Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Spatial and temporal coordination of mitosis by Ran GTPase

Key Points

  • Ran, a small Ras-related GTPase, controls the directionality of transport of macromolecules across the nuclear envelope through the nuclear pore complex.

  • RanGTP is generated in the nucleus by a Ran-specific guanine nucleotide-exchange factor, RCC1, whereas GTP hydrolysis by Ran requires its interaction with the GTPase-activating protein RanGAP and Ran-binding proteins. The compartmentalization of these regulators of the GTP–GDP cycle of Ran, together with the active import of Ran into the nucleus, ensures a high concentration of RanGTP in the nucleus.

  • RanGTP functions by binding karyopherins, proteins of the importin and exportin family of transport factors, causing them to either bind (exportins) or release (importins) their transport cargoes.

  • Ran also has important roles during mitosis, when the boundary between the nucleoplasm and the cytoplasm breaks down in animal cells. Production of RanGTP by RCC1 on chromatin during mitosis is proposed to generate a gradient of RanGTP away from chromosomes that provides a spatial signal for the proper assembly of the spindle.

  • Ran directs mitotic spindle assembly by promoting the release of spindle assembly factors from inhibited complexes with importins. RanGTP might also cause the assembly of multimeric protein complexes at specific sites such as kinetochores and centrosomes.

  • Ran, acting through importins, has an important role in the reassembly of the nuclear envelope at the end of mitosis and in the formation of nuclear pore complexes.

  • The Ran system provides examples of the spatial regulation of subcellular organization through diffusible signalling gradients and the control of the assembly multimeric protein complexes on specific structures.

Abstract

The small nuclear GTPase Ran controls the directionality of macromolecular transport between the nucleus and the cytoplasm. Ran also has important roles during mitosis, when the nucleus is dramatically reorganized to allow chromosome segregation. Ran directs the assembly of the mitotic spindle, nuclear-envelope dynamics and the timing of cell-cycle transitions. The mechanisms that underlie these functions provide insights into the spatial and temporal coordination of the changes that occur in intracellular organization during the cell-division cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ran directs nucleocytoplasmic transport.
Figure 2: Disruption of the GTP–GDP cycle of Ran causes aberrant mitotic spindle assembly.
Figure 3: Generation of a gradient of RanGTP complexed to importin-β from mitotic chromosomes.
Figure 4: Release of spindle assembly factors from inhibitory complexes by RanGTP during mitotic spindle assembly.
Figure 5: Regulation of multiprotein complexes by RanGTP during mitotic spindle assembly.
Figure 6: A simple model for the role of Ran in nuclear-envelope assembly.
Figure 7: Regulation of RanGTP generation during prometaphase and metaphase by phosphorylation.

Similar content being viewed by others

References

  1. Drivas, G. T., Shih, A., Coutavas, E., Rush, M. G. & D'Eustachio, P. Characterization of four novel ras-like genes expressed in a human teratocarcinoma cell line. Mol. Cell. Biol. 10, 1793–1798 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bischoff, F. R. & Ponstingl, H. Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator RCC1. Nature 354, 80–82 (1991). Discovery that RCC1 is a guanine nucleotide-exchange factor for Ran GTPase.

    CAS  PubMed  Google Scholar 

  3. Bischoff, F. R. & Ponstingl, H. Mitotic regulator protein RCC1 is complexed with a nuclear Ras-related polypeptide. Proc. Natl Acad. Sci. USA 88, 10830–10834 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Moore, M. S. & Blobel, G. The GTP-binding protein Ran/TC4 is required for protein import into the nucleus. Nature 365, 661–663 (1993).

    CAS  PubMed  Google Scholar 

  5. Melchior, F., Paschal, B., Evans, J. & Gerace, L. Inhibition of nuclear protein import by nonhydrolyzable analogues of GTP and identification of the small GTPase Ran/TC4 as an essential transport factor. J. Cell Biol. 123, 1649–1659 (1993). References 4 and 5 provided biochemical identification of Ran as a crucial nuclear transport factor.

    CAS  PubMed  Google Scholar 

  6. Görlich, D. & Kutay, U. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 15, 607–660 (1999).

    PubMed  Google Scholar 

  7. Scheffzek, K., Klebe, C., Fritz-Wolf, K., Kabsch, W. & Wittinghofer, A. Crystal structure of the nuclear Ras-related protein Ran in its GDP-bound form. Nature 374, 378–381 (1995).

    CAS  PubMed  Google Scholar 

  8. Vetter, I. R., Nowak, C., Nishimoto, T., Kuhlmann, J. & Wittinghofer, A. Structure of a Ran-binding domain complexed with Ran bound to a GTP analogue: implications for nuclear transport. Nature 398, 39–46 (1999).

    CAS  PubMed  Google Scholar 

  9. Vetter, I. R., Arndt, A., Kutay, U., Görlich, D. & Wittinghofer, A. Structural view of the Ran–importin β interaction at 2.3 Å resolution. Cell 97, 635–646 (1999).

    CAS  PubMed  Google Scholar 

  10. Klebe, C., Bischoff, F. R., Ponstingl, H. & Wittinghofer, A. Interaction of the nuclear GTP-binding protein Ran with its regulatory proteins RCC1 and RanGAP1. Biochemistry 34, 639–647 (1995).

    CAS  PubMed  Google Scholar 

  11. Ribbeck, K., Lipowsky, G., Kent, H. M., Stewart, M. & Görlich, D. NTF2 mediates nuclear import of Ran. EMBO J. 17, 6587–6598 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Smith, A., Brownawell, A. & Macara, I. G. Nuclear import of Ran is mediated by the transport factor NTF2. Curr. Biol. 8, 1403–1406 (1998).

    CAS  PubMed  Google Scholar 

  13. Ohtsubo, M. et al. Isolation and characterisation of the active cDNA of the human cell cycle gene (RCC1) involved in the regulation of onset of chromosome condensation. Genes Dev. 1, 585–593 (1987).

    CAS  PubMed  Google Scholar 

  14. Ohtsubo, M., Okazaki, H. & Nishimoto, T. The RCC1 protein, a regulator for the onset of chromosome condensation locates in the nucleus and binds to DNA. J. Cell Biol. 109, 1389–1397 (1989).

    CAS  PubMed  Google Scholar 

  15. Renault, L., Kuhlmann, J., Henkel, A. & Wittinghofer, A. Structural basis for guanine nucleotide exchange on Ran by the regulator of chromosome condensation (RCC1). Cell 105, 245–255 (2001).

    CAS  PubMed  Google Scholar 

  16. Klebe, C., Prinz, H., Wittinghofer, A. & Goody, R. S. The kinetic mechanism of Ran–nucleotide exchange catalyzed by RCC1. Biochemistry 34, 12543–12552 (1995).

    CAS  PubMed  Google Scholar 

  17. Moore, W. J., Zhang, C. & Clarke, P. R. Targeting of RCC1 to chromosomes is required for proper mitotic spindle assembly in human cells. Curr. Biol. 12, 1442–1447 (2002).

    CAS  PubMed  Google Scholar 

  18. Chen, T. et al. N-terminal α-methylation of RCC1 is necessary for stable chromatin association and normal mitosis. Nature Cell Biol. 9, 596–603 (2007).

    CAS  PubMed  Google Scholar 

  19. Nemergut, M. E., Mizzen, C. A., Stukenberg, T., Allis, C. D. & Macara, I. G. Chromatin docking and exchange activity enhancement of RCC1 by histones H2A and H2B. Science 292, 1540–1543 (2001).

    CAS  PubMed  Google Scholar 

  20. Bischoff, F. R., Klebe, C., Kretschmer, J., Wittinghofer, A. & Ponstingl, H. RanGAP1 induces GTPase activity of nuclear Ras-related Ran. Proc. Natl Acad. Sci. USA 91, 2587–2591 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Becker, J. et al. RNA1 encodes a GTPase-activating protein specific for Gsp1p, the Ran/TC4 homologue of Saccharomyces cerevisiae. J. Biol. Chem. 270, 11860–11865 (1995).

    CAS  PubMed  Google Scholar 

  22. Seewald, M. J., Korner, C., Wittinghofer, A. & Vetter, I. R. RanGAP mediates GTP hydrolysis without an arginine finger. Nature 415, 662–666 (2002).

    CAS  PubMed  Google Scholar 

  23. Bischoff, F. R., Krebber, H., Smirnova, E., Dong, W. & Ponstingl, H. Co-activation of RanGTPase and inhibition of GTP dissociation by Ran–GTP binding protein RanBP1. EMBO J. 14, 705–715 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Coutavas, E., Ren, M., Oppenheim, J. D., D'Eustachio, P. & Rush, M. G. Characterization of proteins that interact with the cell-cycle regulatory protein Ran/TC4. Nature 366, 585–587 (1993).

    CAS  PubMed  Google Scholar 

  25. Yokoyama, N. et al. A giant nucleopore protein that binds Ran/TC4. Nature 376, 184–188 (1995).

    CAS  PubMed  Google Scholar 

  26. Wilken, N., Senecal, J. L., Scheer, U. & Dabauvalle, M. C. Localization of the Ran-GTP binding protein RanBP2 at the cytoplasmic side of the nuclear pore complex. Eur. J. Cell Biol. 68, 211–219 (1995).

    CAS  PubMed  Google Scholar 

  27. Wu, J., Matunis, M. J., Kraemer, D., Blobel, G. & Coutavas, E. Nup358, a cytoplasmically exposed nucleoporin with peptide repeats, Ran-GTP binding sites, zinc fingers, a cyclophilin A homologous domain, and a leucine-rich region. J. Biol. Chem. 270, 14209–14213 (1995).

    CAS  PubMed  Google Scholar 

  28. Matunis, M. J., Coutavas, E. & Blobel, G. A novel ubiquitin-like modification modulates the partitioning of the Ran–GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J. Cell Biol. 135, 1457–1470 (1996).

    CAS  PubMed  Google Scholar 

  29. Mahajan, R., Delphin, C., Guan, T., Gerace, L. & Melchior, F. A small ubiquitin-related polypeptide involved in targetting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88, 97–107 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Saitoh, H., Pu, R., Cavenagh, M. & Dasso, M. RanBP2 associates with Ubc9p and a modified form of RanGAP1. Proc. Natl Acad. Sci. USA 94, 3736–3741 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kalab, P., Pralle, A., Isacoff, E. Y., Heald, R. & Weis, K. Analysis of a RanGTP-regulated gradient in mitotic somatic cells. Nature 440, 697–701 (2006). This paper shows the distribution of RanGTP concentrations in somatic cells using fluorescent reporters.

    CAS  PubMed  Google Scholar 

  32. Izaurralde, E., Kutay, U., von Kobbe, C., Mattaj, I. W. & Görlich, D. The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus. EMBO J. 16, 6535–6547 (1997). An important paper in the development of the model that the asymmetric localization of the Ran system across the nuclear envelope determines the direction of transport in and out of the nucleus.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Nachury, M. V. & Weis, K. The direction of transport through the nuclear pore can be inverted. Proc. Natl Acad. Sci. USA 96, 9622–9627 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Nishi, K. et al. Leptomycin B targets a regulatory cascade of crm1, a fission yeast nuclear protein, involved in control of higher order chromosome structure and gene expression. J. Biol. Chem. 269, 6320–6324 (1994).

    CAS  PubMed  Google Scholar 

  35. Fornerod, M., Ohno, M., Yoshida, M. & Mattai, I. W. Crm1 is an export factor for leucine-rich nuclear export signals. Cell 90, 1051–1060 (1997).

    CAS  PubMed  Google Scholar 

  36. Fukuda, M. et al. CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 390, 308–311 (1997).

    CAS  PubMed  Google Scholar 

  37. Ossareh-Nazari, B., Bachelerie, F. & Dargemont, C. Evidence for a role of Crm1 in signal-mediated nuclear protein export. Science 278, 141–144 (1997).

    CAS  PubMed  Google Scholar 

  38. Stade, K., Ford, C. S., Guthrie, C. & Weis, K. Exportin 1 (Crm1p) is an essential nuclear export factor. Cell 90, 1041–1050 (1997).

    CAS  PubMed  Google Scholar 

  39. Petosa, C. et al. Architecture of CRM1/Exportin1 suggests how cooperativity is achieved during formation of a nuclear export complex. Mol. Cell 16, 761–775 (2004).

    CAS  PubMed  Google Scholar 

  40. Bischoff, F. R. & Görlich, D. RanBP1 is crucial for the release of RanGTP from importin β-related nuclear transport factors. FEBS Lett. 419, 249–254 (1997).

    CAS  PubMed  Google Scholar 

  41. Görlich, D. et al. Two different subunits of importin cooperate to recognize nuclear localization signals and bind them to the nuclear envelope. Curr. Biol. 5, 383–392 (1995).

    PubMed  Google Scholar 

  42. Conti, E., Muller, C. W. & Stewart, M. Karyopherin flexibility in nucleocytoplasmic transport. Curr. Opin. Struct. Biol. 16, 237–244 (2006).

    CAS  PubMed  Google Scholar 

  43. Rexach, R. & Blobel, G. Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors, and nucleoporins. Cell 83, 683–692 (1995).

    CAS  PubMed  Google Scholar 

  44. Ribbeck, K. & Gorlich, D. The permeability barrier of nuclear pore complexes appears to operate via hydrophobic exclusion. EMBO J. 21, 2664–2671 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Frey, S., Richter, R. P. & Gorlich, D. FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science 314, 815–817 (2006).

    CAS  PubMed  Google Scholar 

  46. Alber, F. et al. The molecular architecture of the nuclear pore complex. Nature 450, 695–701 (2007).

    CAS  PubMed  Google Scholar 

  47. Lim, R. Y. et al. Nanomechanical basis of selective gating by the nuclear pore complex. Science 318, 640–643 (2007).

    CAS  PubMed  Google Scholar 

  48. Nemergut, M. E. & Macara, I. G. Nuclear import of the Ran exchange factor, RCC1, is mediated by at least two distinct mechanisms. J. Cell Biol. 149, 835–850 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Talcott, B. & Moore, M. S. The nuclear import of RCC1 requires a specific nuclear localisation sequence receptor, karyopherin α3/Qip. J. Biol. Chem. 275, 10099–10104 (2000).

    CAS  PubMed  Google Scholar 

  50. Hopper, A. K., Traglia, H. M. & Dunst, R. W. The yeast RNA1 gene product necessary for RNA processing is located in the cytosol and apparently excluded from the nucleus. J. Cell Biol. 111, 309–321 (1990).

    CAS  PubMed  Google Scholar 

  51. Melchior, F., Weber, K. & Gerke, V. A functional homologue of the RNA1 gene product in Schizosaccharomyces pombe: purification, biochemical characterisation, and identification of a leucine-rich repeat motif. Mol. Biol. Cell 4, 569–581 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Richards, S. A., Lounsbury, K. M., Carey, K. L. & Macara, I. G. A nuclear export signal is essential for the cytosolic localization of the Ran binding protein, RanBP1. J. Cell Biol. 134, 1157–1168 (1996).

    CAS  PubMed  Google Scholar 

  53. Plafker, K. & Macara, I. G. Facilitated nucleocytoplasmic shuttling of the Ran binding protein RanBP1. Mol. Cell. Biol. 20, 3510–3521 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kutay, U., Bischoff, F. R., Kostka, S., Kraft, R. & Görlich, D. Export of importin α from the nucleus is mediated by a specific nuclear transport factor. Cell 90, 1061–1071 (1997).

    CAS  PubMed  Google Scholar 

  55. Nishimoto, T., Eilen, E. & Basilico, C. Premature of chromosome condensation in a ts DNA-mutant of BHK cells. Cell 15, 475–483 (1978).

    CAS  PubMed  Google Scholar 

  56. Uchida, S. et al. Premature chromosome condensation is induced by a point mutation in the hamster RCC1 gene. Mol. Cell. Biol. 10, 577–584 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ren, M., Coutavas, E., D'Eustachio, P. & Rush, M. G. Effects of mutant Ran/TC4 proteins on cell cycle progression. Mol. Cell. Biol. 14, 4216–4224 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Sazer, S. & Nurse, P. A fission yeast RCC1-related protein is required for the mitosis to interphase transition. EMBO J. 13, 606–615 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kornbluth, S., Dasso, M. & Newport, J. Evidence for a dual role for TC4 protein in regulating nuclear structure and cell cycle progression. J. Cell Biol. 125, 705–719 (1994).

    CAS  PubMed  Google Scholar 

  60. Clarke, P. R., Klebe, C., Wittinghofer, A. & Karsenti, E. Regulation of cdc2/cyclin B activation by Ran, a Ras-related GTPase. J. Cell Sci. 108, 1217–1225 (1995).

    CAS  PubMed  Google Scholar 

  61. Carazo-Salas, R. et al. Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation. Nature 400, 178–181 (1999).

    CAS  PubMed  Google Scholar 

  62. Kalab, P., Pu, R. T. & Dasso, M. The Ran GTPase regulates mitotic spindle assembly. Curr. Biol. 9, 481–484 (1999).

    CAS  PubMed  Google Scholar 

  63. Ohba, T., Nakamura, M., Nishitani, H. & Nishimoto, T. Self-organization of microtubule asters induced in Xenopus egg extracts by GTP-bound Ran. Science 284, 1356–1358 (1999).

    CAS  PubMed  Google Scholar 

  64. Wilde, A. & Zheng, Y. Stimulation of microtubule aster formation and spindle assembly by the small GTPase Ran. Science 284, 1362–1365 (1999).

    Google Scholar 

  65. Zhang, C., Hughes, M. & Clarke, P. R. Ran-GTP stabilises microtubule asters and inhibits nuclear assembly in Xenopus egg extracts. J. Cell Sci. 112, 2453–2461 (1999). References 61–65 demonstrate a role for Ran in the assembly of microtubule asters and mitotic spindles.

    CAS  PubMed  Google Scholar 

  66. Mitchison, T. & Kirschner, M. Dynamic instability of microtubule growth. Nature 312, 237–242 (1984).

    CAS  PubMed  Google Scholar 

  67. Kirschner, M. & Mitchison, T. Beyond self-assembly: from microtubules to morphogenesis. Cell 45, 329–342 (1986).

    CAS  PubMed  Google Scholar 

  68. Karsenti, E., Newport, J. & Kirschner, M. Respective roles of centrosomes and chromatin in the conversion of microtubule arrays from interphase to metaphase. J. Cell Biol. 99, S47–S54 (1984).

    Google Scholar 

  69. Carazo-Salas, R. E. & Karsenti, E. Long-range communication between chromatin and microtubules in Xenopus egg extracts. Curr. Biol. 13, 1728–1733 (2003).

    CAS  PubMed  Google Scholar 

  70. Karsenti, E. & Vernos, I. The mitotic spindle: a self-made machine. Science 294, 543–547 (2001).

    CAS  PubMed  Google Scholar 

  71. Heald, R. et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382, 420–425 (1996).

    CAS  PubMed  Google Scholar 

  72. Khodjakov, A., Cole, R. W., Oakley, B. R. & Rieder, C. L. Centrosome-independent mitotic spindle formation in vertebrates. Curr. Biol. 10, 59–67 (2000).

    CAS  PubMed  Google Scholar 

  73. Wollman, R. et al. Efficient chromosome capture requires a bias in the 'search-and-capture' process during mitotic-spindle assembly. Curr. Biol. 15, 828–832 (2005).

    CAS  PubMed  Google Scholar 

  74. O'Connell, C. B. & Khodjakov, A. L. Cooperative mechanisms of mitotic spindle formation. J. Cell Sci. 120, 1717–1722 (2007).

    CAS  PubMed  Google Scholar 

  75. Gruss, O. et al. Ran induces spindle assembly by reversing the inhibitory effect of importin α on TPX2 activity. Cell 104, 83–93 (2001).

    CAS  PubMed  Google Scholar 

  76. Carazo-Salas, R. E., Gruss, O. J., Mattaj, I. W. & Karsenti, E. Ran–GTP coordinates regulation of microtubule nucleation and dynamics during mitotic-spindle assembly. Nature Cell Biol. 3, 228–234 (2001).

    CAS  PubMed  Google Scholar 

  77. Wilde, A. et al. Ran stimulates spindle assembly by altering microtubule dynamics and the balance of motor activities. Nature Cell Biol. 3, 221–227 (2001).

    CAS  PubMed  Google Scholar 

  78. Mitchison, T. J. et al. Bipolarization and poleward flux correlate during Xenopus extract spindle assembly. Mol. Biol. Cell 15, 5603–5615 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Li, H. Y., Wirtz, D. & Zheng, Y. A mechanism of coupling RCC1 mobility to RanGTP production on the chromatin in vivo. J. Cell Biol. 160, 635–644 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Li, H. Y. & Zheng, Y. Phosphorylation of RCC1 in mitosis is essential for producing a high RanGTP concentration on chromosomes and for spindle assembly in mammalian cells. Genes Dev. 18, 512–527 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Nishitani, H. et al. Loss of RCC1, a nuclear DNA-binding protein, uncouples the completion of DNA replication from the activation of cdc2 protein kinase and mitosis. EMBO J. 10, 1555–1564 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Arnaoutov, A. et al. Crm1 is a mitotic effector of Ran-GTP in somatic cells. Nature Cell Biol. 7, 626–632 (2005). This paper shows a role for CRM1 in the localization of proteins to kinetochores during mitosis.

    CAS  PubMed  Google Scholar 

  83. Kalab, P., Weis, K. & Heald, R. Visualization of a Ran-GTP gradient in interphase and mitotic Xenopus egg extracts. Science 295, 2452–2456 (2002). First demonstration of a RanGTP gradient using fluorescent reporters.

    CAS  PubMed  Google Scholar 

  84. Caudron, M., Bunt, G., Bastiaens, P. & Karsenti, E. Spatial coordination of spindle assembly by chromosome-mediated signaling gradients. Science 309, 1373–1376 (2005).

    CAS  PubMed  Google Scholar 

  85. Clarke, P. R. Cell biology: a gradient signal orchestrates the mitotic spindle. Science 309, 334–1335 (2005).

    Google Scholar 

  86. Scherf, U., Pastan, I., Willingham, M. C. & Brinkmann, U. The human CAS protein which is homologous to the CSE1 yeast chromosome segregation gene product is associated with microtubules and mitotic spindle. Proc. Natl Acad. Sci. USA 93, 2670–2674 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Ciciarello, M. et al. Importin β is transported to spindle poles during mitosis and regulates Ran-dependent spindle assembly factors in mammalian cells. J. Cell Sci. 117, 6511–6522 (2004).

    CAS  PubMed  Google Scholar 

  88. Di Fiore, B. et al. Mammalian RanBP1 regulates centrosome cohesion during mitosis. J. Cell Sci. 116, 3399–3411 (2003).

    CAS  PubMed  Google Scholar 

  89. Keryer, G. et al. Part of Ran is associated with AKAP450 at the centrosome: involvement in microtubule-organizing activity. Mol. Biol. Cell 14, 4260–4271 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Di Fiore, B., Ciciarello, M. & Lavia, P. Mitotic functions of the Ran GTPase network: the importance of being in the right place at the right time. Cell Cycle 3, 305–313 (2004).

    CAS  PubMed  Google Scholar 

  91. Tsai, M. Y. & Zheng, Y. Aurora A kinase-coated beads function as microtubule-organizing centers and enhance RanGTP-induced spindle assembly. Curr. Biol. 15, 2156–2163 (2005).

    CAS  PubMed  Google Scholar 

  92. Joseph, J., Tan, S. H., Karpova, T. S., McNally, J. G. & Dasso, M. SUMO-1 targets RanGAP1 to kinetochores and mitotic spindles. J. Cell Biol. 156, 595–602 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Tanaka, K. et al. Molecular mechanisms of kinetochore capture by spindle microtubules. Nature 434, 987–994 (2005).

    CAS  PubMed  Google Scholar 

  94. Deng, M., Suraneri, P., Schultz, R. M. & Li, R. The Ran GTPase mediates chromatin signaling to control cortical polarity during polar body extrusion in mouse oocytes. Dev. Cell 12, 301–308 (2007).

    CAS  PubMed  Google Scholar 

  95. Nachury, M. V. et al. Importin β is a mitotic target of the small GTPase Ran in spindle assembly. Cell 104, 95–106 (2001).

    CAS  PubMed  Google Scholar 

  96. Wiese, C. et al. Role of importin-β in coupling Ran to downstream targets in microtubule assembly. Science 291, 653–656 (2001). References 95 and 96, together with reference 75, identify the role of importins in mediating the effects of RanGTP on spindle assembly factors.

    CAS  PubMed  Google Scholar 

  97. Wittmann, T., Wilm, M., Karsenti, E. & Vernos, I. TPX2, A novel Xenopus MAP involved in spindle pole organization. J. Cell Biol. 149, 1405–1418 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Bayliss, R., Sardon, T., Vernos, I. & Conti, E. Structural basis of Aurora-A activation by TPX2 at the mitotic spindle. Mol. Cell 12, 851–862 (2003).

    CAS  PubMed  Google Scholar 

  99. Trieselmann, N., Armstrong, S., Rauw, J. & Wilde, A. Ran modulates spindle assembly by regulating a subset of TPX2 and Kid activities including Aurora A activation. J. Cell Sci. 116, 4791–4798 (2003).

    CAS  PubMed  Google Scholar 

  100. Tsai, M. Y. et al. A Ran signalling pathway mediated by the mitotic kinase Aurora A in spindle assembly. Nature Cell Biol. 5, 242–248 (2003).

    CAS  PubMed  Google Scholar 

  101. Koffa, M. D. et al. HURP is part of a Ran-dependent complex involved in spindle formation. Curr. Biol. 16, 743–754 (2006).

    CAS  PubMed  Google Scholar 

  102. Silljé, H. H., Nagel, S., Körner, R. & Nigg, E. A. HURP is a Ran-importin β-regulated protein that stabilizes kinetochore microtubules in the vicinity of chromosomes. Curr. Biol. 16, 731–742 (2006).

    PubMed  Google Scholar 

  103. Wong, J. & Fang, G. HURP controls spindle dynamics to promote proper interkinetochore tension and efficient kinetochore capture. J. Cell Biol. 173, 879–891 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Groen, A. C. et al. XRHAMM functions in Ran-dependent microtubule nucleation and pole formation during anastral spindle assembly. Curr. Biol. 14, 1801–1811 (2004).

    CAS  PubMed  Google Scholar 

  105. Joukov, V. et al. The BRCA1/BARD1 heterodimer modulates Ran-dependent mitotic spindle assembly. Cell 127, 539–552 (2006).

    CAS  PubMed  Google Scholar 

  106. Yokoyama, H. et al. Cdk11 is a RanGTP-dependent microtubule stabilization factor that regulates spindle assembly rate. J. Cell Biol. 180, 867–875 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Tsai, M. Y. et al. A mitotic lamin B matrix induced by RanGTP required for spindle assembly. Science 311, 1887–1893 (2006).

    CAS  PubMed  Google Scholar 

  108. Adam, S. A., Sengupta, K. & Goldman, R. D. Regulation of nuclear lamin polymerization by importin α. J. Biol. Chem. 283, 8462–8468 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Tahara, K. et al. Importin-β and the small guanosine triphosphatase Ran mediate chromosome loading of the human chromokinesin Kid. J. Cell Biol. 180, 493–506 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Senger, B. et al. Mtr10p functions as a nuclear import receptor for the mRNA-binding protein Npl3p. EMBO J. 17, 2196–2207 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Pemberton, L. F., Rosenblum, J. S. & Blobel, G. Nuclear import of the TATA-binding protein: mediation by the karyopherin Kap114p and a possible mechanism for intranuclear targeting. J. Cell Biol. 145, 1407–1417 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Hutchins, J. R. et al. Phosphorylation regulates the dynamic interaction of RCC1 with chromosomes during mitosis. Curr. Biol. 14, 1099–1104 (2004).

    CAS  PubMed  Google Scholar 

  113. Clarke, P. R. The Crm de la crème of mitosis. Nature Cell Biol. 7, 551–552 (2005).

    CAS  PubMed  Google Scholar 

  114. Dasso, M. Emerging roles of the SUMO pathway in mitosis. Cell Div. 3, 5 (2008).

    PubMed  PubMed Central  Google Scholar 

  115. Knauer, S. K., Bier, C., Habtemichael, N. & Stauber, R. H. The Survivin–Crm1 interaction is essential for chromosomal passenger complex localization and function. EMBO Rep. 7, 1259–1265 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Wang, W., Budhu, A., Forgues, M. & Wang, X. W. Temporal and spatial control of nucleophosmin by the Ran–Crm1 complex in centrosome duplication. Nature Cell Biol. 7, 823–830 (2005).

    CAS  PubMed  Google Scholar 

  117. Peloponese, J.-M., Haller, K., Miyazato, A. & Jeang, K.-T. Abnormal centrosome amplification in cells through targeting of Ran-binding protein-1 by the human T cell leukemia virus type-1 Tax oncoprotein. Proc. Natl Acad. Sci. USA 102, 18974–18979 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Ribbeck, K. et al. NuSAP, a mitotic RanGTP target that stabilizes and cross-links microtubules. Mol. Biol. Cell 17, 2646–2660 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Demeter, J., Morphew, M. & Sazer, S. A mutation in the RCC1-related protein pim1 results in nuclear envelope fragmentation in fission yeast. Proc. Natl Acad. Sci. USA 92, 1436–1440 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Dasso, M., Seki, T., Azuma, Y., Ohba, T. & Nishimoto, T. A mutant form of the Ran/TC4 protein disrupts nuclear function in Xenopus laevis egg extracts by inhibiting the RCC1 protein, a regulator of chromosome condensation. EMBO J. 13, 5732–5744 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Nicolás, F. J. et al. Xenopus Ran-binding protein 1: molecular interactions and effects on nuclear assembly in Xenopus egg extracts. J. Cell Sci. 110, 3019–3030 (1997).

    PubMed  Google Scholar 

  122. Hughes, M., Zhang, C., Avis, J. M., Hutchison, C. J. & Clarke, P. R. The role of Ran GTPase in nuclear assembly and DNA replication: characterisation of the effects of Ran mutants. J. Cell Sci. 111, 3017–3026 (1998).

    CAS  PubMed  Google Scholar 

  123. Hetzer, M., Bilbao-Cortes, D., Walther, T. C., Gruss, O. J. & Mattaj, I. W. GTP hydrolysis by Ran is required for nuclear envelope assembly. Mol. Cell 5, 1013–1024 (2000).

    CAS  PubMed  Google Scholar 

  124. Zhang, C. & Clarke, P. R. Chromatin-independent nuclear envelope assembly induced by Ran GTPase in Xenopus egg extracts. Science 288, 1429–1432 (2000). References 123 and 124 show that nuclear-envelope assembly is controlled by Ran.

    CAS  PubMed  Google Scholar 

  125. Zhang, C., Goldberg, M. W., Moore, W. J., Allen, T. D. & Clarke, P. R. Concentration of Ran on chromatin induces decondensation, nuclear envelope formation and nuclear pore complex assembly. Eur. J. Cell Biol. 81, 623–633 (2002).

    CAS  PubMed  Google Scholar 

  126. Walther, T. C. et al. RanGTP mediates nuclear pore complex assembly. Nature 424, 689–694 (2003). References 125 and 126 show that Ran regulates NPC assembly.

    CAS  PubMed  Google Scholar 

  127. D'Angelo, M. A., Anderson, D. J., Richard, E. & Hetzer, M. W. Nuclear pores form de novo from both sides of the nuclear envelope. Science 312, 440–443 (2006).

    CAS  PubMed  Google Scholar 

  128. Goldberg, M. W. et al. Ran alters nuclear pore complex conformation. J. Mol. Biol. 300, 519–529 (2000).

    CAS  PubMed  Google Scholar 

  129. Askjaer, P., Galy, V., Hannak, E. & Mattaj, I. W. Ran GTPase cycle and importins α and β are essential for spindle formation and nuclear envelope assembly in living Caenorhabditis elegans embryos. Mol. Biol. Cell 13, 4355–4370 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Timinszky, G. et al. The importin-β P446L dominant-negative mutant protein loses RanGTP binding ability and blocks the formation of intact nuclear envelope. J. Cell Sci. 115, 1675–1687 (2002).

    CAS  PubMed  Google Scholar 

  131. Ryan, K. J., McCaffery, J. M. & Wente, S. R. The Ran GTPase cycle is required for yeast nuclear pore complex assembly. J. Cell Biol. 160, 1041–1053 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Zhang, C. & Clarke, P. R. Roles of Ran–GTP and Ran–GDP in precursor vesicle recruitment and fusion during nuclear envelope assembly in a human cell-free system. Curr. Biol. 11, 208–212 (2001).

    CAS  PubMed  Google Scholar 

  133. Zhang, C., Hutchins, J. R., Muhlhausser, P., Kutay, U. & Clarke, P. R. Role of importin-β in the control of nuclear envelope assembly by Ran. Curr. Biol. 12, 498–502 (2002).

    CAS  PubMed  Google Scholar 

  134. Bamba, C., Bobinnec, Y., Fukuda, M. & Nishida, E. The GTPase Ran regulates chromosome positioning and nuclear envelope assembly in vivo. Curr. Biol. 12, 503–507 (2002).

    CAS  PubMed  Google Scholar 

  135. Harel, A. et al. Importin β negatively regulates nuclear membrane fusion and nuclear pore complex assembly. Mol. Biol. Cell 14, 4387–4396 (2003). This paper, together with references 126 and 133, demonstrates roles for importin-β in nuclear-envelope assembly.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Hachet, V., Kocher, T., Wilm, M. & Mattaj, I. W. Importin α associates with membranes and participates in nuclear envelope assembly in vitro. EMBO J. 23, 1526–1535 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Wozniak, R. & Clarke, P. R. Nuclear pores: sowing the seeds of assembly on the chromatin landscape. Curr. Biol. 13, R970–R972 (2003).

    CAS  PubMed  Google Scholar 

  138. Harel, A. & Forbes, D. J. Importin β: conducting a much larger cellular symphony. Mol. Cell 16, 319–330 (2004).

    CAS  PubMed  Google Scholar 

  139. Fernandez, A. G. & Piano, F. MEL-28 is downstream of the Ran cycle and is required for nuclear-envelope function and chromatin maintenance. Curr. Biol. 16, 1757–1763 (2006).

    CAS  PubMed  Google Scholar 

  140. Galy, V., Askjaer, P., Franz, C., Lopez-Iglesias, C. & Mattaj, I. W. MEL-28, a novel nuclear-envelope and kinetochore protein essential for zygotic nuclear-envelope assembly in C. elegans. Curr. Biol. 16, 1748–1756 (2006).

    CAS  PubMed  Google Scholar 

  141. Rasala, B. A., Orjalo, A. V., Shen, Z., Briggs, S. & Forbes, D. J. ELYS is a dual nucleoporin/kinetochore protein required for nuclear pore assembly and proper cell division. Proc. Natl Acad. Sci. USA 103, 17801–17806 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Galy, V., Askjaer, P., Franz, C., López-Iglesias, C. & Mattaj, I. W. MEL-28, a novel nuclear-envelope and kinetochore protein essential for zygotic nuclear-envelope assembly in C. elegans. Curr. Biol. 16, 1748–1756 (2006).

    CAS  PubMed  Google Scholar 

  143. Franz, C. et al. MEL-28/ELYS is required for the recruitment of nucleoporins to chromatin and postmitotic nuclear pore complex assembly. EMBO Rep. 8, 165–172 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Gillespie, P. J., Khoudoli, G. A., Stewart, G., Swedlow, J. R. & Blow, J. J. ELYS/MEL-28 chromatin association coordinates nuclear pore complex assembly and replication licensing. Curr. Biol. 17, 1657–1662 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Clarke, P. R. & Zhang, C. Spatial and temporal control of nuclear envelope assembly by Ran GTPase. Symp. Soc. Exp. Biol. 56, 193–204 (2004).

    CAS  Google Scholar 

  146. Hood, F. E. & Clarke, P. R. RCC1 isoforms differ in their affinity for chromatin, molecular interactions and regulation by phosphorylation. J. Cell Sci. 120, 3436–3445 (2007).

    CAS  PubMed  Google Scholar 

  147. Swaminathan, S. et al. RanGAP1*SUMO1 is phosphorylated at the onset of mitosis and remains associated with RanBP2 upon NPC disassembly. J. Cell Biol. 164, 965–971 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Matsusaka, T., Imamoto, N., Yoneda, Y. & Yanagida, M. Mutations in fission yeast Cut15, an importin α homolog, lead to mitotic progression without chromosome condensation. Curr. Biol. 8, 1031–1034 (1998).

    CAS  PubMed  Google Scholar 

  149. De Souza, C. P., Osmani, A. H., Hashmi, S. B. & Osmani, S. A. Partial nuclear pore complex disassembly during closed mitosis in Aspergillus nidulans. Curr. Biol. 14, 1973–1984 (2004).

    CAS  PubMed  Google Scholar 

  150. Makhnevych, T., Lusk, C. P., Anderson, A. M., Aitchison, J. D. & Wozniak, R. W. Cell cycle regulated transport controlled by alterations in the nuclear pore complex. Cell 115, 813–823 (2003).

    CAS  PubMed  Google Scholar 

  151. Arnaoutov, A. & Dasso, M. The Ran GTPase regulates kinetochore function. Dev. Cell 5, 99–111 (2003).

    CAS  PubMed  Google Scholar 

  152. Blower, M. D., Nachury, M., Heald, R. & Weis, K. A Rae1-containing ribonucleoprotein complex is required for mitotic spindle assembly. Cell 121, 223–234 (2005).

    CAS  PubMed  Google Scholar 

  153. Jeganathan, K. B., Malureanu, L. & van Deursen, J. M. The Rae1–Nup98 complex prevents aneuploidy by inhibiting securin degradation. Nature 438, 1036–1039 (2005).

    CAS  PubMed  Google Scholar 

  154. Loiodice, I. et al. The entire Nup107–160 complex, including three new members, is targeted as one entity to kinetochores in mitosis. Mol. Biol. Cell 15, 3333–3344 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Orjalo, A. V. et al. The Nup107–160 nucleoporin complex is required for correct bipolar spindle assembly. Mol. Biol. Cell 17, 3806–3818 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Walther, T. C. et al. The conserved Nup107–160 complex is critical for nuclear pore complex assembly. Cell 113, 195–206 (2003).

    CAS  PubMed  Google Scholar 

  157. Salina, D., Enarson, P., Rattner, J. B. & Burke, B. Nup358 integrates nuclear envelope breakdown with kinetochore assembly. J. Cell Biol. 162, 991–1001 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Roux, K. J. & Burke, B. From pore to kinetochore and back: regulating envelope assembly. Dev. Cell 11, 276–278 (2006).

    CAS  PubMed  Google Scholar 

  159. Hetzer, M., Gruss, O. J. & Mattaj, I. W. The Ran GTPase as a marker of chromosome position in spindle formation and nuclear envelope assembly. Nature Cell Biol. 4, E177–E184 (2002).

    CAS  PubMed  Google Scholar 

  160. Ouchi, M. et al. BRCA1 phosphorylation by Aurora-A in the regulation of G2 to M transition. J. Biol. Chem. 279, 19643–19648 (2004).

    CAS  PubMed  Google Scholar 

  161. Yu, C. T. et al. Phosphorylation and stabilization of HURP by Aurora-A: implication of HURP as a transforming target of Aurora-A. Mol. Cell. Biol. 25, 5789–5800 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Ems-McClung, S. C., Zheng, Y. & Walczak, C. E. Importin α/β and Ran-GTP regulate XCTK2 microtubule binding through a bipartite nuclear localization signal. Mol. Biol. Cell 15, 46–57 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Fan, S. et al. A novel Crumbs3 isoform regulates cell division and ciliogenesis via importin β interactions. J. Cell Biol. 178, 387–398 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Maresca, T. J., Niederstrasser, H., Weis, K. & Heald, R. Xnf7 contributes to spindle integrity through its microtubule-bundling activity. Curr. Biol. 15, 1755–1761 (2005).

    CAS  PubMed  Google Scholar 

  165. Albee, A. J., Tao, W. & Wiese, C. Phosphorylation of maskin by Aurora-A is regulated by RanGTP and importin β. J. Biol. Chem. 281, 38293–38301 (2006).

    CAS  PubMed  Google Scholar 

  166. Sato, M. & Toda, T. Alp7/TACC is a crucial target in Ran-GTPase-dependent spindle formation in fission yeast. Nature 447, 334–337 (2007).

    CAS  PubMed  Google Scholar 

  167. Ma, Y. et al. Lamin B receptor plays a role in stimulating nuclear envelope production and targeting membrane vesicles to chromatin during nuclear envelope assembly through direct interaction with importin β. J. Cell Sci. 120, 520–530 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the many contributions towards the understanding of the Ran system that we have not been able to discuss here owing to space constraints. We thank H. Sanderson and F. Hood for comments on the manuscript. P.R.C. wishes to acknowledge the pioneering work of T. Nishimoto, A. Wittinghofer, C. Klebe, H. Ponstingl and F. R. Bischoff, who first interested him in Ran. Work in our laboratories is supported by the Biotechnology and Biological Sciences Research Council (P.R.C.), and the National Natural Science Foundation of China, the State Key Basic Research and Development Plan, and Scientific Research Foundation for Returned Overseas Chinese Scholars (C.Z.). P.R.C is a Royal Society-Wolfson Research Award holder and C.Z. is a Changjiang Professorship holder.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul R. Clarke.

Related links

Related links

DATABASES

Interpro

RING

FURTHER INFORMATION

Paul Clarke's homepage

Glossary

Mitotic spindle

The bipolar structure assembled from microtubules that is focused at the poles by a microtubule-organizing centre, usually a centrosome in animal cells, on which duplicated chromosomes are aligned in the middle in metaphase and then separated, with one copy going towards each pole during anaphase.

Kinetochore

A large multiprotein complex that assembles onto the centromere of the chromosome and links the chromosome to the microtubules of the mitotic spindle.

Guanine nucleotide-exchange factor

A protein that facilitates the exchange of GDP for GTP in the nucleotide-binding pocket of a GTP-binding protein.

GTPase-activating protein

(GAP).A protein that stimulates the intrinsic ability of a GTPase to hydrolyse GTP to GDP. Therefore, GAPs can negatively regulate GTPases by converting them from active (GTP bound) to inactive (GDP bound).

Nucleoporin

A protein subunit of the nuclear pore complex. Many nucleoporins have hydrophobic regions containing Phe-Gly (FG) repeats.

Exportin

A transport factor, such as CRM1, that is involved in the export of complexes from the nucleus to the cytoplasm.

Nuclear export signal

A short sequence motif on a protein that acts as a binding site for an exportin and thereby targets the protein to the cytoplasm. An example is the Leu-rich sequence that binds CRM1.

Nuclear localization signal

A short sequence motif on a protein that acts as a binding site for an importin and thereby targets the protein to the nucleus. An example is a Lys-rich sequence that binds importin-α.

Karyopherin

A protein that acts as a receptor for nuclear localization or nuclear export sequences. Common karyopherins that are involved in protein transport are the members of the importin-β superfamily.

HEAT repeat

A sequence of 40 amino-acid residues found in diverse proteins and characterized by conserved hydrophobic amino acids that are folded into a bent helix and a straight helix.

Centriole

A small organelle consisting of two short, barrel-like arrays of microtubules that organize the centrosome and contributes to cytokinesis and cell-cycle progression.

FRET reporter

(Fluorescence resonance energy transfer reporter). A fusion protein that contains two fluorescent groups, between which fluorescence energy transfer can occur in order to omit light at a different wavelength. A reporter protein can either lose a FRET signal, as the two fluorescent groups are moved away from each other, or gain a FRET signal, when they are brought together. These signal changes can be caused by a conformational change following target-protein binding.

E3 ubiquitin ligase

The third enzyme in a series — the first two are designated E1 and E2 — that is responsible for ubiquitylation of target proteins. E3 enzymes provide platforms for binding E2 enzymes and specific substrates, thereby coordinating ubiquitylation of the selected substrates.

E3 SUMO ligase

The final enzyme in a series that transfers the small ubiquitin-related polypeptide SUMO to a substrate protein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, P., Zhang, C. Spatial and temporal coordination of mitosis by Ran GTPase. Nat Rev Mol Cell Biol 9, 464–477 (2008). https://doi.org/10.1038/nrm2410

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm2410

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing