Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Getting to the end: telomerase access in yeast and humans

Key Points

  • The ends of linear chromosomes are problematic for the eukaryotic DNA-replication machinery. Eukaryotes have evolved specialized structures at chromosome ends — known as telomeres — that are replicated by a unique mechanism using the reverse transcriptase, telomerase.

  • Telomeres are comprised of G-rich DNA repeats, the sequence of which varies among different organisms. Telomeres facilitate the complete replication of linear chromosomes and protect chromosome ends from degradation and end-to-end fusions.

  • In yeast and humans, the G-rich strand of telomeres extends in the 3′ direction to form a single-stranded G-tail. G-tails are telomerase substrates and bind single-strand-specific DNA-binding proteins that protect chromosome ends from degradation and from fusions with DNA breaks or other chromosome ends.

  • Telomerase action is highly regulated in vivo as inappropriate telomere addition is deleterious and can stabilize chromosomal aberrations.

  • Telomerase can be regulated in various ways: by modulating the telomeric chromatin structure through single-stranded or double-stranded telomeric-DNA-binding proteins and their associated factors; by using telomerase accessory factors; by dissociating active telomerase from chromosome ends; and by sequestering active telomerase in specific subcellular compartments, such as the nucleolus.

  • Free single-stranded DNA can signal to DNA-damage-response pathways; so, telomeric G-tails must be shielded to avoid detection as damaged DNA. Since telomeres do not fuse with each other or with DNA breaks, telomeres are also protected from non-homologous end joining. Surprisingly, proteins such as Ku and the Mre11 complex that are involved in non-homologous end joining and DNA checkpoints are important for telomere maintenance.

  • Many of the components involved in regulating access of telomerase to the telomere are conserved from yeast to humans.

Abstract

In organisms with linear chromosomes, telomeres are essential to maintain genome integrity. However, inappropriate telomere addition, for example to double-stranded DNA breaks, might stabilize deleterious genetic changes. Therefore, telomere addition by telomerase is highly regulated, for example by mechanisms that determine the accessibility of telomeres to elongation by telomerase. These mechanisms, which have been studied mainly in budding yeast and human cell culture, can be subdivided into two classes: mechanisms that modulate the telomeric chromatin structure and those that sequester active telomerase from chromosome ends.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Telomerase-mediated telomere lengthening in yeast.
Figure 2: Telomere ends contain G-rich overhangs.
Figure 3: Sequestration of telomerase in the nucleolus.

Similar content being viewed by others

References

  1. Wellinger, R. J., Wolf, A. J. & Zakian, V. A. Saccharomyces telomeres acquire single-strand TG1–3 tails late in S phase. Cell 72, 51–60 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Bourns, B. D., Alexander, M. K., Smith, A. M. & Zakian, V. A. Sir proteins, Rif proteins and Cdc13p bind Saccharomyces telomeres in vivo. Mol. Cell. Biol. 18, 5600–5608 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Taggart, A. K. P., Teng, S. -C. & Zakian, V. A. Est1p as a cell-cycle-regulated activator of telomere-bound telomerase. Science 297, 1023–1026 (2002). Shows that Est2 is telomere associated throughout most of the cell cycle, whereas Est1 is associated only when telomerase is active.

    Article  CAS  PubMed  Google Scholar 

  4. McElligott, R. & Wellinger, R. J. The terminal DNA structure of mammalian chromosomes. EMBO J. 16, 3705–3714 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wright, W. E., Tesmer, V. M., Huffman, K. E., Levene, S. D. & Shay, J. W. Normal human chromosomes have long G-rich telomeric overhangs at one end. Genes Dev. 11, 2801–2809 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Makarov, V. L., Hirose, Y. & Langmore, J. P. Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell 88, 657–666 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Lundblad, V. & Szostak, J. W. A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 57, 633–643 (1989).

    Article  CAS  PubMed  Google Scholar 

  8. Garvik, B., Carson, M. & Hartwell, L. Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint. Mol. Cell. Biol. 15, 6128–6138 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Grandin, N., Damon, C. & Charbonneau, M. Ten1 functions in telomere end protection and length regulation in association with Stn1 and Cdc13. EMBO J. 20, 1173–1183 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Grandin, N., Reed, S. I. & Charbonneau, M. Stn1, a new Saccharomyces cerevisiae protein, is implicated in telomere size regulation in association with Cdc13. Genes Dev. 11, 512–527 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. van Steensel, B., Smogorzewska, A. & de Lange, T. TRF2 protects human telomeres from end-to-end fusions. Cell 92, 401–413 (1998). Shows that telomeric fusions occur when G-tails are lost in human cells, despite the presence of duplex telomeric DNA.

    Article  CAS  PubMed  Google Scholar 

  12. Wellinger, R. J., Ethier, K., Labrecque, P. & Zakian, V. A. Evidence for a new step in telomere maintenance. Cell 85, 423–433 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Dionne, I. & Wellinger, R. J. Cell-cycle-regulated generation of single-stranded G-rich DNA in the absence of telomerase. Proc. Natl Acad. Sci. USA 93, 13902–13907 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hemann, M. & Greider, C. G-strand overhangs on telomeres in telomerase-deficient mouse cells. Nucl. Acids Res. 27, 3964–3969 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bailey, S., Cornforth, M., Kurimasa, A., Chen, D. & Goodwin, E. Strand-specific postreplicative processing of mammalian telomeres. Science 293, 2462–2465 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Parenteau, J. & Wellinger, R. J. Accumulation of single-stranded DNA and destabilization of telomeric repeats in yeast mutant strains carrying a deletion of RAD27. Mol. Cell. Biol. 19, 4143–4152 (1999). References 15 and 16 show that telomeres that are replicated by lagging-strand versus leading-strand polymerases are processed differently.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cimino-Reale, G., Pascale, E., Alvino, E., Starace, G. & D'Ambrosio, E. Long telomeric C-rich 5′-tails in human replicating cells. J. Biol. Chem. 278, 2136–2140 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Lingner, J. et al. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276, 561–567 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Nakamura, T. M. et al. Telomerase catalytic subunit homologs from fission yeast and human. Science 277, 955–959 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Meyerson, M. et al. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell 90, 785–795 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Singer, M. S. & Gottschling, D. E. TLC1, the template RNA component of the Saccharomyces cerevisiae telomerase. Science 266, 404–409 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Feng, J. et al. The RNA component of human telomerase. Science 269, 1236–1241 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Chakhparonian, M. & Wellinger, R. J. Telomere maintenance and DNA replication: how closely are these two connected? Trends Genet. 19, 439–446 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Conrad, M. N., Wright, J. H., Wolf, A. J. & Zakian, V. A. RAP1 protein interacts with yeast telomeres in vivo: overproduction alters telomere structure and decreases chromosome stability. Cell 63, 739–750 (1990).

    Article  CAS  PubMed  Google Scholar 

  25. Chong, L. et al. A human telomeric protein. Science 270, 1663–1667 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Broccoli, D., Smogorzewska, A., Chong, L. & de Lange, T. Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nature Genet. 17, 231–235 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Tsukamoto, Y., Taggart, A. K. P. & Zakian, V. A. The role of the Mre11-Rad50-Xrs2 complex in telomerase-mediated lengthening of Saccharomyces cerevisiae telomeres. Curr. Biol. 11, 1328–1335 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Baumann, P. & Cech, T. R. Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 292, 1171–1175 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Baumann, P., Podell, E. & Cech, T. R. Human Pot1 (protection of telomeres) protein: cytolocalization, gene structure, and alternative splicing. Mol. Cell. Biol. 22, 8079–8087 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Griffith, J. D. et al. Mammalian telomeres end in a large duplex loop. Cell 97, 503–514 (1999). Shows that mammalian telomeres form t-loops.

    Article  CAS  PubMed  Google Scholar 

  31. Strahl-Bolsinger, S., Hecht, A., Luo, K. & Grunstein, M. SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast. Genes Dev. 11, 83–93 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. de Bruin, D., Zaman, Z., Liberatore, R. A. & Ptashne, M. Telomere looping permits gene activation by a downstream UAS in yeast. Nature 409, 109–113 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Zhou, J. -Q., Monson, E. M., Teng, S. -C., Schulz, V. P. & Zakian, V. A. The Pif1p helicase, a catalytic inhibitor of telomerase lengthening of yeast telomeres. Science 289, 771–774 (2000). Shows that the yeast Pif1 DNA helicase is a catalytic inhibitor of telomerase and describes a human homologue of Pif1.

    Article  CAS  PubMed  Google Scholar 

  34. Myung, K., Chen, C. & Kolodner, R. D. Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae. Nature 411, 1073–1076 (2001). Shows that the Pif1 DNA helicase suppresses gross chromosomal rearrangements by suppressing telomere addition.

    Article  CAS  PubMed  Google Scholar 

  35. Kyo, S. & Inoue, M. Complex regulatory mechanisms of telomerase activity in normal and cancer cells: how can we apply them for cancer therapy? Oncogene 21, 688–697 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Cong, Y. S., Wright, W. E. & Shay, J. W. Human telomerase and its regulation. Microbiol. Mol. Biol. Rev. 66, 407–425, (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cohn, M. & Blackburn, E. H. Telomerase in yeast. Science 269, 396–400 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Lingner, J., Cech, T. R., Hughes, T. R. & Lundblad, V. Three Ever Shorter Telomere (EST) genes are dispensable for in vitro yeast telomerase activity. Proc. Natl Acad. Sci. USA 94, 11190–11195 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Beernink, H. T., Miller, K., Deshpande, A., Bucher, P. & Cooper, J. P. Telomere maintenance in fission yeast requires an Est1 ortholog. Curr. Biol. 13, 575–580 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Friedman, K. L. & Cech, T. R. Essential functions of amino-terminal domains in the yeast telomerase catalytic subunit revealed by selection for viable mutants. Genes Dev. 13, 2863–2874 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Armbruster, B. N., Banik, S. S., Guo, C., Smith, A. C. & Counter, C. M. N-terminal domains of the human telomerase catalytic subunit required for enzyme activity in vivo. Mol. Cell. Biol. 21, 7775–7786 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Counter, C. M. et al. Dissociation among in vitro telomerase activity, telomere maintenance, and cellular immortalization. Proc. Natl Acad. Sci. USA 95, 14723–14728 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xia, J., Peng, Y., Mian, I. S. & Lue, N. F. Identification of functionally important domains in the N-terminal region of telomerase reverse transcriptase. Mol. Cell. Biol. 20, 5196–5207 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kim, M., Xu, L. & Blackburn, E. H. Catalytically active human telomerase mutants with allele-specific biological properties. Exp. Cell Res. 288, 277–287 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Evans, S. K. & Lundblad, V. Est1 and Cdc13 as comediators of telomerase access. Science 286, 117–120 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Hughes, T. R., Evans, S. K., Weilbaecher, R. G. & Lundblad, V. The Est3 protein is a subunit of yeast telomerase. Curr. Biol. 10, 809–812 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Armbruster, B. N., Etheridge, K. T., Broccoli, D. & Counter, C. M. Putative telomere-recruiting domain in the catalytic subunit of human telomerase. Mol. Cell. Biol. 23, 3237–3246 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wright, J. H. & Zakian, V. A. Protein-DNA interactions in soluble telosomes from Saccharomyces cerevisiae. Nucl. Acids Res. 23, 1454–1460 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gilson, E., Roberge, M., Giraldo, R., Rhodes, D. & Gasser, S. M. Distortion of the DNA double helix by RAP1 at silencers and multiple telomeric binding sites. J. Mol. Biol. 231, 293–310 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Konig, P., Giraldo, R., Chapman, L. & Rhodes, D. The crystal structure of the DNA-binding domain of yeast RAP1 in complex with telomeric DNA. Cell 85, 125–136 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Sussel, L. & Shore, D. Separation of transcriptional activation and silencing functions of the RAP1-encoded repressor/activator protein 1: isolation of viable mutants affecting both silencing and telomere length. Proc. Natl Acad. Sci. USA 88, 7749–7753 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kyrion, G., Boakye, K. A. & Lustig, A. J. C-terminal truncation of RAP1 results in the deregulation of telomere size, stability, and function in Saccharomyces cerevisiae. Mol. Cell. Biol. 12, 5159–5173 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Marcand, S., Gilson, E. & Shore, D. A protein-counting mechanism for telomere length regulation in yeast. Science 275, 986–990 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Ray, A. & Runge, K. The yeast telomere length counting machinery is sensitive to sequences at the telomere-nontelomere junction. Mol. Cell. Biol. 19, 31–45 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ray, A. & Runge, K. W. The C terminus of the major yeast telomere binding protein Rap1p enhances telomere formation. Mol. Cell. Biol. 1284–1295 (1998).

  56. Bianchi, A., Smith, S., Chong, L., Elias, P. & de Lange, T. TRF1 is a dimer and bends telomeric DNA. EMBO J. 16, 1785–1794 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bianchi, A. et al. TRF1 binds a bipartite telomeric site with extreme spatial flexibility. EMBO J. 18, 5735–5744 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ancelin, K. et al. Targeting assay to study the cis functions of human telomeric proteins: evidence for inhibition of telomerase by TRF1 and for activation of telomere degradation by TRF2. Mol. Cell. Biol. 22, 3474–3487 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. van Steensel, B. & de Lange, T. Control of telomere length by the human telomeric protein TRF1. Nature 385, 740–743 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Smogorzewska, A. et al. Control of human telomere length by TRF1 and TRF2. Mol. Cell. Biol. 20, 1659–1668 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sharma, G. G. et al. hTERT associates with human telomeres and enhances genomic stability and DNA repair. Oncogene 22, 131–146 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. de Bruin, D., Kantrow, S. M., Liberatore, R. A. & Zakian, V. A. Telomere folding is required for the stable maintenance of telomere position effects in yeast. Mol. Cell. Biol. 20, 7991–8000 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hardy, C. F., Sussel, L. & Shore, D. A RAP1-interacting protein involved in transcriptional silencing and telomere length regulation. Genes Dev. 6, 801–814 (1992).

    Article  CAS  PubMed  Google Scholar 

  64. Wotton, D. & Shore, D. A novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae. Genes Dev. 11, 748–760 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Alexander, M. K. & Zakian, V. A. Rap1p telomere association is not required for mitotic stability of a C(3)TA(2) telomere in yeast. EMBO J. 22, 1688–1696 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Smith, C. D., Smith, D. L., DeRisi, J. L. & Blackburn, E. H. Telomeric protein distributions and remodeling through the cell cycle in Saccharomyces cerevisiae. Mol. Biol. Cell. 14, 556–570 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wiley, E. & Zakian, V. A. Extra telomeres, but not internal tracts of telomeric DNA, reduce transcriptional repression at Saccharomyces telomeres. Genetics 139, 67–79 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Teng, S. -C., Chang, J., McCowan, B. & Zakian, V. A. Telomerase-independent lengthening of yeast telomeres occurs by an abrupt Rad50p-dependent, Rif-inhibited recombinational process. Mol. Cell 6, 947–952 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Zhou, X. Z. & Lu, K. P. The Pin2/TRF1-interacting protein PinX1 is a potent telomerase inhibitor. Cell 107, 347–359 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Kim, S. H., Kaminker, P. & Campisi, J. TIN2, a new regulator of telomere length in human cells. Nature Genet. 23, 405–412 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Smith, S., Giriat, I., Schmitt, A. & de Lange, T. Tankyrase, a poly(ADP-ribose) polymerase at human telomeres. Science 282, 1484–1487 (1998). Shows that tankyrase might affect TRF1 and telomeres in humans through its PARP activity.

    Article  CAS  PubMed  Google Scholar 

  72. Hsu, H. L. et al. Ku acts in a unique way at the mammalian telomere to prevent end joining. Genes Dev. 14, 2807–2812 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Guglielmi, B. & Werner, M. The yeast homolog of human PinX1 is involved in rRNA and small nucleolar RNA maturation, not in telomere elongation inhibition. J. Biol. Chem. 277, 35712–35719 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Smith, S. & de Lange, T. Tankyrase promotes telomere elongation in human cells. Curr. Biol. 10, 1299–1302 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Chang, W., Dynek, J. N. & Smith, S. TRF1 is degraded by ubiquitin-mediated proteolysis after release from telomeres. Genes Dev. 17, 1328–1333 (2003). Shows that tankyrase 1 induces degradation of TRF1 by the proteasome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kaminker, P. G. et al. TANK2, a new TRF1-associated poly(ADP-ribose) polymerase, causes rapid induction of cell death upon overexpression. J. Biol. Chem. 276, 35891–35899 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Cook, B. D., Dynek, J. N., Chang, W., Shostak, G. & Smith, S. Role for the related poly(ADP-ribose) polymerases tankyrase 1 and 2 at human telomeres. Mol. Cell. Biol. 22, 332–342 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Li, B., Oestreich, S. & de Lange, T. Identification of human Rap1: implications for telomere evolution. Cell 101, 471–483 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Opresko, P. L. et al. Telomere-binding protein TRF2 binds to and stimulates the Werner and Bloom syndrome helicases. J. Biol. Chem. 277, 41110–41119 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Zhu, X. D., Kuster, B., Mann, M., Petrini, J. H. & de Lange, T. Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres. Nature Genet. 25, 347–352 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Paull, T. T. & Gellert, M. Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11/Rad50 complex. Genes Dev. 13, 1276–1288 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fry, M. & Loeb, L. A. Human Werner syndrome DNA helicase unwinds tetrahelical structures of the fragile X syndrome repeat sequence d(CGG)n. J. Biol. Chem. 274, 12797–12802 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Kruk, P. A., Rampino, N. J. & Bohr, V. A. DNA damage and repair in telomeres: relation to aging. Proc. Natl Acad. Sci. USA 92, 258–262 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Schulz, V. P. et al. Accelerated loss of telomeric repeats may not explain accelerated replicative decline of Werner syndrome cells. Hum. Genet. 97, 750–754 (1996).

    Article  CAS  PubMed  Google Scholar 

  85. Huang, P. et al. SGS1 is required for telomere elongation in the absence of telomerase. Curr. Biol. 11, 125–129 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Johnson, F. et al. The Saccharomyces cerevisiae WRN homolog Sgs1p participates in telomere maintenance in cells lacking telomerase. EMBO J. 20, 905–913 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cohen, H. & Sinclair, D. Recombination-mediated lengthening of terminal telomeric repeats requires the Sgs1 DNA helicase. Proc. Natl Acad. Sci. USA 98, 3174–3179 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lin, J. J. & Zakian, V. A. The Saccharomyces CDC13 protein is a single-strand TG1–3 telomeric DNA binding protein in vitro that affects telomere behavior in vivo. Proc. Natl Acad. Sci. USA 93, 13760–13765 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nugent, C. I., Hughes, T. R., Lue, N. F. & Lundblad, V. Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science 274, 249–252 (1996).

    Article  CAS  PubMed  Google Scholar 

  90. Pennock, E., Buckley, K. & Lundblad, V. Cdc13 delivers separate complexes to the telomere for end protection and replication. Cell 104, 387–396 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Qi, H. & Zakian, V. A. The Saccharomyces telomere-binding protein Cdc13p interacts with both the catalytic subunit of DNA polymerase α and the telomerase-associated Est1 protein. Genes Dev. 14, 1777–1778 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lin, J. -J. & Zakian, V. A. An in vitro assay for Saccharomyces telomerase requires EST1. Cell 81, 1127–1135 (1995).

    Article  CAS  PubMed  Google Scholar 

  93. Livengood, A. J., Zaug, A. J. & Cech, T. R. Essential regions of Saccharomyces cerevisiae telomerase RNA: separate elements for Est1p and Est2p interaction. Mol. Cell. Biol. 22, 2366–2374 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhou, J., Hidaka, K. & Futcher, B. The Est1 subunit of yeast telomerase binds the Tlc1 telomerase RNA. Mol. Cell. Biol. 20, 1947–1955 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Virta-Pearlman, V., Morris, D. K. & Lundblad, V. Est1 has the properties of a single-stranded telomere end-binding protein. Genes Dev. 10, 3094–3104 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. Marcand, S., Brevet, V., Mann, C. & Gilson, E. Cell cycle restriction of telomere elongation. Curr. Biol. 10, 487–490 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Taggart, A. K. P. & Zakian, V. A. Telomerase: what are the Est proteins doing? Curr. Opin. Cell Biol. 3, 275–280 (2003).

    Article  CAS  Google Scholar 

  98. Stellwagen, A. E., Haimberger, Z. W., Veatch, J. R. & Gottschling, D. E. Ku interacts with telomerase RNA to promote telomere addition at native and broken chromosome ends. Genes Dev. 17, 2384–2395 (2003). Shows a physical interaction between yeast Ku and the telomerase RNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chandra, A., Hughes, T. R., Nugent, C. I. & Lundblad, V. Cdc13 both positively and negatively regulates telomere replication. Genes Dev. 15, 404–414 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Reichenbach, P. et al. A human homolog of yeast est1 associates with telomerase and uncaps chromosome ends when overexpressed. Curr. Biol. 13, 568–574 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Snow, B. E. et al. Functional conservation of the telomerase protein est1p in humans. Curr. Biol. 13, 698–704 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Singh, S. M., Steinberg-Neifach, O., Mian, I. S. & Lue, N. F. Analysis of telomerase in Candida albicans: potential role in telomere end protection. Eukaryot. Cell 1, 967–977 (2002). References 100–102, as well as reference 39, describe Est1 homologues in humans and in other yeasts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Gottschling, D. E. & Zakian, V. A. Telomere proteins: specific recognition and protection of the natural termini of Oxytricha macronuclear DNA. Cell 47, 195–205 (1986).

    Article  CAS  PubMed  Google Scholar 

  104. Mitton-Fry, R. M., Anderson, E. M., Hughes, T. R., Lundblad, V. & Wuttke, D. S. Conserved structure for single-stranded telomeric DNA recognition. Science 296, 145–147 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Horvath, M., Schweiker, V., Bevilacqua, J., Ruggles, J. & Schultz, S. Crystal structure of the Oxytricha nova telomere end binding protein complexed with single strand DNA. Cell 95, 963–974 (1998).

    Article  CAS  PubMed  Google Scholar 

  106. Loayza, D. & de Lange, T. POT1 as a terminal transducer of TRF1 telomere length control. Nature 424, 1013–1018 (2003).

    Article  CAS  Google Scholar 

  107. Colgin, L. M. Human POT1 facilitates telomere elongation by telomerase. Curr. Biol. 13, 942–946 (2003). References 106 and 107 examine the effects of POT1 on human telomeres.

    Article  CAS  PubMed  Google Scholar 

  108. Sandell, L. L. & Zakian, V. A. Loss of a yeast telomere: arrest, recovery and chromosome loss. Cell 75, 729–739 (1993).

    Article  CAS  PubMed  Google Scholar 

  109. Karlseder, J., Broccoli, D., Dai, Y., Hardy, S. & de Lange, T. p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 283, 1321–1325 (1999).

    Article  CAS  PubMed  Google Scholar 

  110. Liti, G. & Louis, E. NEJ1 prevents NHEJ-dependent telomere fusions in yeast without telomerase. Mol. Cell 11, 1373–1378 (2003). Shows that Nej1, in contrast to its role in promoting double-strand DNA break repair, protects telomeres from end fusions in telomerase-negative cells.

    Article  CAS  PubMed  Google Scholar 

  111. Jones, J. M., Gellert, M. & Yang, W. A Ku bridge over broken DNA. Structure 9, 881–884 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Gravel, S., Larrivee, M., Labrecque, P. & Wellinger, R. J. Yeast Ku as a regulator of chromosomal DNA end structure. Science 280, 741–744 (1998).

    Article  CAS  PubMed  Google Scholar 

  113. Porter, S. E., Greenwell, P. W., Ritchie, K. B. & Petes, T. D. The DNA-binding protein Hdf1p (a putative Ku homologue) is required for maintaining normal telomere length in Saccharomyces cerevisiae. Nucl. Acids Res. 24, 582–585 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Polotnianka, R. M., Li, J. & Lustig, A. J. The yeast Ku heterodimer is essential for protection of the telomere against nucleolytic and recombinational activities. Curr. Biol. 8, 831–834 (1998).

    Article  CAS  PubMed  Google Scholar 

  115. Boulton, S. J. & Jackson, S. P. Identification of a Saccharomyces cerevisiae Ku80 homologue: roles in DNA double strand break rejoining and in telomeric maintenance. Nucl. Acids Res. 24, 4639–4648 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Laroche, T. et al. Mutation of yeast Ku genes disrupts the subnuclear organization of telomeres. Curr. Biol. 8, 653–656 (1998).

    Article  CAS  PubMed  Google Scholar 

  117. Nugent, C. I. et al. Telomere maintenance is dependent on activities required for end repair of double-strand breaks. Curr. Biol. 8, 657–660 (1998).

    Article  CAS  PubMed  Google Scholar 

  118. Peterson, S. E. et al. The function of a stem-loop in telomerase RNA is linked to the DNA repair protein Ku. Nature Genet. 27, 64–67 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Grandin, N., Damon, C. & Charbonneau, M. Cdc13 cooperates with the yeast Ku proteins and Stn1 to regulate telomerase recruitment. Mol. Cell. Biol. 22, 8397–8408 (2000).

    Article  Google Scholar 

  120. Hsu, H. L., Gilley, D., Blackburn, E. H. & Chen, D. J. Ku is associated with the telomere in mammals. Proc. Natl Acad. Sci. USA 96, 12454–12458 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. d'Adda di Fagagna, F. et al. Effects of DNA nonhomologous end-joining factors on telomere length and chromosomal stability in mammalian cells. Curr. Biol. 11, 1192–1196 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. Chai, W., Ford, L. P., Lenertz, L., Wright, W. E. & Shay, J. W. Human Ku70/80 associates physically with telomerase through interaction with hTERT. J. Biol. Chem. 277, 47242–47247 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Bailey, S. M. et al. DNA double-strand break repair proteins are required to cap the ends of mammalian chromosomes. Proc. Natl Acad. Sci. USA 96, 14899–14904 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Samper, E., Goytisolo, F. A., Slijepcevic, P., van Buul, P. P. & Blasco, M. A. Mammalian Ku86 protein prevents telomeric fusions independently of the length of TTAGGG repeats and the G-strand overhang. EMBO Rep. 1, 244–252 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Espejel, S. et al. Mammalian Ku86 mediates chromosomal fusions and apoptosis caused by critically short telomeres. EMBO J. 21, 2207–2219 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. D'Amours, D. & Jackson, S. P. The mre11 complex: at the crossroads of DNA repair and checkpoint signalling. Nature Rev. Mol. Cell Biol. 3, 317–327 (2002).

    Article  CAS  Google Scholar 

  127. Costanzo, V. et al. Mre11 protein complex prevents double-strand break accumulation during chromosomal DNA replication. Mol. Cell 8, 137–147 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Kironmai, K. M. & Muniyappa, K. Alteration of telomeric sequences and senescence caused by mutations in RAD50 of Saccharomyces cerevisiae. Genes Cells 2, 443–455 (1997).

    Article  CAS  PubMed  Google Scholar 

  129. Boulton, S. J. & Jackson, S. P. Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J. 17, 1819–1828 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ritchie, K. B. & Petes, T. D. The Mre11p/Rad50p/Xrs2p complex and the Tel1p function in a single pathway for telomere maintenance in yeast. Genetics 155, 475–479 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Diede, S. J. & Gottschling, D. E. Exonuclease activity is required for sequence addition and Cdc13p loading at a de novo telomere. Curr. Biol. 11, 1336–1340 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Moreau, S., Ferguson, J. R. & Symington, L. S. The nuclease activity of Mre11 is required for meiosis but not for mating type switching, end joining, or telomere maintenance. Mol. Cell. Biol. 19, 556–566 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Carney, J. P. et al. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 93, 477–486 (1998).

    Article  CAS  PubMed  Google Scholar 

  134. Varon, R. et al. Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell 93, 467–476 (1998).

    Article  CAS  PubMed  Google Scholar 

  135. Kramer, K. M., Brock, J., Bloom, K. & Moore, K. Two different types of double-strand breaks in Saccharomyces cerevisiae are repaired by similar RAD52-independent, nonhomologous recombination events. Mol. Cell. Biol. 14, 1293–1301 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Mangahas, J. L., Alexander, M. K., Sandell, L. L. & Zakian, V. A. Repair of chromosome ends after telomere loss in Saccharomyces. Mol. Biol. Cell 12, 4078–4089 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Schulz, V. P. & Zakian, V. A. The Saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation. Cell 76, 145–155 (1994).

    Article  CAS  PubMed  Google Scholar 

  138. Mitchell, J. R., Cheng, J. & Collins, K. A box H/ACA small nucleolar RNA-like domain at the human telomerase RNA 3′ end. Mol. Cell. Biol. 19, 567–576 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lukowiak, A. A., Narayanan, A., Li, Z. H., Terns, R. M. & Terns, M. P. The snoRNA domain of vertebrate telomerase RNA functions to localize the RNA within the nucleus. RNA 7, 1833–1844 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Etheridge, K. T. et al. The nucleolar localization domain of the catalytic subunit of human telomerase. J. Biol. Chem. 277, 24764–24770 (2002).

    Article  CAS  PubMed  Google Scholar 

  141. Yang, Y., Chen, Y., Zhang, C., Huang, H. & Weissman, S. M. Nucleolar localization of hTERT protein is associated with telomerase function. Exp. Cell Res. 277, 201–209 (2002).

    Article  CAS  PubMed  Google Scholar 

  142. Mitchell, J. R., Wood, E. & Collins, K. A telomerase component is defective in the human disease dyskeratosis congenita. Nature 402, 551–555 (1999). Shows that dyskerin is associated with human telomerase RNA and that dyskeratosis congenita cells have lower levels of telomerase RNA and activity.

    Article  CAS  PubMed  Google Scholar 

  143. Dragon, F., Pogacic, V. & Filipowicz, W. In vitro assembly of human H/ACA small nucleolar RNPs reveals unique features of U17 and telomerase RNAs. Mol. Cell. Biol. 20, 3037–3048 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Pogacic, V., Dragon, F. & Filipowicz, W. Human H/ACA small nucleolar RNPs and telomerase share evolutionarily conserved proteins NHP2 and NOP10. Mol. Cell. Biol. 20, 9028–9040 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Dez, C. et al. Stable expression in yeast of the mature form of human telomerase RNA depends on its association with the box H/ACA small nucleolar RNP proteins Cbf5p, Nhp2p and Nop10p. Nucl. Acids Res 29, 598–603 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Seto, A. G., Zaug, A. J., Sobel, S. G., Wolin, S. L. & Cech, T. R. Saccharomyces cerevisiae telomerase is an Sm small nuclear ribonucleoprotein particle. Nature 401, 177–180 (1999). Shows that the yeast telomerase RNA has structural features in common with small nuclear ribonucleoprotein particles.

    Article  CAS  PubMed  Google Scholar 

  147. Teixeira, M. T., Forstemann, K., Gasser, S. M. & Lingner, J. Intracellular trafficking of yeast telomerase components. EMBO Rep. 3, 652–659 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wong, J. M., Kusdra, L. & Collins, K. Subnuclear shuttling of human telomerase induced by transformation and DNA damage. Nature Cell Biol. 4, 731–736 (2002). Shows that the intranuclear localization of active human telomerase depends on cell-cycle stage, transformation and DNA damage.

    Article  CAS  PubMed  Google Scholar 

  149. Broccoli, D., Young, J. W. & de Lange, T. Telomerase activity in normal and malignant hematopoietic cells. Proc. Natl Acad. Sci. USA 92, 9082–9086 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hiyama, K. et al. Activation of telomerase in human lymphocytes and hematopoietic progenitor cells. J. Immunol. 155, 3711–3715 (1995).

    CAS  PubMed  Google Scholar 

  151. Liu, K. et al. Constitutive and regulated expression of telomerase reverse transcriptase (hTERT) in human lymphocytes. Proc. Natl Acad. Sci. USA 96, 5147–5152 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Liu, K., Hodes, R. J. & Weng, N. Cutting edge: telomerase activation in human T lymphocytes does not require increase in telomerase reverse transcriptase (hTERT) protein but is associated with hTERT phosphorylation and nuclear translocation. J. Immunol. 166, 4826–4830 (2001).

    Article  CAS  PubMed  Google Scholar 

  153. Akiyama, M. et al. Nuclear factor-κB p65 mediates tumor necrosis factor α-induced nuclear translocation of telomerase reverse transcriptase protein. Cancer Res. 63, 18–21 (2003).

    CAS  PubMed  Google Scholar 

  154. Haendeler, J., Hoffmann, J., Brandes, R. P., Zeiher, A. M. & Dimmeler, S. Hydrogen peroxide triggers nuclear export of telomerase reverse transcriptase via Src kinase family-dependent phosphorylation of tyrosine 707. Mol. Cell. Biol. 23, 4598–4610 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Spellman, P. T. et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273–3297 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Marcand, S., Wotton, D., Gilson, E. & Shore, D. Rap1p and telomere length regulation in yeast. Ciba Found. Symp. 211, 76–93 (1997).

    CAS  PubMed  Google Scholar 

  157. Marcand, S., Brevet, V. & Gilson, E. Progressive cis-inhibition of telomerase upon telomere elongation. EMBO J. 18, 3509–3519 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Brevet, V. et al. The number of vertebrate repeats can be regulated at yeast telomeres by Rap1-independent mechanisms. EMBO J. 22, 1697–1706 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Wellinger, R. J., Wolf, A. J. & Zakian, V. A. Origin activation and formation of single-strand TG1–3 tails occur sequentially in late S phase on a yeast linear plasmid. Mol. Cell. Biol. 13, 4057–4065 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T. Fisher and M. Sabourin for critical reading of the manuscript, S. Schnakenberg for help with the figures and B. Lenzmeier and J. Bessler for thoughtful discussions. Work in the Zakian lab is supported by grants from the National Institutes of Health (NIH). M.K.M. is supported by the Damon Runyon Cancer Research Foundation. L.R.V. was funded in part by the Helen Hay Whitney Foundation and by the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia A. Zakian.

Related links

Related links

DATABASES

LocusLink

hTR

Saccharomyces Genome Database

Cdc13

Est1

Est2

Est3

Ku80

Mec1

PIF1

Rap1

Rif1

Rif2

Sgs1

Stn1

Ten1

TLC1

Swiss-Prot

EST1A

Ku86

MRE11

NBS1

PINX1

RAD50

RAP1

tankyrase 1

tankyrase 2

TERT

TIN2

TRF1

TRF2

WRN

Glossary

TELOMERASE

Specialized ribonucleoprotein, the catalytic core of which is composed of an RNA subunit and a reverse transcriptase subunit that facilitates the replication of linear chromosome ends or telomeres. The RNA subunit contains the template for sequence addition (3′ CACACACCCACACCAC 5′ in S. cerevisiae and 3′ CAAUCCCAAUC 5′ in humans).

OKAZAKI FRAGMENT

Short DNA fragment that is formed during DNA replication due to the discontinuous synthesis of the lagging strand. Okazaki fragments are initiated with an 8–12-base stretch of RNA.

REVERSE TRANSCRIPTASE

An enzyme that copies single-stranded RNA into a single-stranded DNA.

T-LOOP

Duplex telomeric loop that results from invasion of 3′ G-rich overhangs into duplex telomeric regions. T-loops have been found on eukaryotic telomeres and range in size from 0.3 kb to >30 kb.

MYB-LIKE DOMAIN

Highly conserved DNA-binding domain that is composed of tandem repeats of a helix-turn-helix motif.

KU PROTEIN

A highly conserved heterodimer consisting of 70- and 80-kDa subunits that binds at double-stranded DNA breaks and at telomeres and is important for DNA repair and telomere functions.

ADENOSINE-DIPHOSPHATE-RIBOSE POLYMERASE

An enzyme that uses NAD+ as a substrate to produce peptidyl-glutamic acid poly-ADP-ribose-modified proteins. This modification regulates various processes such as differentiation, proliferation and the repair of single-stranded DNA breaks.

PROTEASOME

A multi-protein complex that degrades proteins marked for destruction by ubiquitylation.

UBIQUITYLATION

The addition of the small evolutionarily conserved polypeptide, ubiquitin, to proteins that are targeted for destruction.

HELICASE

An enzyme that uses the energy of ATP hydrolysis to unwind duplex nucleic acids

EXONUCLEASE

An enzyme that hydrolyzes ester linkages within nucleic acids. They can remove nucleotides from either the 3′ or 5′ end of the molecule.

MRE11 COMPLEX

A highly conserved protein complex that is composed of MRE11, RAD50 and NBS1 (in humans) and Mre11, Rad50 and Xrs2 (also known as the MRX complex, in yeast) and that is involved in detection, signalling and repair of DNA damage. In humans, mutations in ATM, MRE11 and NBS1 are associated with increased predisposition to cancer and cause ataxia–telangiectasia (AT), AT-like disorder (AT-LD) and Nijmegen breakage syndrome (NBS), respectively.

WRN HELICASE/EXONUCLEASE

WRN is a member of the RecQ helicase subfamily and has 3′→5′ helicase and 3′→5′ exonuclease activities. Mutations in human WRN result in Werner syndrome, an autosomal-recessive disease that is characterized by premature ageing, chromosome instability and telomere–telomere fusions.

NON-HOMOLOGOUS END JOINING

(NHEJ). A double-stranded DNA break (DSB) repair pathway that involves the largely homology-independent ligation of two DNA ends.

INTRA-S-PHASE CHECKPOINT

Pathway that responds to stalled replication forks and other DNA damage during S phase by activating the ATM-like kinases Mec1 and Rad53. Checkpoint activation results in delayed S-phase progression and inhibits spindle elongation.

SMALL NUCLEOLAR RNA

(snoRNA). Stable RNA species in the eukaryotic nucleolus, most of which function to target the major nucleotide modifications in ribosomal RNA or are involved in rRNA processing. There are three classes of snoRNAs: box H/ACA snoRNAs, box C/D snoRNAs and 7-2/MRP snoRNAs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vega, L., Mateyak, M. & Zakian, V. Getting to the end: telomerase access in yeast and humans. Nat Rev Mol Cell Biol 4, 948–959 (2003). https://doi.org/10.1038/nrm1256

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1256

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing