Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Signals that control plant vascular cell differentiation

Key Points

  • Asymmetrically transported auxin-efflux carriers cause a polarized flow of auxin, which leads to the formation of continuous columns of procambial cells. In addition, one or more auxin-flow-independent mechanisms might also be involved in the formation of the continuous columns.

  • Adaxial- and abaxial-identity genes might interact to specify xylem and phloem formation, respectively, to produce the intravascular radial pattern of vascular bundles of leaves.

  • Cytokinin has a crucial role in the formation and/or maintenance of procambial cells, probably together with auxin.

  • Brassinosteroids might initiate differentiation of procambial cells to xylem cells. This process might be associated with the positive and negative regulation of the expression of specific members of the HD-ZIP-III gene family by brassinosteroids and by the RNAi machinery, respectively.

  • Molecular and cellular studies with Zinnia elegans xylogenic cultures have uncovered details of a vascular-cell specification process — tracheary-element differentiation — during which coordinated gene expression is induced in association with patterned secondary-cell-wall formation and vacuole-executed programmed cell death.

Abstract

Plant vascular cells originate from procambial cells, which are vascular stem cells. Recent studies with Zinnia elegans cell culture and Arabidopsis thaliana mutants indicate that intercellular-signalling molecules such as auxin, cytokinin, brassinosteroids and xylogen regulate the maintenance or differentiation of procambial cells through distinct intracellular-signal transduction and gene-expression machineries. This intercellular- and intracellular-signalling system might be involved in determining the continuity and pattern formation of vascular tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Vascular-pattern formation.
Figure 2: Molecular mechanism of auxin polar transport.
Figure 3: Model for signalling processes in the maintenance and/or the differentiation of procambial cells and xylem cell precursors.
Figure 4: Radial-accumulation pattern of transcripts for homeobox genes in vascular tissues.
Figure 5: Programmed cell death during tracheary-element differentiation.

Similar content being viewed by others

References

  1. Ye, Z.-H. Vascular tissue differentiation and pattern formation in plants. Annu. Rev. Plant Biol. 53, 183–202 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Dengler, N. & Kang, J. Vascular patterning and leaf shape. Curr. Opin. Plant Biol. 4, 50–56 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Jacobs, W. P. The role of auxin in differentiation of xylem around a wound. Am. J. Bot. 39, 301–309 (1952).

    Article  CAS  Google Scholar 

  4. Sachs, T. The control of the patterned differentiation of vascular tissues. Adv. Bot. Res. 9, 152–262 (1981).

    Google Scholar 

  5. Sachs, T. Integrating cellular and organismic aspects of vascular differentiation. Plant Cell Physiol. 41, 649–656 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Mattsson, J., Sung, Z. R. & Berieth, T. Responses of plant vascular systems to auxin transport inhibition. Development 126, 2979–2991 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Sieburth, L. E. Auxin is required for leaf vein pattern in Arabidopsis. Plant Physiol. 121, 1179–1190 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Berleth, T., Mattsson, K. & Hardtke, C. S. Vascular continuity and auxin signals. Trends Plant Sci. 5, 387–393 (2000). This review summarizes the role of polar auxin flow in vascular continuity on the basis of results with mutants and inhibitors of auxin transport.

    Article  CAS  PubMed  Google Scholar 

  9. Okada, K., Ueda, J., Komaki, M. K., Bell, C. J. & Shimura, Y. Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell 3, 677–684 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gälweiler, L. et al. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282, 2226–2230 (1998). This paper shows evidence that AtPIN1 is located on the base of vascular cells and functions in polar auxin transport.

    Article  PubMed  Google Scholar 

  11. Uggla, C., Moritz, T., Sandberg, G. & Sundberg, B. Auxin as a positional signal in pattern formation in plants. Proc. Natl Acad. Sci. USA 93, 9282–9286 (1996). This paper shows that cambial cells have the highest concentration of IAA among vascular cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Steinmann, T. et al. Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 286, 316–318 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Geldner, N. et al. The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112, 219–230 (2003). This paper presents a model in which endosomal recycling that is regulated by GNOM ADP-ribosylation-factor–guanine-nucleotide-exchange factor functions in the asymmetrical transport of AtPIN1, leading to polar auxin transport.

    Article  CAS  PubMed  Google Scholar 

  14. Koizumi, K., Sugiyama, M. & Fukuda, H. A series of novel mutants of Arabidopsis thaliana that are defective in the formation of continuous vascular network: calling the auxin signal flow canalization hypothesis into question. Development 127, 3197–3204 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Bennett, S. R. M., Alvarez, J., Bossinger, G. & Smyth, D. R. Morphogenesis in pinoid mutants of Arabidopsis thaliana. Plant J. 8, 505–520 (1995).

    Article  CAS  Google Scholar 

  16. Benjamins, R., Quint, A., Weijers, D., Hooykaas, P. & Offringa, R. The PINOID protein kinase regulates organ development in Arabidopsis by enhancing polar auxin transport. Development 128, 4057–4067 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Muday, G. K. & Murphy, A. S. An emerging model of auxin transport regulation. Plant Cell 14, 293–299 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Baumann, C. A. & Saltiel, A. R. Spatial compartmentalization of signal transduction in insulin action. Bioessays 23, 215–222 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Simpson, F., Whitehead, J. P. & James, D. E. GLUT4: at the cross roads between membrane trafficking and signal transduction. Traffic 2, 2–11 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Swarup, R. et al. Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes Dev. 15, 2648–2653 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Demura, T. et al. Visualization by comprehensive microarray analysis of gene expression programs during transdifferentiation of mesophyll cells into xylem cells. Proc. Natl Acad. Sci. USA 99, 15794–15799 (2002). This paper, together with reference 96, provides a comprehensive analysis of gene expression during xylem cell differentiation.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hobbie, L. et al. The axr6 mutants of Arabidopsis thaliana define a gene involved in auxin response and early development. Development 127, 23–32 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Hamann, T., Mayer, U. & Jürgens, G. The auxin-insensitive bodenlos mutation affects primary root formation and apical–basal patterning in the Arabidopsis embryo. Development 126, 1387–1395 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Hardtke, C. S. & Berleth, T. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J. 17, 1405–1411 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ulmasov, T., Hagen, G. & Guilfoyle, T. J. Activation and repression of transcription by auxin-response factors. Proc. Natl Acad. Sci. USA 96, 5844–5849 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Berleth, T. & Jürgens, G. The role of the monopteros gene in organising the basal body region of the Arabidopsis embryo. Development 118, 575–587 (1993).

    Article  Google Scholar 

  27. Przemeck, G. K., Mattsson, J., Hardtke, C. S., Sung, Z. R. & Berleth, T. Studies on the role of the Arabidopsis gene MONOPTEROS in vascular development and plant cell axialization. Planta 200, 229–237 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Hellmann, H. & Estelle, M. Plant development regulation by protein degradation. Science 297, 793–797 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Groover, A. T., Pattishall, A. & Jones, A. M. IAA8 expression during vascular cell differentiation. Plant Mol. Biol. 51, 427–435 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Carland, F. M. & McHale, N. A. LOP1: a gene involved in auxin transport and vascular patterning in Arabidopsis. Development 122, 1811–1819 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Carland, F. M., Berg, B. L., FitzGerald, J. N. & Jinamornphongs, S. Genetic regulation of vascular tissue patterning in Arabidopsis. Plant Cell 11, 2123–2137 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Deyholos, M. K., Cordner, G., Beebe, D. & Sieburth, L. E. The SCARFACE gene is required for cotyledon and leaf vein patterning. Development 127, 3205–3213 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Aloni, R. Foliar and axial aspects of vascular differentiation: hypotheses and evidence. J. Plant Growth Reg. 20, 22–34 (2001).

    Article  CAS  Google Scholar 

  34. Meinhardt, H. Models of biological pattern formation: common mechanism in plant and animal development. Int. J. Dev. Biol. 40, 123–134 (1996).

    CAS  PubMed  Google Scholar 

  35. Nelson, T. & Dengler, N. Leaf vascular pattern formation. Plant Cell 9, 1121–1135 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Asai, R., Taguchi, E., Kume, Y., Saito, M. & Kondo, S. Zebrafish Leopard gene as a component of the putative reaction–diffusion system. Mech. Dev. 89, 87–92 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Parker, G., Schofield, R., Sundberg, B. & Turner, S. Isolation of COV1, a gene involved in the regulation of vascular patterning in the stem of Arabidopsis. Development 130, 2139–2148 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Waites, R., Selvadurai, H. R. N., Oliver, I. R. & Hudson, A. The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum. Cell 93, 779–789 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Waites, R. & Hudson, A. phantastica: a gene required for dorsoventrality of leaves in Antirrhinum majus. Development 121, 2143–2154 (1995).

    Article  CAS  Google Scholar 

  40. McConnell, J. R. et al. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411, 709–713 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. McConnell, J. R. & Barton, M. K. Leaf polarity and meristem formation in Arabidopsis. Development 125, 2935–2942 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Emery, J. F. et al. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr. Biol. 13, 1768–1774 (2003). Based on complementary vascular phenotypes of HD-ZIP-III and KANADI mutants, this paper proposes that a genetic programme that is dependent on miRNA controls the radial patterning of vascular bundles as well as shoots.

    Article  CAS  PubMed  Google Scholar 

  43. Sawa, S. et al. FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG-related domains. Genes Dev. 13, 1079–1088 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Siegfried, K. R. et al. Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development 126, 4117–4128 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Eshed, Y., Baum, S. F., Perea, J. V. & Bowman, J. L. Establishment of polarity in lateral organs of plants. Curr. Biol. 11, 1251–1260 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Kerstetter, R. A., Bollman, K., Taylor, R. A., Bomblies, K. & Poethig, R. S. KANADI regulates organ polarity in Arabidopsis. Nature 411, 706–709 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Eshed, Y., Baum, S. F. & Bowman, J. L. Distinct mechanisms promote polarity establishment in carpels of Arabidopsis. Cell 99, 199–209 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Bonke, M., Thitamadee, S., Mähönen, A. P., Hauser, M. -T. & Helariutta, Y. APL regulates vascular tissue identity in Arabidopsis. Nature 426, 181–186 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Scheres, B. et al. Mutants affecting the radial organisation of the Arabidoposis root display specific defects throughout the embryonic axis. Development 121, 53–62 (1995).

    Article  CAS  Google Scholar 

  50. Mähönen, A. P. et al. A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes Dev. 14, 2938–2943 (2000). This paper shows the involvement of cytokinin in the formation and maintenance of the procambium.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yamada, H. et al. The Arabidopsis AHK4 histidine kinase is a cytokinin-binding receptor that transduces cytokinin signals across the membrane. Plant Cell Physiol. 42, 1017–1023 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Suzuki, T., Ishikawa, K., Yamashino, T. & Mizuno, T. An Arabidopsis histidine-containing phosphotransfer (HPt) factor implicated in phosphorelay signal transduction: overexpression of AHP2 in plants results in hypersensitiveness to cytokinin. Plant Cell Physiol. 43, 123–129 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Hwang, I. & Sheen, J. Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413, 383–389 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Sakai, H. et al. ARR1, a transcription factor for genes immediately responsive to cytokinins. Science 294, 1519–1521 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Kiba, T. et al. The type-A response regulator, ARR15, acts as a negative regulator in the cytokinin-mediated signal transduction in Arabidopsis thaliana. Plant Cell Physiol. 44, 868–874 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Kakimoto, T. Identification of plant cytokinin biosynthetic enzymes as dimethylallyl diphosphate:ATP/ADP isopentenyltransferases. Plant Cell Physiol. 42, 677–685 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Takei, K., Sakakibara, H. & Sugiyama, T. Identification of genes encoding adenylate isopentenyltransferase, a cytokinin biosynthesis enzyme, in Arabidopsis thaliana. J. Biol. Chem. 276, 26405–26410 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Miyawaki, K., Matsumoto-Kitano, M. & Kakimoto, T. Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J. 37, 128–138 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Fukuda, H. Tracheary element differentiation. Plant Cell 9, 1147–1156 (1997). This review summarizes the process of transdifferentiation from mesophyll cells into xylem cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Baima, S. et al. The expression of the Athb-8 homeobox gene is restricted to provascular cells in Arabidopsis thaliana. Development 121, 4171–4182 (1995). This is the first paper to show vascular-precursor-cell-specific expression of a member of the HD-ZIP-III gene family.

    Article  CAS  PubMed  Google Scholar 

  61. Ohashi-Ito, K. & Fukuda, H. HD-Zip III homeobox genes that include a novel member, ZeHB-13 (Zinnia)/AtHB-15 (Arabidopsis), are involved in xylem pattern formation. Plant Cell Physiol. 44, 1350–1358 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Ohashi-Ito, K., Demura, T. & Fukura, H. Promotion of transcript accumulation of novel Zinnia immature xylem-specific HD-zip III homeobox genes by brassinosteroids. Plant Cell Physiol. 43, 1146–1153 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Zhong, R., Taylor, J. J. & Ye, Z. -H. Disruption of interfascicular fiber differentiation in an Arabidopsis mutant. Plant Cell 9, 2159–2170 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhong, R. & Ye, Z. -H. IFL1, a gene regulating interfascicular fiber differentiation in Arabidopsis, encodes a homeodomain-leucine zipper protein. Plant Cell 11, 2139–2152 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Otsuga, D., DeGuzman, B., Prigge, M. J., Drews, G. N. & Clark, S. E. REVOLUTA regulates meristem initiation at lateral positions. Plant J. 25, 223–236 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Baima, S. et al. The Arabidopsis ATHB-8 HD-Zip protein acts as a differentiation-promoting transcription factor of the vascular meristems. Plant Physiol. 126, 643–655 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rhoades, M. W. et al. Prediction of plant microRNA targets. Cell 110, 513–520 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Tang, G., Reinhart, B. J., Bartel, D. P. & Zamore, P. D. A biochemical framework for RNA silencing in plants. Genes Dev. 17, 49–63 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Reinhart, B. J., Weinstein, E. G., Rhoades, M. W., Bartel, B. & Bartel, D. P. MicroRNAs in plants. Genes Dev. 16, 1616–1626 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bohmert, K. et al. AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J. 17, 170–180 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lynn, K. et al. The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping functions with the ARGONAUTE1 gene. Development 126, 469–481 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Choe, S. et al. The Arabidopsis dwf7/ste1 mutant is defective in the δ7 sterol C-5 desaturation step leading to brassinosteroid biosynthesis. Plant Cell 11, 207–221 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Szekeres, M. et al. Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85, 171–182 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Asami, T. & Yoshida, S. Brassinosteroid biosynthesis inhibitors. Trends Plant Sci. 4, 348–353 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Nagata, N., Asami, T. & Yoshida, S. Brassinazole, an inhibitor of brassinosteroid biosynthesis, inhibits development of secondary xylem in cress plants (Lepidium sativum). Plant Cell Physiol. 42, 1006–1011 (2001).

    Article  CAS  PubMed  Google Scholar 

  76. Iwasaki, T. & Shibaoka, H. Brassinosteroids act as regulators of tracheary-element differentiation in isolated Zinnia mesophyll cells. Plant Cell Physiol. 32, 1007–1014 (1991).

    Article  CAS  Google Scholar 

  77. Yamamoto, R. et al. Brassinosteroid levels increase drastically prior to morphogenesis of tracheary elements. Plant Physiol. 125, 556–563 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yamamoto, R., Demura, T. & Fukuda, H. Brassinosteroids induce entry into the final stage of tracheary element differentiation in cultured Zinnia cells. Plant Cell Physiol. 38, 980–983 (1997). This paper shows that endogenous BRs are involved in the initiation of the last step of xylem cell differentiation.

    Article  CAS  PubMed  Google Scholar 

  79. Wang, Z. -Y., Seto, H., Fujioka, S., Yoshida, S. & Chory, J. BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature 410, 380–383 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Li, J. & Chory, J. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signaling transduction. Cell 90, 929–938 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Friedrichsen, D. M., Joazeiro, C. A., Li, J., Hunter, T. & Chory, J. Brassinosteroid-insensitive-1 is a ubiquitously expressed leucine-rich repeat receptor serine/threonine kinase. Plant Physiol. 123, 1247–1256 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Clouse, S. D., Langford, M. & McMorris, T. C. A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol. 111, 671–678 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Li, J. et al. BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110, 213–222 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Nam, K. H. & Li, J. BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell 110, 203–212 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Yin, Y., Wu, D. & Chory, J. Plant receptor kinases: systemin receptor identified. Proc. Natl Acad. Sci. USA 99, 9090–9092 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Clay, N. K. & Nelson, T. VH1, a provascular cell-specific receptor kinase that influences leaf cell patterns in Arabidopsis. Plant Cell 14, 2707–2722 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Clouse, S. D. Brassinosteroid signal transduction: clarifying the pathway from ligand perception to gene expression. Mol. Cell 10, 973–982 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Willemsen, V. et al. Cell polarity and PIN protein positioning in Arabidopsis require STEROL METHYL TRANSFERASE1 function. Plant Cell 15, 612–625 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Jang, J. C. et al. A critical role of sterols in embryonic patterning and meristem programming revealed by the fackel mutants of Arabidopsis thaliana. Genes Dev. 14, 1485–1497 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Carland, F. M., Fujioka, S., Takatsuto, S., Yoshida, S. & Nelson, T. The identification of CVP1 reveals a role for sterols in vascular patterning. Plant Cell 14, 2045–2058 (2002). This paper shows a crucial role for steroids in the continuity of vascular bundles.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Motose, H., Fukuda, H. & Sugiyama, M. Involvement of local intercellular communication in the differentiation of Zinnia mesophyll cells into tracheary elements. Planta 213, 121–131 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Motose, H., Sugiyama, M. & Fukuda, H. An arabinogalactan protein(s) is a key component of a fraction that mediates local intercellular communication involved in tracheary element differentiation of Zinnia mesophyll cells. Plant Cell Physiol. 42, 129–137 (2001). These two papers show that a secreted arabinogalactan protein, xylogen, mediates local intercellular communication that initiates xylem cell differentiation.

    Article  CAS  PubMed  Google Scholar 

  93. Fukuda, H. & Kobayashi, H. Dynamic organization of the cytoskeleton during tracheary-element differentiation. Dev. Growth Differ. 31, 9–16 (1989).

    Article  Google Scholar 

  94. Doblin, M. S., Kurek, I., Jacob-Wilk, D. & Delmer, D. P. Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol. 43, 1407–1420 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Taylor, N. G., Howells, R. M., Huttly, A. K., Vickers, K. & Turner, S. R. Interactions among three distinct CesA proteins essential for cellulose synthesis. Proc. Natl Acad. Sci. USA 100, 1450–1455 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gardiner, J. C., Taylor, N. G. & Turner, S. R. Control of cellulose synthase complex localization in developing xylem. Plant Cell 15, 1740–1748 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Desprez, T. et al. Resistance against herbicide isoxaben and cellulose deficiency caused by distinct mutations in same cellulose synthase isoform CESA6. Plant Physiol. 128, 482–490 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Milioni, D., Sado, P. -E., Stacey, N. J., Roberts, K. & McCann, C. M. Early gene expression associated with the commitment and differentiation of a plant tracheary element is revealed by cDNA-amplified fragment length polymorphism analysis. Plant Cell 14, 2813–2824 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hertzberg, M. et al. A transcriptional roadmap to wood formation. Proc. Natl Acad. Sci. USA 98, 14732–14737 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Whetten, R., Sun, Y. -H., Zhang, Y. & Sederoff, R. Functional genomics and cell wall biosynthesis in loblolly pine. Plant Mol. Biol. 47, 275–291 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Kawaoka, A. et al. Functional analysis of tobacco LIM protein Ntlim1 involved in lignin biosynthesis. Plant J. 22, 289–301 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Borevitz, J. O., Xia, Y., Blount, J., Dixon, R. A. & Lamb, C. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12, 2383–2394 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Milioni, D. et al. Differential expression of cell-wall-related genes during the formation of tracheary elements in the Zinnia mesophyll cell system. Plant Mol. Biol. 47, 221–238 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Burgess, J. & Linstead, P. In vitro tracheary element formation: structural studies and the effect of triiodobenzoic acid. Planta 160, 481–489 (1984).

    Article  CAS  PubMed  Google Scholar 

  105. Nakashima, J., Takabe, K., Fujita, M. & Fukuda, H. Autolysis during in vitro tracheary element differentiation: formation and location of the perforation. Plant Cell Physiol. 41, 1267–1271 (2000).

    Article  CAS  PubMed  Google Scholar 

  106. Shinohara, N., Demura, T. & Fukuda, H. Isolation of a vascular cell wall-specific monoclonal antibody recognizing a cell polarity by using a phage display subtraction method. Proc. Natl Acad. Sci. USA 97, 2585–2590 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Nakanomyo, I., Kost, B., Chua, N. -H. & Fukuda, H. Preferential and asymmetrical accumulation of a Rac small GTPase mRNA in differentiating xylem cells of Zinnia elegans. Plant Cell Physiol. 43, 1484–1492 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Im, K. -H., Cosgrove, D. J. & Jones, A. M. Subcellular localization of expansin mRNA in xylem cells. Plant Physiol. 123, 463–470 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jones, A. M. Programmed cell death in development and defense. Plant Physiol. 125, 94–97 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Obara, K. & Fukuda, H. in Programmed Cell Death in Plants (ed. Gray, J.) 131–154 (Sheffield Academic Press, UK, 2003).

    Google Scholar 

  111. Funk, V., Kositsup, B., Zhao, C. & Beers, E. P. The Arabidopsis xylem peptidase XCP1 is a tracheary element vacuolar protein that may be a papain orthology. Plant Physiol. 128, 84–94 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ito, J. & Fukuda, H. ZEN1 is a key enzyme in degradation of nuclear DNA during programmed cell death of tracheary elements. Plant Cell 14, 3201–3211 (2002). This paper shows that a distinct S1 nuclease functions in nuclear-DNA degradation in programmed cell death of TEs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Groover, A., DeWitt, N., Heidel, A. & Jones, A. Programmed cell death of plant tracheary elements differentiating in vitro. Protoplasma 196, 197–211 (1997).

    Article  Google Scholar 

  114. Kuriyama, H. Loss of tonoplast integrity programmed in tracheary element differentiation. Plant Physiol. 121, 763–774 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Obara, K., Kuriyama, H. & Fukuda, H. Direct evidence of active and rapid nuclear degradation triggered by vacuole rupture during programmed cell death in Zinnia. Plant Physiol. 125, 615–626 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Vercher, Y., Molowny, A. & Carbonell, J. Gibberellic acid effects on the ultrastructure of endocarp cells of unpollinated ovaries of Pisum sativum. Physiol. Plant 71, 302–308 (1987).

    Article  CAS  Google Scholar 

  117. Kuo, A., Cappelluti, S., Cervantes-Cervantes, M., Rodriguez, M. & Bush, D. S. Okadaic acid, a protein phosphatase inhibitor, blocks calcium changes, gene expression, and cell death induced by gibberellin in wheat aleurone cells. Plant Cell 8, 259–269 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Scarpella, E., Rueb, S., Boot, K. J. M., Hoge, J. H. C. & Meijer, A. H. A role for the rice homeobox gene Oshox1 in provascular cell fate commitment. Development 127, 3655–3669 (2000). This paper shows that the use of a homeobox gene as a molecular marker allows us to distinguish developmental stages of procambium in rice roots.

    Article  CAS  PubMed  Google Scholar 

  119. Fukuda, H., Koizumi, K. & Demura, T. Vascular differentiation. Shokubutsusaiboukougaku 12, 212–222 (2000).

    CAS  Google Scholar 

  120. Weier, T. E., Stocking, C. R., Barbour, M. G. & Rost, T. L. Botany 6th edn 118 (John Wiley & Sons, New Jersey, USA, 1982).

    Google Scholar 

Download references

Acknowledgements

The author thanks R. Jones, A. Jones, T. Berleth, J. Li, M. Sugiyama and J. Bowman for critical reading of the manuscript. This work was supported in part by Grants-in-Aid from the Ministry of Education, Science, Sports and Culture of Japan, from the Japan Society for the Promotion of Science and from the Mitsubishi Foundation.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

DATABASES

Interpro

START

TAIR

ARR15

AtHB8

AtHB15

AtPIN1

AUX1

auxin resistant-6

bodenlos

BRI1

BRL1

BRL2

cov1

GNOM

IAA8

MP

PHB

PHV

PINOID

REV

van3

wol

FURTHER INFORMATION

The Cellulose Synthase Superfamily

Glossary

VASCULAR CELLS

Cells that form the plant vascular tissues, including procambial cells, cambial cells, sieve elements, companion cells, fibre cells, xylem and phloem parenchyma cells, and tracheary elements.

APICAL MERISTEM

The meristematic tissue that is located at the tip of the shoot and root. It is composed of stem cells, which allow plants to continue to grow in height.

XYLEM

The tissue that is responsible for transporting water and minerals. It also gives strength to the stem.

PHLOEM

The tissue that is responsible for transporting the carbohydrates that are produced in leaves.

PROCAMBIUM

A primary meristem that is derived from the apical meristem and which gives rise to primary vascular tissues and vascular cambium.

VASCULAR CAMBIUM

A lateral meristem that gives rise to secondary vascular tissues — secondary xylem on the inner side and secondary phloem on the outer side in stems and roots, which results in an increase in the diameter of those organs.

MONOCOTYLEDONOUS PLANTS

A class of angiospermous plants that is characterized by the production of seeds with one cotyledon, such as rice, maize and wheat.

SIEVE ELEMENT

The components of sieve tubes that are separated from each other by sieve plates. In contrast to tracheary elements, which are depleted of all cell contents, sieve elements contain a nucleus even after maturation.

SIEVE TUBE

A series of sieve elements that form a long cellular tube that functions in the transport of photosynthetic products.

COMPANION CELLS

Cells that are associated with sieve elements and support them. An asymmetrical cell division of a precursor cell produces a sieve element and a companion cell.

PARENCHYMA

A tissue that is composed of cells that have thin cell walls and has a relatively flexible ability to differentiate.

TRACHEARY ELEMENT

The thick-walled cylindrical cell that is a component of vessels, or tracheids, which are water-conducting tissues.

BASIPETALLY

Toward the root tip from the shoot tip.

PROTOPHLOEM

The primary phloem that is first formed from procambium during organ development.

AUX/IAA PROTEINS

A class of short-lived nuclear proteins that share four conserved domains and that are generally encoded by early-auxin-response genes. They repress auxin responses by dimerizing with auxin-response factor (ARF) transcriptional activators that reside on auxin-responsive promoter elements.

MYB-LIKE TRANSCRIPTION FACTOR

A member of the transcription-factor family that contains the MYB motif, which consists of a helix-turn-helix structure with three regularly spaced Trp residues. This family is substantially larger in plants than in animals and functions in the regulation of a variety of events, including secondary metabolism and plant morphogenesis.

PETIOLE

The part of the leaf that connects the leaf blade and the stem.

CYTOKININ

N6-substituted adenine derivatives that have diverse effects on important physiological functions such as cell division, greening and differentiation in plants.

PERICYLCE

The tissue that is composed of one or a few layers of cells that are located outside of the vascular tissues in roots and stems. In roots, lateral roots originate from this tissue.

INTERFASCICULAR

'Between the bundles'; the bundles being the strands that contain the vascular tissue.

microRNA

The approximately 21–22-ribonucleotide RNA that arises from the action of the Dicer double-stranded ribonucleases on short stem-loop precursors. It initiates blocking of the targeted mRNAs, which have nucleotide sequences that are complementary to the microRNA.

BRASSINOSTEROID

A group of naturally occurring plant polyhydroxysteroids with wide-ranging biological activity.

MESOPHYLL

The photosynthetic tissue between the upper and lower epidermis of the leaf. Mesophyll cells contain chloroplasts.

ARABINOGALACTAN PROTEIN

A class of hydroxyproline-rich proteoglycans to which branched 3,6-β-D-galactans containing arabinose are attached by O-glycosidic bonds. They are widely distributed throughout the plant kingdom.

β-GLUCOSYL YARIV REAGENT

A synthetic phenyl glycoside that interacts selectively with arabinogalactan proteins and that is used for the purification and quantification of arabinogalactan proteins and for disturbing arabinogalactan protein function.

LIGNIFICATION

The deposition of lignin on secondary cell walls of tracheary elements and fibre cells to reinforce them mechanically and chemically.

LIM TRANSCRIPTION FACTOR

A member of the transcription-factor family that contains the LIM domain, which is a cysteine-rich polypeptide composed of two special zinc fingers separated by a two-amino-acid spacer.

MIDDLE LAMELLA

The thin layer that connects two plant cells and is rich in pectin.

TONOPLAST

The membrane that encompasses the central vacuole.

ENDOCARP CELL

The cell that composes the innermost fruit wall. Some endocarp cells are destined to die during maturation of the fruit.

ALEURONE CELL

The layered cell that surrounds the starchy endosperm of cereal grains and is instrumental in digesting the materials that are stored in the endosperm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukuda, H. Signals that control plant vascular cell differentiation. Nat Rev Mol Cell Biol 5, 379–391 (2004). https://doi.org/10.1038/nrm1364

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1364

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing