Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Adhesion molecule signalling: not always a sticky business

Key Points

  • Cell adhesion molecules (CAMs) of the cadherin and immunoglobulin superfamilies mediate cell–cell adhesion by engaging in homophilic and heterophilic interactions and, therefore, promote the formation and stabilization of adhesive structures.

  • Cell–cell adhesion triggers CAM-mediated signalling, which regulates cytoskeletal dynamics, permeability, cell polarity, contact inhibition of growth and other processes.

  • Besides adhesion-dependent signalling, cadherins and immunoglobulin-like CAMs (Ig-CAMs) are also able to induce signal transduction in the absence of cell–cell adhesion. Such adhesion-independent CAM signalling occurs with different modalities and influences various cellular responses, including migration, proliferation, survival and differentiation.

  • Growth factor receptors represent prominent effectors in adhesion-independent CAM signalling. CAMs can either modulate the receptor response to their cognate ligand or they can act themselves as non-canonical ligands that activate receptor-mediated signalling cascades.

  • The shedding of CAM ectodomains generates biologically active fragments that can stimulate signalling by interacting with cell surface molecules.

  • CAMs also have an important function in gene expression, for example, by regulating the nuclear trafficking of proteins involved in transcription (for example, catenins) or through the nuclear translocation of CAM-derived cytoplasmic fragments that have transcription-modulating properties.

Abstract

The signalling activity of cell adhesion molecules (CAMs) such as cadherins, immunoglobulin-like CAMs or integrins has long been considered to be a direct consequence of their adhesive properties. However, there are physiological and pathological processes that reduce or even abrogate the adhesive properties of CAMs, such as cleavage, conformational changes, mutations and shedding. In some cases these 'adhesion deficient' CAMs still retain signalling properties through their cytoplasmic domains and/or their mutated or truncated extracellular domains. The ability of CAMs to activate signal transduction cascades in the absence of cell adhesion significantly extends their range of biological activities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Signalling through cadherins.
Figure 2: Adhesion-dependent signalling of Ig-CAMs.
Figure 3: Modulation of FGFR signalling by NCAM and N-cadherin.
Figure 4: Ectodomain shedding and nuclear function of Ig-CAMs.
Figure 5: Function of the L1 ectodomain and cytoplasmic fragments.

Similar content being viewed by others

References

  1. Bazzoni, G. & Dejana, E. Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol. Rev. 84, 869–901 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Vestweber, D. VE-cadherin: the major endothelial adhesion molecule controlling cellular junctions and blood vessel formation. Arterioscler. Thromb. Vasc. Biol. 28, 223–232 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Wallez, Y. & Huber, P. Endothelial adherens and tight junctions in vascular homeostasis, inflammation and angiogenesis. Biochim. Biophys. Acta 1778, 794–809 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Dejana, E., Tournier-Lasserve, E. & Weinstein, B. M. The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev. Cell 16, 209–221 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Takai, Y., Ikeda, W., Ogita, H. & Rikitake, Y. The immunoglobulin-like cell adhesion molecule nectin and its associated protein afadin. Annu. Rev. Cell Dev. Biol. 24, 309–342 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Takai, Y., Miyoshi, J., Ikeda, W. & Ogita, H. Nectins and nectin-like molecules: roles in contact inhibition of cell movement and proliferation. Nature Rev. Mol. Cell Biol. 9, 603–615 (2008).

    Article  CAS  Google Scholar 

  7. McCrea, P. D., Gu, D. & Balda, M. S. Junctional music that the nucleus hears: cell-cell contact signaling and the modulation of gene activity. Cold Spring Harb. Perspect. Biol. 1, a002923 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Furuse, M. Molecular basis of the core structure of tight junctions. Cold Spring Harb. Perspect. Biol. 2, a002907 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Loers, G. & Schachner, M. Recognition molecules and neural repair. J. Neurochem. 101, 865–882 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Francavilla, C. et al. The binding of NCAM to FGFR1 induces a specific cellular response mediated by receptor trafficking. J. Cell Biol. 187, 1101–1116 (2009). This paper provides a prototypical example of an Ig-CAM, NCAM, acting as a noncanonical ligand for a growth factor receptor, FGFR. Of note, both the signalling cascade and the intracellular fate of NCAM-stimulated FGFR are different from those induced by FGF.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Taddei, A. et al. Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5. Nature Cell Biol. 10, 923–934 (2008). The authors describe a molecular mechanism underlying the crosstalk between adherens and tight junctions in endothelial cells, implicating VE-cadherin in the negative regulation of FOXO1 and β-catenin, two factors that inhibit the expression of the tight junction component claudin-5.

    Article  CAS  PubMed  Google Scholar 

  12. Comoglio, P. M., Boccaccio, C. & Trusolino, L. Interactions between growth factor receptors and adhesion molecules: breaking the rules. Curr. Opin. Cell Biol. 15, 565–571 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Desgrosellier, J. S. & Cheresh, D. A. Integrins in cancer: biological implications and therapeutic opportunities. Nature Rev. Cancer 10, 9–22 (2010).

    Article  CAS  Google Scholar 

  14. Hartsock, A. & Nelson, W. J. Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim. Biophys. Acta 1778, 660–669 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Meng, W. & Takeichi, M. Adherens junction: molecular architecture and regulation. Cold Spring Harb. Perspect. Biol. 1, a002899 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Stepniak, E., Radice, G. L. & Vasioukhin, V. Adhesive and signaling functions of cadherins and catenins in vertebrate development. Cold Spring Harb. Perspect. Biol. 1, a002949 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Harris, T. J. & Tepass, U. Adherens junctions: from molecules to morphogenesis. Nature Rev. Mol. Cell Biol. 11, 502–514 (2010).

    Article  CAS  Google Scholar 

  18. Komarova, Y. & Malik, A. B. Regulation of endothelial permeability via paracellular and transcellular transport pathways. Annu. Rev. Physiol. 72, 463–493 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Macara, I. G. & Mili, S. Polarity and differential inheritance — universal attributes of life? Cell 135, 801–812 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lampugnani, M. G. et al. CCM1 regulates vascular-lumen organization by inducing endothelial polarity. J. Cell Sci. 123, 1073–1080 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Aricescu, A. R. & Jones, E. Y. Immunoglobulin superfamily cell adhesion molecules: zippers and signals. Curr. Opin. Cell Biol. 19, 543–550 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Ditlevsen, D. K. & Kolkova, K. Signaling pathways involved in NCAM-induced neurite outgrowth. Adv. Exp. Med. Biol. 663, 151–168 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Maness, P. F. & Schachner, M. Neural recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neuronal migration. Nature Neurosci. 10, 19–26 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Lampugnani, M. G. et al. Contact inhibition of VEGF-induced proliferation requires vascular endothelial cadherin, beta-catenin, and the phosphatase DEP-1/CD148. J. Cell Biology 161, 793–804 (2003).

    Article  CAS  Google Scholar 

  25. Lampugnani, M. G., Orsenigo, F., Gagliani, M. C., Tacchetti, C. & Dejana, E. Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments. J. Cell Biol. 174, 593–604 (2006). In this paper, VE-cadherin is shown to interfere with the VEGF-stimulated internalization of VEGFR2 and with its signalling from the endosomal compartment. This process underlies the role of VE-cadherin in contact-mediated inhibition of endothelial cell proliferation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shay-Salit, A. et al. VEGF receptor 2 and the adherens junction as a mechanical transducer in vascular endothelial cells. Proc. Natl Acad. Sci. USA 99, 9462–9467 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tzima, E. et al. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 437, 426–431 (2005). In references 26–27, the authors report a mechanosensory role of VE-cadherin during shear stress. VE-cadherin acts as an adaptor between PECAM1 and VEGFR2, allowing the formation of a mechanosensory complex and the stimulation of signalling cascades that regulate integrin activation, cytoskeletal reorganization and the induction of the NF-κB pathway.

    CAS  PubMed  Google Scholar 

  28. Knights, V. & Cook, S. J. De-regulated FGF receptors as therapeutic targets in cancer. Pharmacol. Ther. 125, 105–117 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Williams, E. J., Furness, J., Walsh, F. S. & Doherty, P. Activation of the FGF receptor underlies neurite outgrowth stimulated by L1, N-CAM, and N-cadherin. Neuron 13, 583–594 (1994). This is the first report implicating FGFR signalling downstream of different cell adhesion molecules, and describing a molecular mechanism underlying CAM-induced neurite outgrowth.

    Article  CAS  PubMed  Google Scholar 

  30. Williams, E. J. et al. Identification of an N-cadherin motif that can interact with the fibroblast growth factor receptor and is required for axonal growth. J. Biol. Chem. 276, 43879–43886 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Utton, M. A., Eickholt, B., Howell, F. V., Wallis, J. & Doherty, P. Soluble N-cadherin stimulates fibroblast growth factor receptor dependent neurite outgrowth and N-cadherin and the fibroblast growth factor receptor co-cluster in cells. J. Neurochem. 76, 1421–1430 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Nieman, M. T., Prudoff, R. S., Johnson, K. R. & Wheelock, M. J. N-cadherin promotes motility in human breast cancer cells regardless of their E-cadherin expression. J. Cell Biol. 147, 631–644 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Suyama, K., Shapiro, I., Guttman, M. & Hazan, R. B. A signaling pathway leading to metastasis is controlled by N-cadherin and the FGF receptor. Cancer Cell 2, 301–314 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Cavallaro, U., Niedermeyer, J., Fuxa, M. & Christofori, G. NCAM modulates tumour-cell adhesion to matrix by inducing FGF-receptor signalling. Nature Cell Biol. 3, 650–657 (2001). This paper showed the interaction of NCAM with FGFR in tumour cells, in which it regulates adhesion to the extracellular matrix.

    Article  CAS  PubMed  Google Scholar 

  35. Francavilla, C. et al. Neural cell adhesion molecule regulates the cellular response to fibroblast growth factor. J. Cell Sci. 120, 4388–4394 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Kiselyov, V. V. et al. Structural basis for a direct interaction between FGFR1 and NCAM and evidence for a regulatory role of ATP. Structure (Camb.) 11, 691–701 (2003).

    Article  CAS  Google Scholar 

  37. Christensen, C., Lauridsen, J. B., Berezin, V., Bock, E. & Kiselyov, V. V. The neural cell adhesion molecule binds to fibroblast growth factor receptor 2. FEBS Lett. 580, 3386–3390 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Kulahin, N. et al. Direct demonstration of NCAM cis-dimerization and inhibitory effect of palmitoylation using the BRET(2) technique. FEBS Lett. 585, 58–64 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Soroka, V. et al. Structure and interactions of NCAM Ig1-2-3 suggest a novel zipper mechanism for homophilic adhesion. Structure (Camb.) 11, 1291–1301 (2003).

    Article  CAS  Google Scholar 

  40. Kirschbaum, K., Kriebel, M., Kranz, E. U., Potz, O. & Volkmer, H. Analysis of non-canonical fibroblast growth factor receptor 1 (FGFR1) interaction reveals regulatory and activating domains of neurofascin. J. Biol. Chem. 284, 28533–28542 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Owczarek, S. et al. Neuroplastin-55 binds to and signals through the fibroblast growth factor receptor. FASEB J. 24, 1139–1150 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Getsios, S. et al. Desmoglein 1-dependent suppression of EGFR signaling promotes epidermal differentiation and morphogenesis. J. Cell Biol. 185, 1243–1258 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lacouture, M. E. Mechanisms of cutaneous toxicities to EGFR inhibitors. Nature Rev. Cancer 6, 803–812 (2006).

    Article  CAS  Google Scholar 

  44. Anastasiadis, P. Z. p120-ctn: a nexus for contextual signaling via Rho GTPases. Biochim. Biophys. Acta 1773, 34–46 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Gavert, N. et al. L1, a novel target of β-catenin signaling, transforms cells and is expressed at the invasive front of colon cancers. J. Cell Biol. 168, 633–642 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Geismann, C. et al. Up-regulation of L1CAM in pancreatic duct cells is transforming growth factor β1- and slug-dependent: role in malignant transformation of pancreatic cancer. Cancer Res. 69, 4517–4526 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Gast, D. et al. L1 augments cell migration and tumor growth but not β3 integrin expression in ovarian carcinomas. Int. J. Cancer 115, 658–665 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Zecchini, S. et al. The differential role of L1 in ovarian carcinoma and normal ovarian surface epithelium. Cancer Res. 68, 1110–1118 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Meier, F. et al. The adhesion molecule L1 (CD171) promotes melanoma progression. Int. J. Cancer 119, 549–555 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Gavert, N., Ben-Shmuel, A., Lemmon, V., Brabletz, T. & Ben-Ze'ev, A. Nuclear factor-κB signaling and ezrin are essential for L1-mediated metastasis of colon cancer cells. J. Cell Sci. 123, 2135–2143 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sakurai, T. et al. Interactions between the L1 cell adhesion molecule and ezrin support traction-force generation and can be regulated by tyrosine phosphorylation. J. Neurosci. Res. 86, 2602–2614 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Clevers, H. Wnt/β-catenin signaling in development and disease. Cell 127, 469–480 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. van Amerongen, R., Mikels, A. & Nusse, R. Alternative wnt signaling is initiated by distinct receptors. Sci. Signal. 1, re9 (2008).

    Article  PubMed  Google Scholar 

  54. Angers, S. & Moon, R. T. Proximal events in Wnt signal transduction. Nature Rev. Mol. Cell Biol. 10, 468–477 (2009).

    Article  CAS  Google Scholar 

  55. Maher, M. T., Flozak, A. S., Stocker, A. M., Chenn, A. & Gottardi, C. J. Activity of the β-catenin phosphodestruction complex at cell-cell contacts is enhanced by cadherin-based adhesion. J. Cell Biol. 186, 219–228 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Heuberger, J. & Birchmeier, W. Interplay of cadherin-mediated cell adhesion and canonical Wnt signaling. Cold Spring Harb. Perspect. Biol. 2, a002915 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Daniel, J. M. Dancing in and out of the nucleus: p120(ctn) and the transcription factor Kaiso. Biochim. Biophys. Acta 1773, 59–68 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Yin, T. & Green, K. J. Regulation of desmosome assembly and adhesion. Semin. Cell Dev. Biol. 15, 665–677 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Zhurinsky, J., Shtutman, M. & Ben-Ze'ev, A. Differential mechanisms of LEF/TCF family-dependent transcriptional activation by β-catenin and plakoglobin. Mol. Cell Biol. 20, 4238–4252 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Vallorosi, C. J. et al. Truncation of the β-catenin binding domain of E-cadherin precedes epithelial apoptosis during prostate and mammary involution. J. Biol. Chem. 275, 3328–3334 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Dusek, R. L. et al. The differentiation-dependent desmosomal cadherin desmoglein 1 is a novel caspase-3 target that regulates apoptosis in keratinocytes. J. Biol. Chem. 281, 3614–3624 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Steinhusen, U. et al. Cleavage and shedding of E-cadherin after induction of apoptosis. J. Biol. Chem. 276, 4972–4980 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Nava, P. et al. Desmoglein-2: a novel regulator of apoptosis in the intestinal epithelium. Mol. Biol. Cell 18, 4565–4578 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shoval, I., Ludwig, A. & Kalcheim, C. Antagonistic roles of full-length N-cadherin and its soluble BMP cleavage product in neural crest delamination. Development 134, 491–501 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. van Kilsdonk, J. W., van Kempen, L. C., van Muijen, G. N., Ruiter, D. J. & Swart, G. W. Soluble adhesion molecules in human cancers: sources and fates. Eur. J. Cell Biol. 89, 415–427 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Rabquer, B. J. et al. Junctional adhesion molecule-C is a soluble mediator of angiogenesis. J. Immunol. 185, 177–185 (2010).

    Article  Google Scholar 

  67. Riedle, S. et al. Nuclear translocation and signalling of L1-CAM in human carcinoma cells requires ADAM10 and presenilin/γ-secretase activity. Biochem. J. 420, 391–402 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Gast, D. et al. The cytoplasmic part of L1-CAM controls growth and gene expression in human tumors that is reversed by therapeutic antibodies. Oncogene 27, 1281–1289 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Gast, D. et al. The RGD integrin binding site in human L1-CAM is important for nuclear signaling. Exp. Cell Res. 314, 2411–2418 (2008). These three reports (references 67–69) provide a global picture of the mechanisms and biological outcomes of L1 proteolytic cleavage; the generation of a cytoplasmic fragment that is capable of translocating into the nucleus and regulating the expression of specific genes, partially accounting for the pro-malignant role of L1 in tumours.

    Article  CAS  PubMed  Google Scholar 

  70. Kebir, A. et al. CD146 short isoform increases the proangiogenic potential of endothelial progenitor cells in vitro and in vivo. Circ. Res. 107, 66–75 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Phng, L. K. & Gerhardt, H. Angiogenesis: a team effort coordinated by Notch. Dev. Cell 16, 196–208 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Adams, R. H. & Alitalo, K. Molecular regulation of angiogenesis and lymphangiogenesis. Nature Rev. Mol. Cell Biol. 8, 464–478 (2007).

    Article  CAS  Google Scholar 

  73. Augustin, H. G., Koh, G. Y., Thurston, G. & Alitalo, K. Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nature Rev. Mol. Cell Biol. 10, 165–177 (2009).

    Article  CAS  Google Scholar 

  74. Bodrikov, V., Sytnyk, V., Leshchyns'ka, I., den Hertog, J. & Schachner, M. NCAM induces CaMKIIα-mediated RPTPα phosphorylation to enhance its catalytic activity and neurite outgrowth. J. Cell Biol. 182, 1185–1200 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Korshunova, I. & Mosevitsky, M. Role of the growth-associated protein GAP-43 in NCAM-mediated neurite outgrowth. Adv. Exp. Med. Biol. 663, 169–182 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Hansen, S. M., Berezin, V. & Bock, E. Signaling mechanisms of neurite outgrowth induced by the cell adhesion molecules NCAM and N-cadherin. Cell. Mol. Life Sci. 65, 3809–3821 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Hulit, J. et al. N-cadherin signaling potentiates mammary tumor metastasis via enhanced extracellular signal-regulated kinase activation. Cancer Res. 67, 3106–3116 (2007). Together with reference 33, this paper provides clear evidence for the role of N-cadherin in supporting FGFR signalling, by preventing receptor internalization and allowing sustained FGF stimulation. This results in sustained ERK1/2 activation and MMP9 expression that, in turn, promote cell motility and tumour metastasis.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to all those colleagues whose important work could not be discussed owing to space limitations. We are particularly grateful to F. Orsenigo for his help in preparing the figures of this manuscript. The work is supported by Associazione Italiana Ricerca sul Cancro and AGIMM consortium, the Telethon Foundation, the Italian Ministry of Health, the Association for International Cancer Research, the CARIPLO Foundation and European Community (EUSTROKE, ANGIOSCAFF, OPTISTEM, ENDOSTEM, JUSTBRAIN networks) and Fondation Leducq Transatlantic Network of Excellence.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Elisabetta Dejana's homepage

IEO Molecular Medicine

UCSD-Nature Signaling Gateway

Glossary

Adherens junction

Protein complex that forms at the boundaries between epithelial or endothelial cells and promotes and stabilizes cell–cell adhesion.

Tight junction

Protein complex (usually apical to adherens junctions) that 'seal' the cell–cell contacts, thus preventing the diffusion of substances across epithelial or endothelial barriers.

Intercellular boundary

The narrow space between two tightly adjacent cells.

Desmosome

Protein complex that forms spot-like adhesive structures that are randomly located along the intercellular boundaries.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavallaro, U., Dejana, E. Adhesion molecule signalling: not always a sticky business. Nat Rev Mol Cell Biol 12, 189–197 (2011). https://doi.org/10.1038/nrm3068

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm3068

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing