferax volcanii. J. Bacteriol. 188, 7521–7530 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Van der Veen, A. G. et al. Role of the ubiquitin-like protein Urm1 as a noncanonical lysine-directed protein modifier. Proc. Natl Acad. Sci. USA 108, 1763–1770 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kessler, D. Enzymatic activation of sulfur for incorporation into biomolecules in prokaryotes. FEMS Microbiol. Rev. 30, 825–840 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Striebel, F., Kress, W. & Weber-Ban, E. Controlled destruction: AAA+ ATPases in protein degradation from bacteria to eukaryotes. Curr. Opin. Struct. Biol. 19, 209–217 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Sorkin, A. Ubiquitination without E3. Mol. Cell 26, 771–773 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Murata, S., Takahama, Y. & Tanaka, K. Thymoproteasome: probable role in generating positively selecting peptides. Curr. Opin. Immunol. 20, 192–196 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks the reviewers for providing important insights and constructive comments, and apologizes for not citing many important references that have contributed to this Review, owing to space limitations. Work in the author's laboratory is funded in part by grants from the US National Institutes of Health (GM57498) and the US Department of Energy Office of Basic Energy Sciences (DE-FG02-05ER15650).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary information s1 (figure)

Sampylation and its connection to sulphur transfer. (PDF 269 kb)

Related links

Related links

FURTHER INFORMATION

Julie Maupin-Furlow's homepage

SUPPLEMENTARY INFORMATION

S1 (figure)

Glossary

Actinobacteria

A group of Gram-positive bacteria with high genomic GC contents, including Mycobacterium, Rhodococcus, Streptomyces and Frankia spp. Actinobateria have been shown to have proteasomes.

HslV and ClpP proteases

Self-compartmentalized proteins that are located within bacteria and eukaryotic organelles, harbour proteolytic active sites and associate with the hexameric rings of AAA+ ATPases to form HslUV, ClpXP and ClpAP proteases, which mediate the energy-dependent degradation of structured proteins.

TROSY NMR

A method for analysing large biomolecules such as proteasomes by measuring the cancellation between dipolar coupling and chemical shift anisotropy or between different dipolar couplings.

E1-like superfamily

A group of conserved proteins that catalyse the adenylation of proteins containing a β-grasp fold, such as ubiquitin. Examples include the E1 enzyme used to activate ubiquitin during ubiquitylation, MoeB (which activates MoaD during sulphur transfer to form molybdenum cofactor (MoCo)) and ThiF (which activates ThiS in sulphur transfer during thiamine biosynthesis).

JAMM–MPN+ enzymes

A family of proteins that typically coordinate a catalytic zinc ion. Members of this family include the yeast protein Rpn11 (or POH1 in humans), an isopeptidase that is required for the deubiquitylase activity of 26S proteasomes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maupin-Furlow, J. Proteasomes and protein conjugation across domains of life. Nat Rev Microbiol 10, 100–111 (2012). https://doi.org/10.1038/nrmicro2696

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2696

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology