Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Surveillance pathways rescuing eukaryotic ribosomes lost in translation

Abstract

Living cells require the continuous production of proteins by the ribosomes. Any problem enforcing these protein factories to stall during mRNA translation may then have deleterious cellular effects. To minimize these defects, eukaryotic cells have evolved dedicated surveillance pathways: non-stop decay (NSD), no-go decay (NGD) and non-functional 18S-rRNA decay (18S-NRD). Recent studies support a general molecular framework for these surveillance pathways, the mechanisms of which are intimately related to translation termination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Releasing ribosomes at the termination codon or when stalled during translation elongation.
Figure 2: Structures of Dom34 and Hbs1.
Figure 3: A model for eukaryotic quality control pathways rescuing ribosomes stalled in translation.

Similar content being viewed by others

References

  1. Doma, M. K. & Parker, R. RNA quality control in eukaryotes. Cell 131, 660–668 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Garneau, N. L., Wilusz, J. & Wilusz, C. J. The highways and byways of mRNA decay. Nature Rev. Mol. Cell Biol. 8, 113–126 (2007).

    CAS  Google Scholar 

  3. Isken, O. & Maquat, L. E. Quality control of eukaryotic mRNA: safeguarding cells from abnormal mRNA function. Genes Dev. 21, 1833–1856 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Nicholson, P. & Muhlemann, O. Cutting the nonsense: the degradation of PTC-containing mRNAs. Biochem. Soc. Trans. 38, 1615–1620 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Rebbapragada, I. & Lykke-Andersen, J. Execution of nonsense-mediated mRNA decay: what defines a substrate? Curr. Opin. Cell Biol. 21, 394–402 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Kervestin, S. & Jacobson, A. NMD: a multifaceted response to premature translational termination. Nature Rev. Mol. Cell Biol. 17 Oct 2012 (doi:10.1038/nrm3454).

  7. Kim, Y. K., Furic, L., Desgroseillers, L. & Maquat, L. E. Mammalian Staufen1 recruits Upf1 to specific mRNA 3′UTRs so as to elicit mRNA decay. Cell 120, 195–208 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Frischmeyer, P. A. et al. An mRNA surveillance mechanism that eliminates transcripts lacking termination codons. Science 295, 2258–2261 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Keiler, K. C., Waller, P. R. & Sauer, R. T. Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science 271, 990–993 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. van Hoof, A., Frischmeyer, P. A., Dietz, H. C. & Parker, R. Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science 295, 2262–2264 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Doma, M. K. & Parker, R. Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation. Nature 440, 561–564 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cole, S. E., LaRiviere, F. J., Merrikh, C. N. & Moore, M. J. A convergence of rRNA and mRNA quality control pathways revealed by mechanistic analysis of nonfunctional rRNA decay. Mol. Cell 34, 440–450 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. LaRiviere, F. J., Cole, S. E., Ferullo, D. J. & Moore, M. J. A late-acting quality control process for mature eukaryotic rRNAs. Mol. Cell 24, 619–626 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Soudet, J., Gelugne, J. P., Belhabich-Baumas, K., Caizergues-Ferrer, M. & Mougin, A. Immature small ribosomal subunits can engage in translation initiation in Saccharomyces cerevisiae. EMBO J. 29, 80–92 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Alkalaeva, E. Z., Pisarev, A. V., Frolova, L. Y., Kisselev, L. L. & Pestova, T. V. In vitro reconstitution of eukaryotic translation reveals cooperativity between release factors eRF1 and eRF3. Cell 125, 1125–1136 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Frolova, L. et al. A highly conserved eukaryotic protein family possessing properties of polypeptide chain release factor. Nature 372, 701–703 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Zhouravleva, G. et al. Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. EMBO J. 14, 4065–4072 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pisareva, V. P., Skabkin, M. A., Hellen, C. U., Pestova, T. V. & Pisarev, A. V. Dissociation by Pelota, Hbs1 and ABCE1 of mammalian vacant 80S ribosomes and stalled elongation complexes. EMBO J. 30, 1804–1817 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shoemaker, C. J., Eyler, D. E. & Green, R. Dom34:Hbs1 promotes subunit dissociation and peptidyl-tRNA drop-off to initiate no-go decay. Science 330, 369–372 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shoemaker, C. J. & Green, R. Kinetic analysis reveals the ordered coupling of translation termination and ribosome recycling in yeast. Proc. Natl Acad. Sci. USA 108, E1392–E1398 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Song, H. et al. The crystal structure of human eukaryotic release factor eRF1— mechanism of stop codon recognition and peptidyl-tRNA hydrolysis. Cell 100, 311–321 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Frolova, L. et al. Eukaryotic polypeptide chain release factor eRF3 is an eRF1- and ribosome-dependent guanosine triphosphatase. RNA 2, 334–341 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Barthelme, D. et al. Ribosome recycling depends on a mechanistic link between the FeS cluster domain and a conformational switch of the twin-ATPase ABCE1. Proc. Natl Acad. Sci. USA 108, 3228–3233 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mayer, S. A. & Dieckmann, C. L. Yeast CBP1 mRNA 3′ end formation is regulated during the induction of mitochondrial function. Mol. Cell. Biol. 11, 813–821 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pan, Z. et al. An intronic polyadenylation site in human and mouse CstF-77 genes suggests an evolutionarily conserved regulatory mechanism. Gene 366, 325–334 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Sparks, K. A. & Dieckmann, C. L. Regulation of poly(A) site choice of several yeast mRNAs. Nucleic Acids Res. 26, 4676–4687 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dziembowski, A., Lorentzen, E., Conti, E. & Séraphin, B. A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nature Struct. Mol. Biol. 14, 15–22 (2007).

    Article  CAS  Google Scholar 

  28. Lebreton, A., Tomecki, R., Dziembowski, A. & Séraphin, B. Endonucleolytic RNA cleavage by a eukaryotic exosome. Nature 456, 993–996 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Schaeffer, D. et al. The exosome contains domains with specific endoribonuclease, exoribonuclease and cytoplasmic mRNA decay activities. Nature Struct. Mol. Biol. 16, 56–62 (2009).

    Article  CAS  Google Scholar 

  30. Schaeffer, D. & van Hoof, A. Different nuclease requirements for exosome-mediated degradation of normal and nonstop mRNAs. Proc. Natl Acad. Sci. USA 108, 2366–2371 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Schneider, C., Leung, E., Brown, J. & Tollervey, D. The N-terminal PIN domain of the exosome subunit Rrp44 harbors endonuclease activity and tethers Rrp44 to the yeast core exosome. Nucleic Acids Res. 37, 1127–1140 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Seminara, S. B. et al. The GPR54 gene as a regulator of puberty. N. Engl. J. Med. 349, 1614–1627 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Taniguchi, A. et al. A germline mutation abolishing the original stop codon of the human adenine phosphoribosyltransferase (APRT) gene leads to complete loss of the enzyme protein. Hum. Genet. 102, 197–202 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Anquetil, V. et al. Polypyrimidine tract binding protein prevents activity of an intronic regulatory element that promotes usage of a composite 3′-terminal exon. J. Biol. Chem. 284, 32370–32383 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Di Segni, G., Gastaldi, S., Zamboni, M. & Tocchini-Valentini, G. P. Yeast pheromone receptor genes STE2 and STE3 are differently regulated at the transcription and polyadenylation level. Proc. Natl Acad. Sci. USA 108, 17082–17086 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Grec, S., Wang, Y., Le Guen, L., Negrouk, V. & Boutry, M. Cryptic polyadenylation sites within the coding sequence of three yeast genes expressed in tobacco. Gene 242, 87–95 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Kaida, D. et al. U1 snRNP protects pre-mRNAs from premature cleavage and polyadenylation. Nature 468, 664–668 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Eberle, A. B., Lykke-Andersen, S., Muhlemann, O. & Jensen, T. H. SMG6 promotes endonucleolytic cleavage of nonsense mRNA in human cells. Nature Struct. Mol. Biol. 16, 49–55 (2009).

    Article  CAS  Google Scholar 

  39. Gatfield, D. & Izaurralde, E. Nonsense-mediated messenger RNA decay is initiated by endonucleolytic cleavage in Drosophila. Nature 429, 575–578 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Meaux, S. & Van Hoof, A. Yeast transcripts cleaved by an internal ribozyme provide new insight into the role of the cap and poly(A) tail in translation and mRNA decay. RNA 12, 1323–1337 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wyers, F. et al. Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell 121, 725–737 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Thompson, D. M. & Parker, R. Cytoplasmic decay of intergenic transcripts in Saccharomyces cerevisiae. Mol. Cell. Biol. 27, 92–101 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Dimitrova, L. N., Kuroha, K., Tatematsu, T. & Inada, T. Nascent peptide-dependent translation arrest leads to Not4p-mediated protein degradation by the proteasome. J. Biol. Chem. 284, 10343–10352 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Inada, T. & Aiba, H. Translation of aberrant mRNAs lacking a termination codon or with a shortened 3′-UTR is repressed after initiation in yeast. EMBO J. 24, 1584–1595 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ito-Harashima, S., Kuroha, K., Tatematsu, T. & Inada, T. Translation of the poly(A) tail plays crucial roles in nonstop mRNA surveillance via translation repression and protein destabilization by proteasome in yeast. Genes Dev. 21, 519–524 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bengtson, M. H. & Joazeiro, C. A. Role of a ribosome-associated E3 ubiquitin ligase in protein quality control. Nature 467, 470–473 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wilson, M. A., Meaux, S. & van Hoof, A. A genomic screen in yeast reveals novel aspects of nonstop mRNA metabolism. Genetics 177, 773–784 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tsuboi, T. et al. Dom34:hbs1 plays a general role in quality-control systems by dissociation of a stalled ribosome at the 3′ end of aberrant mRNA. Mol. Cell 46, 518–529 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Passos, D. O. et al. Analysis of Dom34 and its function in no-go decay. Mol. Biol. Cell 20, 3025–3032 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kuroha, K. et al. Receptor for activated C kinase 1 stimulates nascent polypeptide-dependent translation arrest. EMBO Rep. 11, 956–961 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lu, J., Kobertz, W. R. & Deutsch, C. Mapping the electrostatic potential within the ribosomal exit tunnel. J. Mol. Biol. 371, 1378–1391 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Ben-Shem, A. et al. The structure of the eukaryotic ribosome at 3.0Å resolution. Science 334, 1524–1529 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Albert, T. K. et al. Identification of a ubiquitin–protein ligase subunit within the CCR4–NOT transcription repressor complex. EMBO J. 21, 355–364 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Panasenko, O. et al. The yeast Ccr4–Not complex controls ubiquitination of the nascent-associated polypeptide (NAC–EGD) complex. J. Biol. Chem. 281, 31389–31398 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Shan, X., Chang, Y. & Lin, C. L. Messenger RNA oxidation is an early event preceding cell death and causes reduced protein expression. FASEB J. 21, 2753–2764 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Wurtmann, E. J. & Wolin, S. L. RNA under attack: cellular handling of RNA damage. Crit. Rev. Biochem. Mol. Biol. 44, 34–49 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gandhi, R., Manzoor, M. & Hudak, K. A. Depurination of Brome mosaic virus RNA3 in vivo results in translation-dependent accelerated degradation of the viral RNA. J. Biol. Chem. 283, 32218–32228 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Aas, P. A. et al. Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA. Nature 421, 859–863 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. He, F. et al. Genome-wide analysis of mRNAs regulated by the nonsense-mediated and 5′ to 3′ mRNA decay pathways in yeast. Mol. Cell 12, 1439–1452 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Mendell, J. T., Sharifi, N. A., Meyers, J. L., Martinez-Murillo, F. & Dietz, H. C. Nonsense surveillance regulates expression of diverse classes of mammalian transcripts and mutes genomic noise. Nature Genet. 36, 1073–1078 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Jacobs, J. L., Belew, A. T., Rakauskaite, R. & Dinman, J. D. Identification of functional, endogenous programmed-1 ribosomal frameshift signals in the genome of Saccharomyces cerevisiae. Nucleic Acids Res. 35, 165–174 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Belew, A. T., Advani, V. M. & Dinman, J. D. Endogenous ribosomal frameshift signals operate as mRNA destabilizing elements through at least two molecular pathways in yeast. Nucleic Acids Res. 39, 2799–2808 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Onouchi, H. et al. Nascent peptide-mediated translation elongation arrest coupled with mRNA degradation in the CGS1 gene of Arabidopsis. Genes Dev. 19, 1799–1810 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lebaron, S. et al. Proofreading of pre-40S ribosome maturation by a translation initiation factor and 60S subunits. Nature Struct. Mol. Biol. 19, 2194–2204 (2012).

    Article  CAS  Google Scholar 

  65. Strunk, B. S. et al. Ribosome assembly factors prevent premature translation initiation by 40S assembly intermediates. Science 333, 1449–1453 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Strunk, B. S., Novak, M. N., Young, C. L. & Karbstein, K. A translation-like cycle is a quality control checkpoint for maturing 40S ribosome subunits. Cell 150, 111–121 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mangiarotti, G., Chiaberge, S., & Bulfone, S. rRNA maturation as a “quality” control step in ribosomal subunit assembly in Dictyostelium discoideum. J. Biol. Chem. 272, 27818–27822 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Atkinson, G. C., Baldauf, S. L. & Hauryliuk, V. Evolution of nonstop, no-go and nonsense-mediated mRNA decay and their termination factor-derived components. BMC Evol. Biol. 8, 290 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bhattacharya, A., McIntosh, K. B., Willis, I. M. & Warner, J. R. Why Dom34 stimulates growth of cells with defects of 40S ribosomal subunit biosynthesis. Mol. Cell. Biol. 30, 5562–5571 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Davis, L. & Engebrecht, J. Yeast dom34 mutants are defective in multiple developmental pathways and exhibit decreased levels of polyribosomes. Genetics 149, 45–56 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. van den Elzen, A. M. et al. Dissection of Dom34–Hbs1 reveals independent functions in two RNA quality control pathways. Nature Struct. Mol. Biol. 17, 1446–1452 (2010).

    Article  CAS  Google Scholar 

  72. Eberhart, C. G. & Wasserman, S. A. The pelota locus encodes a protein required for meiotic cell division: an analysis of G2/M arrest in Drosophila spermatogenesis. Development 121, 3477–3486 (1995).

    CAS  PubMed  Google Scholar 

  73. Adham, I. M. et al. Disruption of the Pelota gene causes early embryonic lethality and defects in cell cycle progression. Mol. Cell. Biol. 23, 1470–1476 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Burnicka-Turek, O. et al. Pelota interacts with HAX1, EIF3G and SRPX and the resulting protein complexes are associated with the actin cytoskeleton. BMC Cell Biol. 11, 28 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Graille, M., Chaillet, M. & van Tilbeurgh, H. Structure of yeast Dom34: a protein related to translation termination factor Erf1 and involved in no-go decay. J. Biol. Chem. 283, 7145–7154 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Lee, H. H. et al. Structural and functional insights into Dom34, a key component of no-go mRNA decay. Mol. Cell 27, 938–950 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Wilusz, C. J. & Wilusz, J. Eukaryotic Lsm proteins: lessons from bacteria. Nature Struct. Mol. Biol. 12, 1031–1036 (2005).

    Article  CAS  Google Scholar 

  78. Becker, T. et al. Structure of the no-go mRNA decay complex Dom34–Hbs1 bound to a stalled 80S ribosome. Nature Struct. Mol. Biol. 18, 715–720 (2011).

    Article  CAS  Google Scholar 

  79. Chen, L. et al. Structure of the Dom34–Hbs1 complex and implications for no-go decay. Nature Struct. Mol. Biol. 17, 1233–1240 (2010).

    Article  CAS  Google Scholar 

  80. Wallrapp, C. et al. The product of the mammalian orthologue of the Saccharomyces cerevisiae HBS1 gene is phylogenetically related to eukaryotic release factor 3 (eRF3) but does not carry eRF3-like activity. FEBS Lett. 440, 387–392 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Saito, K. et al. Omnipotent role of archaeal elongation factor 1α (EF1α) in translational elongation and termination, and quality control of protein synthesis. Proc. Natl Acad. Sci. USA 107, 19242–19247 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Carr-Schmid, A., Pfund, C., Craig, E. A. & Kinzy, T. G. Novel G-protein complex whose requirement is linked to the translational status of the cell. Mol. Cell. Biol. 22, 2564–2574 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. van Hoof, A. Conserved functions of yeast genes support the duplication, degeneration and complementation model for gene duplication. Genetics 171, 1455–1461 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tomecki, R. et al. The human core exosome interacts with differentially localized processive RNases: hDIS3 and hDIS3L. EMBO J. 29, 2342–2357 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Nelson, R. J., Ziegelhoffer, T., Nicolet, C., Werner-Washburne, M. & Craig, E. A. The translation machinery and 70 kd heat shock protein cooperate in protein synthesis. Cell 71, 97–105 (1992).

    Article  CAS  PubMed  Google Scholar 

  86. Kobayashi, K. et al. Structural basis for mRNA surveillance by archaeal Pelota and GTP-bound EF1α complex. Proc. Natl Acad. Sci. USA 107, 17575–17579 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Cheng, Z. et al. Structural insights into eRF3 and stop codon recognition by eRF1. Genes Dev. 23, 1106–1118 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nissen, P. et al. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science 270, 1464–1472 (1995).

    Article  CAS  PubMed  Google Scholar 

  89. Khoshnevis, S. et al. The iron–sulphur protein RNase L inhibitor functions in translation termination. EMBO Rep. 11, 214–219 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Pisarev, A. V. et al. The role of ABCE1 in eukaryotic posttermination ribosomal recycling. Mol. Cell 37, 196–210 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Schmeing, T. M. et al. The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA. Science 326, 688–694 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Becker, T. et al. Structural basis of highly conserved ribosome recycling in eukaryotes and archaea. Nature 482, 501–506 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gagnon, M. G., Seetharaman, S. V., Bulkley, D. & Steitz, T. A. Structural basis for the rescue of stalled ribosomes: structure of YaeJ bound to the ribosome. Science 335, 1370–1372 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Keiler, K. C. Biology of trans-translation. Annu. Rev. Microbiol. 62, 133–151 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Andreev, D. et al. The bacterial toxin RelE induces specific mRNA cleavage in the A site of the eukaryote ribosome. RNA 14, 233–239 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hayes, C. S. & Sauer, R. T. Cleavage of the A site mRNA codon during ribosome pausing provides a mechanism for translational quality control. Mol. Cell 12, 903–911 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Neubauer, C. et al. The structural basis for mRNA recognition and cleavage by the ribosome- dependent endonuclease RelE. Cell 139, 1084–1095 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sunohara, T., Jojima, K., Tagami, H., Inada, T. & Aiba, H. Ribosome stalling during translation elongation induces cleavage of mRNA being translated in Escherichia coli. J. Biol. Chem. 279, 15368–15375 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Felden, B. & Gillet, R. SmpB as the handyman of tmRNA during trans-translation. RNA Biol. 8, 440–449 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Neubauer, C., Gillet, R., Kelley, A. C. & Ramakrishnan, V. Decoding in the absence of a codon by tmRNA and SmpB in the ribosome. Science 335, 1366–1369 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hayes, C. S. & Keiler, K. C. Beyond ribosome rescue: tmRNA and co-translational processes. FEBS Lett. 584, 413–419 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Henras, A. K. et al. The post-transcriptional steps of eukaryotic ribosome biogenesis. Cell. Mol. Life Sci. 65, 2334–2359 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Strunk, B. S. & Karbstein, K. Powering through ribosome assembly. RNA 15, 2083–2104 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. LaCava, J. et al. RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 121, 713–724 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Lafontaine, D. L. A 'garbage can' for ribosomes: how eukaryotes degrade their ribosomes. Trends Biochem. Sci. 35, 267–277 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Fujii, K., Kitabatake, M., Sakata, T., Miyata, A. & Ohno, M. A role for ubiquitin in the clearance of nonfunctional rRNAs. Genes Dev. 23, 963–974 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Fujii, K., Kitabatake, M., Sakata, T. & Ohno, M. 40S subunit dissociation and proteasome-dependent RNA degradation in nonfunctional 25S rRNA decay. EMBO J. 31, 2579–2589 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.G. acknowledges funding from the Agence Nationale pour la Recherche (grant ANR 11 BSV8 009 02), the CNRS, the University Paris-Sud and the Human Frontier Science Program (grant RGP0018/2009-C). B.S. is supported by the CERBM-IGBMC, the CNRS, the Ligue Contre le Cancer (Equipe Labellisée 2011) and Agence Nationale pour la Recherche (grant ANR 11 BSV8 009 02). The authors apologize for the many studies that were not cited owing to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marc Graille or Bertrand Séraphin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Bertrand Séraphin's homepage

Marc Graille's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graille, M., Séraphin, B. Surveillance pathways rescuing eukaryotic ribosomes lost in translation. Nat Rev Mol Cell Biol 13, 727–735 (2012). https://doi.org/10.1038/nrm3457

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3457

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing