Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The present view of the mechanism of protein folding

Abstract

We can track the positions and movements of all the atoms in small proteins as they fold and unfold by combining experimental studies with atomic-resolution molecular dynamics simulations. General principles as to how such complex architectures form so rapidly are now emerging from in-depth studies of a few proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The folding pathway of chymotrypsin inhibitor 2.
Figure 2: The folding pathway of barnase.
Figure 3: The folding pathway of the engrailed homeodomain.
Figure 4: An overlay of transition-state structures from independent unfolding simulations of chymotrypsin inhibitor 2 at different temperatures.
Figure 5: A plot of the logarithm of folding rate constants for various proteins against contact order.

Similar content being viewed by others

References

  1. Levinthal, C. in Mossbauer Spectroscopy in Biological Systems (eds Monticello, I. L., Debrunner, P., Tsibris, J. C. M. & Munck, E.) 22–24 (Univer. of Illinois Press, Urbana, Illinois, 1969).

    Google Scholar 

  2. Tramontano, A. Of men and machines. Nature Struct. Biol. 10, 87–90 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Fersht, A. R. & Daggett, V. Protein folding and unfolding at atomic resolution. Cell 108, 573–582 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Matouschek, A. Protein unfolding — an important process in vivo? Curr. Opin. Struct. Biol. 13, 98–109 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Dobson, C. M. Protein-misfolding diseases: getting out of shape. Nature 418, 729–730 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Kelly, J. W. Towards an understanding of amyloidogenesis. Nature Struct. Biol. 9, 323–325 ( 2002).

    Article  CAS  PubMed  Google Scholar 

  7. Kim, P. S. & Baldwin, R. L. Specific intermediates in the folding reactions of small proteins and the mechanism of protein folding. Annu. Rev. Biochem. 51, 459–489 (1982).

    Article  CAS  PubMed  Google Scholar 

  8. Karplus, M. & Weaver, D. L. Protein folding dynamics. Nature 260, 404–406 (1976).

    Article  CAS  PubMed  Google Scholar 

  9. Wetlaufer, D. B. Nucleation, rapid folding, and globular intrachain regions in proteins. Proc. Natl Acad. Sci. USA 70, 697–701 (1973).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ptitsyn, O. B. Protein folding: hypotheses and experiments. J. Prot. Chem. 6, 273–293 (1987).

    Article  CAS  Google Scholar 

  11. Daggett, V. & Fersht, A. R. Is there a unifying mechanism for protein folding. Trends Biochem. Sci. 28, 19–26 (2003).

    Article  Google Scholar 

  12. Fersht, A. R. et al. The folding of an enzyme I. Theory of protein engineering analysis of stability and pathway of protein folding. J. Mol. Biol. 224, 771–782 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Li, A. & Daggett, V. Characterization of the transition state of protein unfolding by use of molecular dynamics: chymotrypsin inhibitor 2. Proc. Natl Acad. Sci. USA 91, 10430–10434 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lazaridis, T. & Karplus, M. 'New view' of protein folding reconciled with the old through multiple unfolding simulations. Science 278, 1928–1931 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Day, R. et al. Increasing temperature accelerates protein unfolding without changing the pathway of unfolding. J. Mol. Biol. 322, 189–203 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Bennion, B. & Daggett, V. The molecular basis for the chemical denaturation of proteins by urea. Proc. Natl Acad. Sci. USA 100, 5142–5147 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kazmirski, S. L. et al. Protein folding from a highly disordered denatured state: the folding pathway of chymotrypsin inhibitor 2 at atomic resolution. Proc. Natl Acad. Sci. USA 98, 4349–4354 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wong, K. B. et al. Towards a complete description of the structural and dynamic properties of the denatured state of barnase and the role of residual structure in folding. J. Mol. Biol. 296, 1257–1282 (2002).

    Article  Google Scholar 

  19. Bond, C. J. et al. Characterization of residual structure in the thermally denatured state of barnase by simulation and experiment: description of the folding pathway. Proc. Natl Acad. Sci. USA 94, 13409–13413 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, A. & Daggett, V. The unfolding of barnase: characterization of the major intermediate. J. Mol. Biol. 275, 677–694 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Daggett, V., Li, A. & Fersht, A. R. A combined molecular dynamics and Φ-value analysis of structure-reactivity relationships in the transition state and unfolding pathway of barnase: the structural basis of hammond and anti-hammond effects. J. Am. Chem. Soc. 120, 12740–12754 (1998).

    Article  CAS  Google Scholar 

  22. Mayor, U. et al. The complete folding pathway of a protein from nanoseconds to microseconds. Nature 421, 863–867 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Kazmirski, S. L. & Daggett, V. Simulations of the structural and dynamical properties of denatured proteins: the 'molten coil' state of bovine pancreatic trypsin inhibitor. J. Mol. Biol. 277, 487–506 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Dobson, C. M. Unfolded proteins, compact states and molten globules. Curr. Opin. Struct. Biol. 2, 6–12 (1992).

    Article  CAS  Google Scholar 

  25. Blanco, F. J., Serrano, L. & Forman-Kay, J. D. High populations of non-native structures in the denatured state are compatible with the formation of the native folded state. J. Mol. Biol. 284, 1153–1164 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Baldwin, R. A new perspective on unfolded proteins. Adv. Prot. Chem. 62, 361–367 (2002).

    CAS  Google Scholar 

  27. Shortle, D. The expanded denatured state: an ensemble of conformations trapped in a locally encoded topological space. Adv. Prot. Chem. 62, 1–23 (2002).

    CAS  Google Scholar 

  28. Smith, C. R., Mateljevic, N. & Bowler, B. E. Effects of topology and excluded volume on protein denatured state conformational properties. Biochemistry 41, 10173–10181 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Krantz, B. A. et al. Fast and slow intermediate accumulation and the initial barrier mechanism in protein folding. J. Mol. Biol. 324, 359–371 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Sanchez, I. E. & Kiefhaber, T. Evidence for sequential barriers and obligatory intermediates in apparent two-state protein folding. J. Mol. Biol. 325, 367–376 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Daggett, V. et al. Structure of the transition state for folding of a protein derived from experiment and simulation. J. Mol. Biol. 257, 430–440 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Paci, E., Vendruscolo, M., Dobson, C. M. & Karplus, M. Determination of a transition state at atomic resolution from protein engineering data. J. Mol. Biol. 324, 151–163 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Paci, E., Clarke, J., Steward, A., Vendruscolo, M. & Karplus, M. Self-consistent determination of the transition state for protein folding: application to a fibronectin type III domain. Proc. Natl Acad. Sci. USA 100, 394–399 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Makarov, D. E., Keller, C. A., Plaxco, K. W. & Metiu, H. How the folding rate constant of simple, single-domain proteins depends on the number of native contacts. Proc. Natl Acad. Sci. USA 99, 3535–3539 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fersht, A. R. Transition state structure as a unifying basis in protein folding mechanisms: contact order, chain topology, stability and the extended nucleus mechanism. Proc. Natl Acad. Sci. USA 97, 1525–1529 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Grantcharova, V. P., Riddle, D. S. & Baker, D. Long-range order in the src SH3 folding transition state. Proc. Natl Acad. Sci. USA 97, 7084–7089 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Garcia, P., Serrano, L., Durand, D., Rico, M. & Bruix, M. NMR and SAXS characterization of the denatured state of the chemotactic protein CheY: implications for protein folding initiation. Protein Sci. 10, 1100–1112 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hollien, J. & Marqusee, S. Comparison of the folding processes of T. thermophilus and E. coli ribonucleases H. J. Mol. Biol. 316, 327–340 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Kortemme, T., Kelly, M. J. S., Kay, L. E., Forman-Kay, J. & Serrano, L. Similarities between the spectrin SH3 domain denatured state and its folding transition state. J. Mol. Biol. 297, 1217–1229 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Teilum, K., Maki, K., Kragelund, B. B., Poulsen, F. M. & Roder, H. Early kinetic intermediate in the folding of acyl-CoA binding protein detected by fluorescence labeling and ultrarapid mixing. Proc. Natl Acad. Sci. USA 99, 9807–9812 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Duan, Y. & Kollman, P. A. Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science 282, 740–744 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Snow, C. D., Nguyen, H., Pande, V. S. & Gruebele, M. Absolute comparison of simulated and experimental protein-folding dynamics. Nature 420, 102–106 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Fersht, A. R. On the simulation of protein folding by short time scale molecular dynamics and distributed computing. Proc. Natl Acad. Sci. USA 99, 14122–14125 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Carrion-Vazquez, M. et al. Mechanical and chemical unfolding of a single protein: a comparison. Proc. Natl Acad. Sci. USA 96, 3694–3699 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lu, H. & Schulten, K. The key event in force-induced unfolding of titin's immunoglobulin domains. Biophys. J. 79, 51–65 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Paci, E. & Karplus, M. Unfolding proteins by external forces and temperature: the importance of topology and energetics. Proc. Natl Acad. Sci. USA 97, 6521–6524 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fowler, S. B. & Clarke, J. Mapping the folding pathway of an immunoglobulin domain: structural detail from phi value analysis and movement of the transition state. Structure 9, 355–366 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Brockwell, D. J. et al. The effect of core destabilization on the mechanical resistance of I27. Biophys. J. 83, 458–472 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fowler, S. B. et al. Mechanical unfolding of a titin Ig domain: structure of unfolding intermediate revealed by combining AFM, molecular dynamics simulations, NMR and protein engineering. J. Mol. Biol. 322, 841–849 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Ferrin, T. E. et al. The MIDAS display system. J. Mol. Graph. 6, 13–27 (1988).

    Article  CAS  Google Scholar 

  51. Harpaz, Y. et al. Direct observation of a better hydration at the N terminus of an α-helix with glycine rather than alanine as the N-cap residue. Proc. Natl Acad. Sci. USA 91, 3–15 (1994).

    Article  Google Scholar 

  52. Bycroft, M. et al. Determination of the three-dimensional structure of barnase using nuclear magnetic resonance spectroscopy. Biochemistry 30, 8697–8701 (1991).

    Article  CAS  PubMed  Google Scholar 

  53. Clarke, N. D. et al. Structural studies of the engrailed homeodomain. Prot. Sci. 3, 1779–1787 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

V.D. is grateful for financial support from the National Institutes of Health. A.R.F. is grateful for long-term support from the Medical Research Council. UCSF MidasPlus was used to render the protein structures shown in the figures50.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

InterPro

engrailed homeodomain

fibronectin type III domain

LocusLink

acylphosphatase

titin

Swiss-Prot

barnase

CI2

c-Myb

FURTHER INFORMATION

Valerie Daggett's laboratory

Alan Fersht's laboratory

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daggett, V., Fersht, A. The present view of the mechanism of protein folding. Nat Rev Mol Cell Biol 4, 497–502 (2003). https://doi.org/10.1038/nrm1126

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm1126

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing