Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Heterochromatin replication goes hand in hand with telomere protection

Abstract

Telomeres arose from the need to stabilize natural chromosome ends, resulting in terminal chromatin structures with specific protective functions. Their constituent proteins also execute general functions within heterochromatin, mediating late replication and facilitating fork progression. Emerging insights into the mechanisms governing heterochromatin replication suggest telomeres and heterochromatin act in concert during development and aging. They also suggest a common evolutionary origin for these two chromosome regions that arose during eukaryogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Telomere proteins and late replicating domains.
Fig. 2: Telomere proteins and heterochromatin replication elongation.
Fig. 3: Model of telomere evolution.

Similar content being viewed by others

References

  1. Giraud-Panis, M. J. et al. One identity or more for telomeres? Front. Oncol. 3, 48 (2013).

    PubMed  PubMed Central  Google Scholar 

  2. Heitz, E. Das Heterochromatin der Moose. Jarhb. Wiss. Bot. 69, 762–818 (1928).

    Google Scholar 

  3. Nishibuchi, G. & Déjardin, J. The molecular basis of the organization of repetitive DNA-containing constitutive heterochromatin in mammals. Chromosome Res. 25, 77–87 (2017).

    CAS  PubMed  Google Scholar 

  4. Müller, H. J. The remaking of chromosomes. The Collecting Net 13, 182–198 (1938).

    Google Scholar 

  5. Gottschling, D. E., Aparicio, O. M., Billington, B. L. & Zakian, V. A. Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63, 751–762 (1990). This paper reveals that proximity to telomeres can cause repression of gene expression.

    CAS  PubMed  Google Scholar 

  6. Gasser, S. M. & Cockell, M. M. The molecular biology of the SIR proteins. Gene 279, 1–16 (2001).

    CAS  PubMed  Google Scholar 

  7. Maillet, L. et al. Evidence for silencing compartments within the yeast nucleus: a role for telomere proximity and Sir protein concentration in silencer-mediated repression. Genes Dev. 10, 1796–1811 (1996).

    CAS  PubMed  Google Scholar 

  8. Palladino, F. et al. SIR3 and SIR4 proteins are required for the positioning and integrity of yeast telomeres. Cell 75, 543–555 (1993).

    CAS  PubMed  Google Scholar 

  9. Gauchier, M. et al. SETDB1-dependent heterochromatin stimulates alternative lengthening of telomeres. Sci. Adv. 5, eaav3673 (2019).

    PubMed  PubMed Central  Google Scholar 

  10. Cubiles, M. D. et al. Epigenetic features of human telomeres. Nucleic Acids Res. 46, 2347–2355 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Jain, D., Hebden, A. K., Nakamura, T. M., Miller, K. M. & Cooper, J. P. HAATI survivors replace canonical telomeres with blocks of generic heterochromatin. Nature 467, 223–227 (2010). This paper provides evidence that fission yeast use heterochromatic blocks to replace telomeres and provide end protection in the absence of telomerase.

    CAS  PubMed  Google Scholar 

  12. Fanti, L., Giovinazzo, G., Berloco, M. & Pimpinelli, S. The heterochromatin protein 1 prevents telomere fusions in Drosophila. Mol. Cell 2, 527–538 (1998).

  13. Zhao, P. A., Rivera-Mulia, J. C. & Gilbert, D. M. DNA Replication. Advances in Experimental Medicine and Biology Vol. 1042 (Eds Masai, H. & Foiani, M.) Ch. 6 (Springer, 2017).

  14. Cooper, J. P., Nimmo, E. R., Allshire, R. C. & Cech, T. R. Regulation of telomere length and function by a Myb-domain protein in fission yeast. Nature 385, 744–747 (1997).

    CAS  PubMed  Google Scholar 

  15. Tazumi, A. et al. Telomere-binding protein Taz1 controls global replication timing through its localization near late replication origins in fission yeast. Genes Dev. 26, 2050–2062 (2012). This paper shows that Taz1 controls the replication timing of a subset of late origins by directly binding to telomeric repeats found proximal to origins.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zofall, M., Smith, D. R., Mizuguchi, T., Dhakshnamoorthy, J. & Grewal, S. I. S. Taz1-shelterin promotes facultative heterochromatin assembly at chromosome-internal sites containing late replication origins. Mol. Cell 62, 862–874 (2016). This work shows that shelterin subunits assemble facultative heterochromatin at internal chromosomal sites that contain late-replicating origins.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hardy, C. F., Balderes, D. & Shore, D. Dissection of a carboxy-terminal region of the yeast regulatory protein RAP1 with effects on both transcriptional activation and silencing. Mol. Cell. Biol. 12, 1209–1217 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kedziora, S. et al. Rif1 acts through protein phosphatase 1 but independent of replication timing to suppress telomere extension in budding yeast. Nucleic Acids Res. 46, 3993–4003 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Miller, K. M., Ferreira, M. G. & Cooper, J. P. Taz1, Rap1 and Rif1 act both interdependently and independently to maintain telomeres. EMBO J. 24, 3128–3135 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Dan, J. et al. Rif1 maintains telomere length homeostasis of ESCs by mediating heterochromatin silencing. Dev. Cell 29, 7–19 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hayano, M. et al. Rif1 is a global regulator of timing of replication origin firing in fission yeast. Genes Dev. 26, 137–150 (2012). This paper reveals that global replication timing in S. pombe is controlled by Rif1 in a Taz1-independent fashion.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hiraga, S. et al. Rif1 controls DNA replication by directing protein phosphatase 1 to reverse Cdc7-mediated phosphorylation of the MCM complex. Genes Dev. 28, 372–383 (2014). This paper shows that the budding yeast protein Rif1 controls DNA replication genome-wide and that Rif1 exerts this control through PP1-mediated dephosphorylation of the MCM complex early in the cell cycle.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Mattarocci, S. et al. Rif1 controls DNA replication timing in yeast through the PP1 phosphatase Glc7. Cell Rep. 7, 62–69 (2014). This work shows Rif1 is linked to the negative regulation of replication-origin firing through recruitment of the Glc7 phosphatase.

    CAS  PubMed  Google Scholar 

  24. Dave, A., Cooley, C., Garg, M. & Bianchi, A. Protein phosphatase 1 recruitment by Rif1 regulates DNA replication origin firing by counteracting DDK activity. Cell Rep. 7, 53–61 (2014). This paper shows that Rif1 regulates replication timing in budding yeast through its interaction with PP1 phosphatases.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Seller, C. A. & O'Farrell, P. H. Rif1 prolongs the embryonic S phase at the Drosophila mid-blastula transition. PLoS Biol. 16, e2005687 (2018). This study demonstrates that Rif1 plays a direct role during development by delaying the replication of satellite sequences.

    PubMed  PubMed Central  Google Scholar 

  26. Cornacchia, D. et al. Mouse Rif1 is a key regulator of the replication-timing programme in mammalian cells. EMBO J. 31, 3678–3690 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Yamazaki, S. et al. Rif1 regulates the replication timing domains on the human genome. EMBO J. 31, 3667–3677 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sukackaite, R. et al. Mouse Rif1 is a regulatory subunit of protein phosphatase 1 (PP1). Sci. Rep. 7, 2119 (2017).

    PubMed  PubMed Central  Google Scholar 

  29. Alver, R. C., Chadha, G. S., Gillespie, P. J. & Blow, J. J. Reversal of DDK-mediated MCM phosphorylation by Rif1-PP1 regulates replication initiation and replisome stability independently of ATR/Chk1. Cell Rep. 18, 2508–2520 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Foti, R. et al. Nuclear architecture organized by Rif1 underpins the replication-timing program. Mol. Cell 61, 260–273 (2016). This study identifies Rif1 as the molecular link between nuclear architecture and the establishment of replication timing in mammals.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Toteva, T. et al. Establishment of expression-state boundaries by Rif1 and Taz1 in fission yeast. Proc. Natl Acad. Sci. USA 114, 1093–1098 (2017).

    CAS  PubMed  Google Scholar 

  32. Ogawa, S. et al. Shelterin promotes tethering of late replication origins to telomeres for replication-timing control. EMBO J. 37, e98997 (2018).

    PubMed  PubMed Central  Google Scholar 

  33. Hiraga, S. I. et al. Budding yeast Rif1 binds to replication origins and protects DNA at blocked replication forks. EMBO Rep. 20, e48152 (2019).

    PubMed  PubMed Central  Google Scholar 

  34. Moriyama, K., Yoshizawa-Sugata, N. & Masai, H. Oligomer formation and G-quadruplex binding by purified murine Rif1 protein, a key organizer of higher-order chromatin architecture. J. Biol. Chem. 293, 3607–3624 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kanoh, Y. et al. Rif1 binds to G quadruplexes and suppresses replication over long distances. Nat. Struct. Mol. Biol. 22, 889–897 (2015).

    CAS  PubMed  Google Scholar 

  36. Masai, H. et al. Rif1 promotes association of G-quadruplex (G4) by its specific G4 binding and oligomerization activities. Sci. Rep. 9, 8618 (2019).

    PubMed  PubMed Central  Google Scholar 

  37. Hasegawa, Y., Yamamoto, M., Miyamori, J. & Kanoh, J. Telomere DNA length-dependent regulation of DNA replication timing at internal late replication origins. Sci. Rep. 9, 9946 (2019).

    PubMed  PubMed Central  Google Scholar 

  38. Hafner, L. et al. Rif1 binding and control of chromosome-internal DNA replication origins is limited by telomere sequestration. Cell Rep. 23, 983–992 (2018). This work shows that global replication dynamics in budding yeast are controlled by telomeric sequestration of Rif1 by Rap1.

    CAS  PubMed  Google Scholar 

  39. Mizuguchi, T. et al. Shelterin components mediate genome reorganization in response to replication stress. Proc. Natl Acad. Sci. USA 114, 5479–5484 (2017).

    CAS  PubMed  Google Scholar 

  40. Mendez-Bermudez, A. et al. Genome-wide control of heterochromatin replication by the telomere capping protein TRF2. Mol. Cell 70, 449–461.e5 (2018). This paper provides evidence that TRF2 is involved in pericentromeric heterochromatin replication through the recruitment of the helicase RTEL1.

    CAS  PubMed  Google Scholar 

  41. Postow, L. et al. Positive torsional strain causes the formation of a four-way junction at replication forks. J. Biol. Chem. 276, 2790–2796 (2001).

    CAS  PubMed  Google Scholar 

  42. Rickman, K. & Smogorzewska, A. Advances in understanding DNA processing and protection at stalled replication forks. J. Cell Biol. 218, 1096–1107 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Miller, K. M., Rog, O. & Cooper, J. P. Semi-conservative DNA replication through telomeres requires Taz1. Nature 440, 824–828 (2006).

    CAS  PubMed  Google Scholar 

  44. Zimmermann, M., Kibe, T., Kabir, S. & de Lange, T. TRF1 negotiates TTAGGG repeat-associated replication problems by recruiting the BLM helicase and the TPP1/POT1 repressor of ATR signaling. Genes Dev. 28, 2477–2491 (2014).

    PubMed  PubMed Central  Google Scholar 

  45. Ye, J. et al. TRF2 and Apollo cooperate with topoisomerase 2α to protect human telomeres from replicative damage. Cell 142, 230–242 (2010).

    CAS  PubMed  Google Scholar 

  46. Li, F. et al. The BUB3-BUB1 complex promotes telomere DNA replication. Mol. Cell 70, 395–407.e4 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Simonet, T. et al. The human TTAGGG repeat factors 1 and 2 bind to a subset of interstitial telomeric sequences and satellite repeats. Cell Res. 21, 1028–1038 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Fouche, N. et al. The basic domain of TRF2 directs binding to DNA junctions irrespective of the presence of TTAGGG repeats. J. Biol. Chem. 281, 37486–37495 (2006).

    CAS  PubMed  Google Scholar 

  49. Poulet, A. et al. TRF2 promotes, remodels and protects telomeric Holliday junctions. EMBO J. 28, 641–651 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Alabert, C. et al. Nascent chromatin capture proteomics determines chromatin dynamics during DNA replication and identifies unknown fork components. Nat. Cell Biol. 16, 281–291 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Garzón, J., Ursich, S., Lopes, M., Hiraga, S. I. & Donaldson, A. D. Human RIF1-protein phosphatase 1 prevents degradation and breakage of nascent DNA on replication stalling. Cell Rep. 27, 2558–2566.e4 (2019).

    PubMed  PubMed Central  Google Scholar 

  52. Mukherjee, C. et al. RIF1 promotes replication fork protection and efficient restart to maintain genome stability. Nat. Commun. 10, 3287 (2019).

    PubMed  PubMed Central  Google Scholar 

  53. Fouché, N., Özgür, S., Roy, D. & Griffith, J. D. Replication fork regression in repetitive DNAs. Nucleic Acids Res. 34, 6044–6050 (2006).

    PubMed  PubMed Central  Google Scholar 

  54. Verdun, R. E. & Karlseder, J. The DNA damage machinery and homologous recombination pathway act consecutively to protect human telomeres. Cell 127, 709–720 (2006).

    CAS  PubMed  Google Scholar 

  55. Amiard, S. et al. A topological mechanism for TRF2-enhanced strand invasion. Nat. Struct. Mol. Biol. 14, 147–154 (2007).

    CAS  PubMed  Google Scholar 

  56. Sarek, G., Vannier, J. B., Panier, S., Petrini, J. H. & Boulton, S. J. TRF2 recruits RTEL1 to telomeres in S phase to promote t-loop unwinding. Mol. Cell 57, 622–635 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Jaco, I. et al. Role of mammalian Rad54 in telomere length maintenance. Mol. Cell Biol. 23, 5572–5580 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Badie, S. et al. BRCA2 acts as a RAD51 loader to facilitate telomere replication and capping. Nat. Struct. Mol. Biol. 17, 1461–1469 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Sfeir, A. & de Lange, T. Removal of shelterin reveals the telomere end-protection problem. Science 336, 593–597 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Teixeira-Silva, A. et al. The end-joining factor Ku acts in the end-resection of double strand break-free arrested replication forks. Nat. Commun. 8, 1982 (2017).

    PubMed  PubMed Central  Google Scholar 

  61. Lam, Y. C. et al. SNMIB/Apollo protects leading-strand telomeres against NHEJ-mediated repair. EMBO J. 29, 2230–2241.

  62. Mason, J. M. et al. The SNM1B/APOLLO DNA nuclease functions in resolution of replication stress and maintenance of common fragile site stability. Hum. Mol. Genet. 22, 4901–4913 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Aggarwal, M., Sommers, J. A., Morris, C. & Brosh, R. M. Jr. Delineation of WRN helicase function with EXO1 in the replicational stress response. DNA Repair (Amst.) 9, 765–776 (2010).

    CAS  Google Scholar 

  64. Guervilly, J. H. & Gaillard, P. H. SLX4: multitasking to maintain genome stability. Crit. Rev. Biochem. Mol. Biol. 53, 475–514 (2018).

    CAS  PubMed  Google Scholar 

  65. Myung, K., Chen, C. & Kolodner, R. D. Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae. Nature 411, 1073–1076 (2001).

    CAS  PubMed  Google Scholar 

  66. Margalef, P. et al. Stabilization of reversed replication forks by telomerase drives telomere catastrophe. Cell 172, 439–453.e14 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Sinha, A. K. et al. Broken replication forks trigger heritable DNA breaks in the terminus of a circular chromosome. PLoS Genet. 14, e1007256 (2018).

    PubMed  PubMed Central  Google Scholar 

  68. de Lange, T. A loopy view of telomere evolution. Front. Genet. 6, 321 (2015).

    PubMed  PubMed Central  Google Scholar 

  69. Lee, G. et al. Testing the retroelement invasion hypothesis for the emergence of the ancestral eukaryotic cell. Proc. Natl Acad. Sci. USA 115, 12465–12470 (2018).

    CAS  PubMed  Google Scholar 

  70. Ye, J., Renault, V. M., Jamet, K. & Gilson, E. Transcriptional outcome of telomere signalling. Nat. Rev. Genet. 15, 491–503 (2014).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the cross-cutting Inserm program on aging (AGEMED), the National Reseach Agency (ANR) program TELOCHROM, the Sino-French Partenariat Hubert Curien (PHC) Cai Yuanpei program and the ‘Investments for the Future’ Labex SIGNALIFE (grant reference no. ANR-11-LABX-0028-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Ye or Eric Gilson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Beth Moorefield was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendez-Bermudez, A., Giraud-Panis, MJ., Ye, J. et al. Heterochromatin replication goes hand in hand with telomere protection. Nat Struct Mol Biol 27, 313–318 (2020). https://doi.org/10.1038/s41594-020-0400-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-020-0400-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing