Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microbial ultraviolet sunscreens

Key Points

  • We conduct a Review of the nature and biological importance of ultraviolet (UV) radiation as a detrimental factor in the biology of microorganisms. We focus on the major adaptations of microorganisms for coping with UV-mediated stress.

  • Microorganisms are constrained in their use of sunscreens simply by being small.

  • The best known sunscreens include: scytonemin in cyanobacteria; mycosporines in cyanobacteria, algae and fungi; and melanins in fungi, bacteria and cyanobacteria. The nature, distribution, molecular genetics and regulation of these sunscreens are discussed.

  • Carotenoids are photoprotectants, but not sunscreens.

  • Microbial sunscreens have various applications of in biomedicine and cosmetics.

Abstract

Exposure to the shortest wavelengths in sunlight, ultraviolet light, constitutes a deleterious ecological factor for many microorganisms. The use of secondary metabolites as sunscreens has emerged as an important photoprotective mechanism in certain groups of large-celled microorganisms, such as cyanobacteria, fungi and many protists. In this Review, we describe our current understanding of microbial 'sunscreen' compounds, including scytonemin, the mycosporines and the naphthalene-based melanins. Study of these sunscreens has led to the discovery of new classes of compounds, new metabolic pathways, a deeper understanding of microbial photobiology and the potential for dermatological or biomedical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Standard solar radiation energy spectrum at the Earth's surface (American Society for Testing Standards) in the visible and ultraviolet ranges.
Figure 2: Aspects of scytonemin biology.
Figure 3: A model for the biosynthetic pathway of scytonemin and its cellular compartmentalization in cyanobacteria.
Figure 4: Mycosporines: structural and spectral properties.
Figure 5: Biosynthesis of mycosporines and its genetic basis in cyanobacteria.
Figure 6: Dihydroxynaphthalene-melanin production in the ascomycetes.

Similar content being viewed by others

References

  1. Jagger, J. Solar UV Actions On Living Cells (Praeger Publications, New York, 1985).

    Google Scholar 

  2. Jeffrey, W. H. et al. Ambient solar radiation induced photodamage in marine bacterioplankton. Photochem. Photobiol. 64, 419–427 (1996).

    Article  CAS  Google Scholar 

  3. Castenholz, R. W. & Garcia-Pichel, F. in The Ecology of Cyanobacteria (ed. Whitton, B. A.) 591–611 (Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000).

    Google Scholar 

  4. Rastogi, R. P., Kumar, A. R., Tyagi, M. B. & Sinha, R. P. Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J. Nucleic Acids 2010, 592980 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Levine, E. & Thiel, T. UV-inducible DNA-repair in the cyanobacteria Anabaena spp. J. Bacteriol. 169, 3988–3993 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Blakefield, M. K. & Harris, D. O. Delay of cell-differentiation in Anabaena aequalis caused by UV-B radiation and the role of photoreactivation and excision-repair. Photochem. Photobiol. 59, 204–208 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Sicora, C. I. et al. Cyanobacterial psbA families in Anabaena and Synechocystis encode trace, constitutive and UVB-induced D1 isoforms. Biochim. Biophys. Acta 1757, 47–56 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Ehling-Schulz, M. & Scherer, S. UV protection in cyanobacteria. Eur. J. Phycol. 34, 329–338 (1999).

    Article  Google Scholar 

  9. He, Y. Y. & Häder, D.-P. Reactive oxygen species and UV-B: effect on cyanobacteria. Photochem. Photobiol. Sci. 1, 729–736 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Wang, G. H. et al. The response of antioxidant systems in Nostoc sphaeroides against UV-B radiation and the protective effects of exogenous antioxidants. Adv. Space Res. 39, 1034–1042 (2007).

    Article  CAS  Google Scholar 

  11. Bebout, B. M. & Garcia-Pichel, F. UVB-induced vertical migrations of cyanobacteria in a microbial mat. Appl. Environ. Microbiol. 61, 4215–4222 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kruschel, C. & Castenholz, R. The effect of solar UV and visible irradiance on the vertical movements of cyanobacteria in microbial mats of hypersaline waters. FEMS Microbiol. Ecol. 27, 53–72 (1998).

    Article  CAS  Google Scholar 

  13. Pierson, B. K., Mitchell, H. K. & Ruff-Roberts, A. L. Chloroflexus aurantiacus and ultraviolet radiation: implications for archean shallow-water stromatolites. Orig. Life Evol. Biosph. 23, 243–260 (1993).

    Article  Google Scholar 

  14. Garcia-Pichel, F. & Castenholz, R. W. Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J. Phycol. 27, 395–409 (1991). The first study of scytonemin in the modern era; it provided a foundation for our understanding of the ecology and physiology of scytonemin, and ignited interest in microbial sunscreens.

    Article  CAS  Google Scholar 

  15. Garcia-Pichel, F. & Castenholz, R. W. Occurrence of UV-absorbing, mycosporine-like compounds among cyanobacterial isolates and an estimate of their screening capacity. Appl. Environ. Microbiol. 59, 163–169 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Scotto, J. & Fraummeni, J. F. Skin Cancer (Other Than Melanoma) (Saunders, Philadelphia, 1982).

    Google Scholar 

  17. Kollias, N., Sayre, R. M., Zeise, L. & Chedekel, M. R. Photoprotection by melanin. J. Photochem. Photobiol. B Biol. 9, 135–160 (1991).

    Article  CAS  Google Scholar 

  18. Butler, M. J. & Day, A. W. Fungal melanins: a review. Can. J. Microbiol. 44, 1115–1136 (1998). A comprehensive, critical review on fungal melanins. A 'must read'.

    Article  CAS  Google Scholar 

  19. Plonka, P. M. & Grabacka, M. Melanin synthesis in microorganisms—biotechnological and medical aspects. Acta Biochim. Pol. 53, 429–443 (2006).

    CAS  PubMed  Google Scholar 

  20. Wachi, Y. et al. Effect of ultraviolet-A (UV-A) light on growth, photosynthetic activity and production of biopterin glucoside by the marine UV-A resistant cyanobacterium Oscillatoria sp. Biochim. Biophys. Acta 1244, 165–168 (1995).

    Article  PubMed  Google Scholar 

  21. Garcia-Pichel, F., Sherry, N. D. & Castenholz, R. W. Evidence for an ultraviolet sunscreen role of the extracellular pigment scytonemin in the terrestrial cyanobacterium Chlorogloeopsis sp. Photochem. Photobiol. 56, 17–23 (1992). This paper was the first to provide strong evidence for the proposed protective role of scytonemin as a passive UVA sunscreen.

    Article  CAS  PubMed  Google Scholar 

  22. Proteau, P. J., Gerwick, W. H., Garcia-Pichel, F. & Castenholz, R. W. The structure of scytonemin, an ultraviolet sunscreen pigment from the sheaths of cyanobacteria. Experientia 49, 825–829 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Sinha, R. P., Klisch, M., Gröniger, A. & Häder, D. P. Responses of aquatic algae and cyanobacteria to solar UV-B. Plant Ecol. 154, 219–236 (2001).

    Article  Google Scholar 

  24. Ehling-Schulz, M., Bilger, W. & Scherer, S. UV-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. J. Bacteriol. 179, 1940–1945 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dillon, J. G., Tatsumi, C. M., Tandingan, P. G. & Castenholz, R. W. Effect of environmental factors on the synthesis of scytonemin, a UV-screening pigment, in a cyanobacterium (Chroococcidiopsis sp.). Arch. Microbiol. 177, 322–331 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Fleming, E. D. & Castenholz, R. W. Effects of periodic desiccation on the synthesis of the UV-screening compound, scytonemin, in cyanobacteria. Environ. Microbiol. 9, 1448–1455 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Fleming, E. D. & Castenholz, R. W. Effects of nitrogen source on the synthesis of the UV-screening compound, scytonemin, in the cyanobacterium Nostoc punctiforme PCC 73102. FEMS Microbiol. Ecol. 63, 301–308 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Mandalka, A. Studies on Scytonemin Synthesis in Cyanbacteria (Univ. of Bremen, Germany, 1999).

    Google Scholar 

  29. Soule, T., Stout, V., Swingley, W. D., Meeks, J. C. & Garcia-Pichel, F. Molecular genetics and genomic analysis of scytonemin biosynthesis in Nostoc punctiforme ATCC 29133. J. Bacteriol. 189, 4465–4472 (2007). A classic study that ushered the beginning of the genetic study of bacterial sunscreens.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sorrels, C. M., Proteau, P. J. & Gerwick, W. H. Organization, evolution, and expression analysis of the biosynthetic gene cluster for scytonemin, a cyanobacterial UV-absorbing pigment. Appl. Environ. Microbiol. 75, 4861–4869 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Soule, T. et al. A comparative genomics approach to understanding the biosynthesis of the sunscreen scytonemin in cyanobacteria. BMC Genomics 10, 1–10 (2009).

    Article  CAS  Google Scholar 

  32. Ohshima, T. et al. The purification, characterization, cloning and sequencing of the gene for a halostable and thermostable leucine dehydrogenase from Thermoactinomyces intermedius. Eur. J. Biochem. 222, 305–312 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Koch, G. L. E., Shaw, D. C. & Gibson, F. Tyrosine biosynthesis in aerobacter aerogenes: purification and properties of chorismate mutase-prephenate dehydrogenase. Biochim. Biophys. Acta 212, 375–386 (1970).

    Article  CAS  PubMed  Google Scholar 

  34. Chipman, D., Barak, Z. A. & Schloss, J. V. Biosynthesis of 2-aceto-2-hydroxy acids: acetolactate synthases and acetohydroxyacid synthases. Biochim. Biophys. Acta 1385, 401–419 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Balskus, E. P. & Walsh, C. T. Investigating the initial steps in the biosynthesis of cyanobacterial sunscreen scytonemin. J. Am. Chem. Soc. 130, 15260–15261 (2008). This study demonstrates the role of early biosynthetic genes in the scytonemin cluster by characterizing their protein products.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Balskus, E. P. & Walsh, C. T. An enzymatic cyclopentyl[b]indole formation involved in scytonemin biosynthesis. J. Am. Chem. Soc. 131, 14648–14649 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Soule, T., Garcia-Pichel, F. & Stout, V. Gene expression patterns associated with the biosynthesis of the sunscreen scytonemin in Nostoc punctiforme ATCC 29133 in response to UVA radiation. J. Bacteriol. 191, 4639–4646 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Conde, F. R., Churio, M. S. & Previtali, C. M. The deactivation pathways of the excited-states of the mycosporine-like amino acids shinorine and porphyra-334 in aqueous solution. Photochem. Photobiol. Sci. 3, 960–967 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Ito, S. & Hirata, Y. Isolation and structure of a mycosporine from the zoanthid Palythoa tuberculosa. Tetrahedron Lett. 28, 2429–2430 (1977).

    Article  Google Scholar 

  40. Bernillon, J., Parussini, E., Letoublon, R., Favre-Bonvin, J. & Arpin, N. Flavin-mediated photolysis of mycosporines. Phytochemistry 29, 81–84 (1990).

    Article  CAS  Google Scholar 

  41. Böhm, G. A., Pfleiderer, W., Böger, P. & Scherer, S. Structure of a novel oligosaccharide-mycosporine amino acid ultraviolet A/B sunscreen pigment from the terrestrial cyanobacterium Nostoc commune. J. Biol. Chem. 270, 8536–8539 (1995).

    Article  PubMed  Google Scholar 

  42. Favre-Bonvin, J., Bernillon, J., Salin, N. & Arpin, N. Biosynthesis of mycosporines- mycosporine glutaminol in Trichothecium roseum. Phytochemistry 26, 2509–2514 (1987).

    Article  CAS  Google Scholar 

  43. Shick, J. M. & Dunlap, W. C. Mycosporine-like amino acids and related gadusols: biosynthesis, accumulation, and UV-protective functions in aquatic organisms. Annu. Rev. Physiol. 64, 223–262 (2002). A comprehensive review on the discovery, occurrence, physiology and ecology of mycosporines with an emphasis on the marine environment.

    Article  CAS  PubMed  Google Scholar 

  44. Carreto, J. I. & Carignan, M. O. Mycosporine-like amino acids: relevant secondary metabolites. chemical and ecological aspects. Mar. Drugs 9, 387–446 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Garcia-Pichel, F. Solar ultraviolet and the evolutionary history of cyanobacteria. Orig. Life Evol. Biosph. 28, 321–347 (1998). This study establishes an evolutionary pathway for microbial sunscreens in the framework of Earth's evolutionary history, an aspect that is not covered in this Review.

    Article  CAS  PubMed  Google Scholar 

  46. Garcia-Pichel, F., Wingard, C. E. & Castenholz, R. W. Evidence regarding the UV sunscreen role of a mycosporine-like compound in the cyanobacterium Gloeocapsa sp. Appl. Environ. Microbiol. 59, 170–176 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Adams, N. L. & Shick, J. M. Mycosporine-like amino acids provide protection against ultraviolet radiation in eggs of the green sea urchin Strongylocentrotus droebachiensis. Photochem. Photobiol. 64, 149–158 (1996). A model demonstration of the role of dietary MAAs in metazoans.

    Article  CAS  Google Scholar 

  48. Neale, P. J., Banaszak, A. T. & Jarriel, C. R. Ultraviolet suncreens in Gymnodinium sanguineous (dinophyceae): mycosporine-like amino acids protect against inhibition of photosynthesis. J. Phycol. 34, 928–938 (1998). A model demonstration of the role of primary MAAs in phytoplankters.

    Article  CAS  Google Scholar 

  49. Sommaruga, R. & Garcia-Pichel, F. UV-absorbing mycosporine-like compounds in planktonic a benthic organisms from a high-mountain lake. Arch. Hydrobiol. 144, 255 (1999).

    Article  CAS  Google Scholar 

  50. Mason, D. S., Schafer, F., Shick, J. M. & Dunlap, W. C. Ultraviolet radiation-absorbing mycosporine-like amino acids (MAAs) are acquired from their diet by medaka fish (Oryzias latipes) but not by SKH-1 hairless mice. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 120, 587–598 (1998).

    Article  CAS  Google Scholar 

  51. Dunlap, W. C. & Yamamoto, Y. Small-molecule antioxidants in marine organisms- antioxidant activity of mycosporine-glycine. Comp. Biochem. Phys. B Biochem. Mol. Biol. 112, 105–114 (1995). This paper establishes the antioxidant roles of some mycosporines.

    Article  Google Scholar 

  52. Oren, A. Mycosporine-like amino acids as osmotic solutes in a community of halophilic cyanobacteria. Geomicrobiol. J. 14, 231–240 (1997).

    Article  CAS  Google Scholar 

  53. Kogej, T., Gostincar, C., Volkmann, M., Gorbushina, A. A. & Gunde-Cimerman, N. Mycosporines in extremophilic fungi—novel complementary osmolytes? Environ. Chem. 3, 105–110 (2006).

    Article  CAS  Google Scholar 

  54. Portwich, A. & Garcia-Pichel, F. Ultraviolet and osmotic stresses induce and regulate the synthesis of mycosporines in the cyanobacterium Chlorogloeopsis PCC 6912. Arch. Microbiol. 172, 187–192 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Leite, B. & Nicholson, R. L. Mycosporine-alanine: a self-inhibitor of germination from the conidial mucilage of Colletotrichum graminicola. Exp. Mycol. 16, 76–86 (1992).

    Article  CAS  Google Scholar 

  56. Portwich, A. & Garcia-Pichel, F. Biosynthetic pathway of mycosporines (mycosporine-like amino acids) in the cyanobacterium Chlorogloeopsis sp strain PCC 6912. Phycologia 42, 384–392 (2003).

    Article  Google Scholar 

  57. Singh, S. P., Klisch, M., Sinha, R. P. & Häder, D.-P. Genome mining of mycosporine-like amino acid (MAA) synthesizing and non-synthesizing cyanobacteria: a bioinformatics study. Genomics 95, 120–128 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Mahmud, T. Progress in aminocyclitol biosynthesis. Curr. Opin. Chem. Biol. 13, 161–170 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Balskus, E. P. & Walsh, C. T. The genetic and molecular basis for sunscreen biosynthesis in cyanobacteria. Science 329, 1653–1656 (2010). This 'must-read' contribution resolved much of the MAA biosynthetic pathway and its genetic basis in cyanobacteria.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rozema, J. et al. The role of UV-B radiation in aquatic and terrestrial ecosystems — an experimental and functional analysis of the evolution of UV-absorbing compounds. J. Photochem. Photobiol. B Biol. 66, 2–12 (2002).

    Article  CAS  Google Scholar 

  61. Sinha, R. P., Ambasht, N. K., Sinha, J. P., Klisch, M. & Häder, D. P. UV-B-induced synthesis of mycosporine-like amino acids in three strains of Nodularia (cyanobacteria). J. Photochem. Photobiol. B Biol. 71, 51–58 (2003).

    Article  CAS  Google Scholar 

  62. Portwich, A. & Garcia-Pichel, F. A novel prokaryotic UVB photoreceptor in the cyanobacterium Chlorogloeopsis PCC 6912. Photochem. Photobiol. 71, 493–498 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Singh, S. P., Klisch, M., Sinha, R. P. & Häder, D. P. Effects of abiotic stressors on synthesis of the mycosporine-like amino acid shinorine in the cyanobacterium Anabaena variabilis PCC 7937. Photochem. Photobiol. 84, 1500–1505 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Peinado, N. K., Diaz, R. T. A., Figueroa, F. L. & Helbling, E. W. Ammonium and UV radiation stimulate the accumulation of mycosporine-like amino acids in Porphyra columbina (Rhodophyta) from Patagonia, Argentina. J. Phycol. 40, 248–259 (2004).

    Article  CAS  Google Scholar 

  65. Singh, S. P., Klisch, M., Sinha, R. P. & Häder, D.-P. Sulfur deficiency changes mycosporine-like amino acid (MAA) composition of Anabaena variabilis PCC 7937: a possible role of sulfur in MAA bioconversion. Photochem. Photobiol. 86, 862–870 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Wang, Y. & Casadevall, A. Decreased susceptibility of melanized Cryptococcus neoformans to UV light. Appl. Environ. Microbiol. 60, 3864–3866 (1994). This study demonstrates the photoprotective role of eumelanins in fungi.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Rehnstrom, A. L. & Free, S. J. The isolation and characterization of melanin-deficient mutants of Monilinia fructicola. Physiol. Mol. Plant Pathol. 49, 321–330 (1996). This study demonstrates the photoprotective role of DHN-melanins in fungi.

    Article  Google Scholar 

  68. Romero- Martínez, R., Wheeler, M., Guerrero-Plata, A., Rico, G. & Torres-Guerrero, H. Biosynthesis and functions of melanin in Sporothrix schenckii. Infect. Immun. 68, 3696–3703 (2000).

    Article  Google Scholar 

  69. Funa, N., Funabashi, M., Ohnishi, Y. & Horinouchi, S. Biosynthesis of hexahydroxyperylenequinone melanin via oxidative aryl coupling by cytochrome P-450 in Streptomyces griseus. J. Bacteriol. 187, 8149–8155 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schiave, L. A., Pedroso, R. S., Candido, R. C., Roberts, D. W. & Braga, G. U. L. Variability in UVB tolerances of melanized and nonmelanized cells of Cryptococcus neoformans and C. laurentii. Photochem. Photobiol. 85, 205–213 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Zhu, D., He, X., Zhou, X. & Deng, Z. Expression of the melC operon in several streptomyces strains is positively regulated by AdpA, an AraC family transcriptional regulator involved in morphological development in Streptomyces coelicolor. J. Bacteriol. 187, 3180–3187 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. López-Serrano, D., Solano, F. & Sánchez-Amat, A. Identification of an operon involved in tyrosinase activity and melanin synthesis in Marinomonas mediterranea. Gene 342, 179–187 (2004). A good introduction to the genetics and general issues of bacterial melanins.

    Article  CAS  PubMed  Google Scholar 

  73. Reddy, G. S. N., Potrafka, R. M. & Garcia-Pichel, F. Modestobacter versicolor sp. nov., an actinobacterium from biological soil crusts that produces melanins under oligotrophy, with emended descriptions of the genus Modestobacter and Modestobacter multiseptatus Mevs et al. 2000. Int. J. Syst. Evol. Microbiol. 57, 2014–2020 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Britton, G., Liaaen-Jensen, S. & Pfander, H. Carotenoids Handbook (Birkhäuser Verlag, Basel, Switzerland, 2004).

    Book  Google Scholar 

  75. Sandmann, G., Kuhn, S. & Boger, P. Evaluation of structurally different carotenoids in Escherichia coli transformants as protectants against UV-B radiation. Appl. Environ. Microbiol. 64, 1972–1974 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Morris, S. A. C. & Subden, R. E. Effects of ultraviolet-radiation on carotenoid containing and albino strains of Neurospora crassa. Mutat. Res. 22, 105–109 (1974).

    Article  CAS  PubMed  Google Scholar 

  77. Demmig-Adams, B. & Adams, W. W. Photoprotection and other responses of plants to high light stress. Ann. Rev. Plant Phys. 43, 599–626 (1992).

    Article  CAS  Google Scholar 

  78. Garcia-Pichel, F. A model for internal self-shading in planktonic organisms and its implications for the usefulness of ultraviolet sunscreens. Limnol. Oceanogr. 39, 1704–1717 (1994).

    Article  Google Scholar 

  79. Lund, L. P. & Timmins, G. S. Melanoma, long wavelength ultraviolet and sunscreens: controversies and potential resolutions. Pharmacol. Ther. 114, 198–207 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Gonzalez, S., Philips, N. & Gilaberte, Y. Photoprotection: update in UV-filter molecules, the “new wave” of sunscreens. G. Ital. Dermatol. Venereol. 145, 515–523 (2010).

    CAS  PubMed  Google Scholar 

  81. Herzog, B., Huglin, D., Borsos, E., Stehlin, A. & Luther, H. New UV absorbers for cosmetic sunscreens — a breakthrough for the photoprotection of human skin. Chimia 58, 554–559 (2004).

    Article  CAS  Google Scholar 

  82. Siezen, R. J. Microbial sunscreens. Microb. Biotechnol. 4, 1–7 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Schmid, D., Schürch C., Züllif, F., Nissen H.-P. & Prieur, H. Mycosporine-like amino acids: natural UV-screening compounds from red algae to protect the skin against photoaging. SÖFW J. 129, 1–5 (2003).

    Google Scholar 

  84. Cardozo, K. H. M. et al. Metabolites from algae with economical impact. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 146, 60–78 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Geng, J. et al. Photoprotection of bacterial-derived melanin against ultraviolet A-induced cell death and its potential application as an active sunscreen. J. Eur. Acad. Dermatol. Venereol. 22, 852–858 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Liu, Y. & Simon, J. D. Isolation and biophysical studies of natural eumelanins: Applications of imaging technologies and ultrafast spectroscopy. Pigment Cell Res. 16, 606–618 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Stevenson, C. S. et al. Scytonemin — a marine natural product inhibitor of kinases key in hyperproliferative inflammatory diseases. Inflamm. Res. 51, 112–114 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Stevenson, C. S. et al. The identification and characterization of the marine natural product scytonemin as a novel antiproliferative pharmacophore. J. Pharmacol. Exp. Ther. 303, 858–866 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Bünger, J., Degwert, J. & Driller, H. The protective function of compatible solute ectoin on the skin, skin cells and its biomolecules with respect to UV-radiation, immunosuppression and membrane damage. IFSCC Mag. 4, 1–6 (2001).

    Google Scholar 

  90. Takahashi, S. et al. The solar action spectrum of photosystem II damage. Plant Physiol. 153, 988–993 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Gao, Q. & Garcia-Pichel, F. An ATP-grasp ligase involved in the last biosynthetic step of the iminomycosporine, shinorine, in Nostoc punctiforme ATCC 29133. J. Bacteriol. 2 Sep 2011 (doi:10.1128/JB.05730-11).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferran Garcia-Pichel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (figure)

Genomic architecture of the scytonemin operon and associated loci across a range of cyanobacteria. (PDF 486 kb)

Supplementary information S2 (figure)

Comparative genomic arrangement of the MAA locus across phylogenetic groups. (PDF 298 kb)

Related links

Related links

FURTHER INFORMATION

Ferran Garcia-Pichel's homepage

Glossary

Excited states

An excited state is an allowable quantum mechanic state of an atom or molecule that is more energetic than the ground state. The atom or molecule will tend to revert to the ground state by losing energy as heat (thermally), through reaction with other atoms or molecules or through the emission of a photon (fluorescence). Absorption of a photon will result in a transition from the ground state to an excited state.

Reactive oxygen species

(ROS). Chemical species of oxygen that possess high reactivity owing to their unpaired electrons. Examples include the superoxide ion and hydrogen peroxide. In photochemistry, singlet oxygen (an excited state of the ground, or triplet, oxygen) is also considered to be an important ROS, and one that can cause indiscriminate sensitized damage.

Pyrimidine adducts

The single products of the direct addition of two adjacent pyrimidines in nucleic acids as a result of absorption of ultraviolet radiation.

Secondary metabolites

Organic molecules produced by living organisms that are not part of common metabolic pathways, but are specialized as particular adaptations to increase fitness in a defined, usually restricted taxonomic group of organisms.

Thermal de-excitation

A transition from an excited to a ground state through the emission of heat, typically through many states of intermediate energy levels.

Photobleaching

Loss of colour from a pigment through photochemical-driven degradation.

Intertidal mats

Thick, usually laminated, benthic microbial biofilm communities (that is, microbial mats) that develop on undisturbed coastal substrates. They are influenced by the tidal range, and thus are only submerged part of the time.

Epilithic biofilms

Substrate-bound microbial communities that are attached to rocks. They can be aquatic or subaerial, and are typical of streams and exposed rocky faces.

Radiotracer

Short for radioactive tracer or radioactive label. A radioisotopically labelled, externally supplied substance that can be tracked through metabolic pathways.

Sunscreen factor

The fraction of incident radiation that is prevented from impinging on the cell by the sunscreen. It varies between 0 (no effect) and 1 (all photons intercepted).

Compatible solutes

(Also known as osmoprotectants).Osmotically active, non-toxic, low-molecular-weight compounds that are synthesized by organisms in order to maintain osmotic homeostasis and cellular volume in response to osmotic changes in the external environment. Known examples include trehalose, glucosylglycerol, glycine and betaine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, Q., Garcia-Pichel, F. Microbial ultraviolet sunscreens. Nat Rev Microbiol 9, 791–802 (2011). https://doi.org/10.1038/nrmicro2649

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro2649

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research