Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain

Key Points

  • The carboxy-terminal domain (CTD) of RNA polymerase II (Pol II) is composed of repeats of the heptapeptide Tyr-Ser-Pro-Thr-Ser-Pro-Ser and is dynamically post-translationally modified to regulate transcription.

  • CTD phosphorylation states are associated with and regulate distinct stages of the transcription process.

  • The CTD and its phosphorylation couple transcription to co-transcriptional processes such as RNA processing and chromatin modification.

  • Multiple CTD modifications coalesce to regulate transcriptional processes such as transcription termination through the regulated recruitment of transcription factors.

  • The low complexity of the CTD can enable its interactions with other low-complexity protein domains and undergo liquid–liquid phase separation to form liquid-like droplets that could serve as transient membraneless compartments.

  • The high local concentration at promoters of Pol II CTDs, transcription factors and RNA from sense, divergent antisense and enhancer transcription may facilitate the formation of liquid-like droplets at promoters to regulate transcription.

Abstract

The carboxy-terminal domain (CTD) extends from the largest subunit of RNA polymerase II (Pol II) as a long, repetitive and largely unstructured polypeptide chain. Throughout the transcription process, the CTD is dynamically modified by post-translational modifications, many of which facilitate or hinder the recruitment of key regulatory factors of Pol II that collectively constitute the 'CTD code'. Recent studies have revealed how the physicochemical properties of the CTD promote phase separation in the presence of other low-complexity domains. Here, we discuss the intricacies of the CTD code and how the newly characterized physicochemical properties of the CTD expand the function of the CTD beyond the code.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The composition and conservation of the CTD.
Figure 2: Transcription regulation by the CTD code.
Figure 3: Regulation of transcription termination in Saccharomyces cerevisiae by the CTD.
Figure 4: Formation of compartments by liquid–liquid phase-separation.

Similar content being viewed by others

References

  1. Chapman, R. D., Heidemann, M., Hintermair, C. & Eick, D. Molecular evolution of the RNA polymerase II CTD. Trends Genet. 24, 289–296 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Jeronimo, C., Bataille, A. R. & Robert, F. The writers, readers, and functions of the RNA polymerase II C-terminal domain code. Chem. Rev. 113, 8491–8522 (2013). This review lists and categorizes all known CTD-interacting proteins.

    Article  CAS  PubMed  Google Scholar 

  3. Jeronimo, C., Collin, P. & Robert, F. The RNA polymerase II CTD: the increasing complexity of a low-complexity protein domain. J. Mol. Biol. 428, 2607–2622 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Hsin, J.-P. & Manley, J. L. The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev. 26, 2119–2137 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Corden, J. L. RNA polymerase II C-terminal domain: tethering transcription to transcript and template. Chem. Rev. 113, 8423–8455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Heidemann, M., Hintermair, C., Voß, K. & Eick, D. Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription. Biochim. Biophys. Acta 1829, 55–62 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Lu, L. et al. Distributive O-GlcNAcylation on the highly repetitive C-terminal domain of RNA polymerase II. Biochemistry 55, 1149–1158 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Ranuncolo, S. M., Ghosh, S., Hanover, J. A., Hart, G. W. & Lewis, B. A. Evidence of the involvement of O-GlcNAc-modified human RNA polymerase II CTD in transcription in vitro and in vivo. J. Biol. Chem. 287, 23549–23561 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sims, R. J. et al. The C-terminal domain of RNA polymerase II is modified by site-specific methylation. Science 332, 99–103 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schröder, S. et al. Acetylation of RNA polymerase II regulates growth-factor-induced gene transcription in mammalian cells. Mol. Cell 52, 314–324 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Voss, K. et al. Site-specific methylation and acetylation of lysine residues in the C-terminal domain (CTD) of RNA polymerase II. Transcription 6, 91–101 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li, H. et al. Wwp2-mediated ubiquitination of the RNA polymerase II large subunit in mouse embryonic pluripotent stem cells. Mol. Cell. Biol. 27, 5296–5305 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dias, J. D. et al. Methylation of RNA polymerase II non-consensus lysine residues marks early transcription in mammalian cells. eLife 4, e11215 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhao, D. Y. et al. SMN and symmetric arginine dimethylation of RNA polymerase II C-terminal domain control termination. Nature 529, 48–53 (2016). This study defines a direct role for Arg methylation at the CTD in transcription termination.

    Article  PubMed  CAS  Google Scholar 

  15. Komarnitsky, P., Cho, E. J. & Buratowski, S. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev. 14, 2452–2460 (2000). This work demonstrates different CTD phosphorylation states during transcription and introduces the CTD code.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Egloff, S. & Murphy, S. Cracking the RNA polymerase II CTD code. Trends Genet. 24, 280–288 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Buratowski, S. The CTD code. Nat. Struct. Biol. 10, 679–680 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Suh, H. et al. Direct analysis of phosphorylation sites on the Rpb1 C-terminal domain of RNA polymerase II. Mol. Cell 61, 297–304 (2016). This work determines the abundance and composition of CTD phosphorylation states in vivo in S. cerevisiae.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schüller, R. et al. Heptad-specific phosphorylation of RNA polymerase II CTD. Mol. Cell 61, 305–314 (2016). This work determines the abundance and composition of CTD phosphorylation in vivo in human cells.

    Article  PubMed  CAS  Google Scholar 

  20. Eick, D. & Geyer, M. The RNA polymerase II carboxy-terminal domain (CTD) code. Chem. Rev. 113, 8456–8490 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Chapman, A. B. & Agabian, N. Trypanosoma brucei RNA polymerase II is phosphorylated in the absence of carboxyl-terminal domain heptapeptide repeats. J. Biol. Chem. 269, 4754–4760 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. West, M. L. & Corden, J. L. Construction and analysis of yeast RNA polymerase II CTD deletion and substitution mutations. Genetics 140, 1223–1233 (1995). This publication describes the number of CTD repeats required for yeast viability and wild-type growth.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nonet, M. L. & Young, R. A. Intragenic and extragenic suppressors of mutations in the heptapeptide repeat domain of Saccharomyces cerevisiae RNA polymerase II. Genetics 123, 715–724 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Morrill, S. A., Exner, A. E., Babokhov, M., Reinfeld, B. I. & Fuchs, S. M. DNA instability maintains the repeat length of the yeast RNA polymerase II C-terminal domain. J. Biol. Chem. 291, 11540–11550 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schwer, B. & Shuman, S. Deciphering the RNA polymerase II CTD code in fission yeast. Mol. Cell 43, 311–318 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schwer, B., Bitton, D. A., Sanchez, A. M., Bähler, J. & Shuman, S. Individual letters of the RNA polymerase II CTD code govern distinct gene expression programs in fission yeast. Proc. Natl Acad. Sci. USA 111, 4185–4190 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rosonina, E. et al. Threonine-4 of the budding yeast RNAP II CTD couples transcription with Htz1-mediated chromatin remodeling. Proc. Natl Acad. Sci. USA 111, 11924–11931 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Harlen, K. M. et al. Comprehensive RNA polymerase II interactomes reveal distinct and varied roles for each phospho-CTD residue. Cell Rep. 15, 2147–2158 (2016). This work determines that Pol II with different CTD phosphorylation states interacts with unique sets of proteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cassart, C., Drogat, J., Migeot, V. & Hermand, D. Distinct requirement of RNA polymerase II CTD phosphorylations in budding and fission yeast. Transcription 3, 231–234 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Schwer, B., Sanchez, A. M. & Shuman, S. Punctuation and syntax of the RNA polymerase II CTD code in fission yeast. Proc. Natl Acad. Sci. USA 109, 18024–18029 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hyman, A. A., Weber, C. A. & Jülicher, F. Liquid–liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 30, 39–58 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Mitrea, D. M. & Kriwacki, R. W. Phase separation in biology; functional organization of a higher order. Cell Commun. Signal. 14, 1 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Kwon, I. et al. Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains. Cell 155, 1049–1060 (2013). This study demonstrates that the CTD can form hydrogels and liquid-like droplets in vitro.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Burke, K. A., Janke, A. M., Rhine, C. L. & Fawzi, N. L. Residue-by-residue view of in vitro FUS granules that bind the C-terminal domain of RNA polymerase II. Mol. Cell 60, 231–241 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schüller, R. & Eick, D. Getting access to low-complexity domain modifications. Trends Biochem. Sci. 41, 894–897 (2016).

    Article  PubMed  CAS  Google Scholar 

  36. Buratowski, S. Progression through the RNA polymerase II CTD cycle. Mol. Cell 36, 541–546 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jasnovidova, O. & Stefl, R. The CTD code of RNA polymerase II: a structural view. Wiley Interdiscip. Rev. RNA 4, 1–16 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Zaborowska, J., Egloff, S. & Murphy, S. The pol II CTD: new twists in the tail. Nat. Struct. Mol. Biol. 23, 771–777 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Myers, L. C. et al. The Med proteins of yeast and their function through the RNA polymerase II carboxy-terminal domain. Genes Dev. 12, 45–54 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lu, H., Flores, O., Weinmann, R. & Reinberg, D. The nonphosphorylated form of RNA polymerase II preferentially associates with the preinitiation complex. Proc. Natl Acad. Sci. USA 88, 10004–10008 (1991). This publication describes how unphosphorylated CTD is associated with the transcription pre-initiation complex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Robinson, P. J. et al. Structure of a complete mediator-RNA polymerase II pre-initiation complex. Cell 166, 1411–1422.e16 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Robinson, P. J. J., Bushnell, D. A., Trnka, M. J., Burlingame, A. L. & Kornberg, R. D. Structure of the mediator head module bound to the carboxy-terminal domain of RNA polymerase II. Proc. Natl Acad. Sci. USA 109, 17931–17935 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hahn, S. & Young, E. T. Transcriptional regulation in Saccharomyces cerevisiae: transcription factor regulation and function, mechanisms of initiation, and roles of activators and coactivators. Genetics 189, 705–736 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Payne, J. M., Laybourn, P. J. & Dahmus, M. E. The transition of RNA polymerase II from initiation to elongation is associated with phosphorylation of the carboxyl-terminal domain of subunit IIa. J. Biol. Chem. 264, 19621–19629 (1989).

    Article  CAS  PubMed  Google Scholar 

  45. Wong, K. H., Jin, Y. & Struhl, K. TFIIH phosphorylation of the Pol II CTD stimulates mediator dissociation from the preinitiation complex and promoter escape. Mol. Cell 54, 601–612 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jeronimo, C. & Robert, F. Kin28 regulates the transient association of Mediator with core promoters. Nat. Struct. Mol. Biol. 21, 449–455 (2014). References 45 and 46 reveal that phosphorylation of the CTD by TFIIH dissociates the Mediator complex and induces promoter escape by Pol II.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Søgaard, T. M. M. & Svejstrup, J. Q. Hyperphosphorylation of the C-terminal repeat domain of RNA polymerase II facilitates dissociation of its complex with mediator. J. Biol. Chem. 282, 14113–14120 (2007).

    Article  PubMed  CAS  Google Scholar 

  48. Cadena, D. L. & Dahmus, M. E. Messenger RNA synthesis in mammalian cells is catalyzed by the phosphorylated form of RNA polymerase II. J. Biol. Chem. 262, 12468–12474 (1987).

    Article  CAS  PubMed  Google Scholar 

  49. Hsin, J.-P., Li, W., Hoque, M., Tian, B. & Manley, J. L. RNAP II CTD tyrosine 1 performs diverse functions in vertebrate cells. eLife 3, e02112 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Descostes, N. et al. Tyrosine phosphorylation of RNA polymerase II CTD is associated with antisense promoter transcription and active enhancers in mammalian cells. eLife 3, e02105 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mayer, A. et al. CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II. Science 336, 1723–1725 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Schroeder, S. C., Schwer, B., Shuman, S. & Bentley, D. Dynamic association of capping enzymes with transcribing RNA polymerase II. Genes Dev. 14, 2435–2440 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Licatalosi, D. D. et al. Functional interaction of yeast pre-mRNA 3′ end processing factors with RNA polymerase II. Mol. Cell 9, 1101–1111 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Hsin, J.-P., Sheth, A. & Manley, J. L. RNAP II CTD phosphorylated on threonine-4 is required for histone mRNA 3′ end processing. Science 334, 683–686 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hintermair, C. et al. Threonine-4 of mammalian RNA polymerase II CTD is targeted by Polo-like kinase 3 and required for transcriptional elongation. EMBO J. 31, 2784–2797 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. McCracken, S. et al. 5′-capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II. Genes Dev. 11, 3306–3318 (1997). This publication describes the binding of an RNA capping protein to a specific phosphorylation state of the CTD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim, M., Suh, H., Cho, E.-J. & Buratowski, S. Phosphorylation of the yeast Rpb1 C-terminal domain at serines 2, 5, and 7. J. Biol. Chem. 284, 26421–26426 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Egloff, S. et al. Serine-7 of the RNA polymerase II CTD is specifically required for snRNA gene expression. Science 318, 1777–1779 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. McCracken, S. et al. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 385, 357–361 (1997). This work demonstrates that the CTD is important for coupling transcription to co-transcriptional RNA processing.

    Article  CAS  PubMed  Google Scholar 

  60. Mayer, A. et al. Uniform transitions of the general RNA polymerase II transcription complex. Nat. Struct. Mol. Biol. 17, 1272–1278 (2010). This study identifies how general transitions in the transcription process are coupled to changes in CTD phosphorylation.

    Article  CAS  PubMed  Google Scholar 

  61. Kim, H. et al. Gene-specific RNA polymerase II phosphorylation and the CTD code. Nat. Struct. Mol. Biol. 17, 1279–1286 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tietjen, J. R. et al. Chemical-genomic dissection of the CTD code. Nat. Struct. Mol. Biol. 17, 1154–1161 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bataille, A. R. et al. A universal RNA polymerase II CTD cycle is orchestrated by complex interplays between kinase, phosphatase, and isomerase enzymes along genes. Mol. Cell 45, 158–170 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Adelman, K. & Lis, J. T. Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat. Rev. Genet. 13, 720–731 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wu, C.-H. et al. NELF and DSIF cause promoter proximal pausing on the hsp70 promoter in Drosophila. Genes Dev. 17, 1402–1414 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jonkers, I. & Lis, J. T. Getting up to speed with transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 16, 167–177 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ni, Z. et al. P-TEFb is critical for the maturation of RNA polymerase II into productive elongation in vivo. Mol. Cell. Biol. 28, 1161–1170 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Peterlin, B. M. & Price, D. H. Controlling the elongation phase of transcription with P-TEFb. Mol. Cell 23, 297–305 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Jonkers, I., Kwak, H. & Lis, J. T. Genome-wide dynamics of Pol II elongation and its interplay with promoter proximal pausing, chromatin, and exons. eLife 3, e02407 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Li, J., Moazed, D. & Gygi, S. P. Association of the histone methyltransferase Set2 with RNA polymerase II plays a role in transcription elongation. J. Biol. Chem. 277, 49383–49388 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Venkatesh, S. & Workman, J. L. Histone exchange, chromatin structure and the regulation of transcription. Nat. Rev. Mol. Cell Biol. 16, 178–189 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Sun, M., Larivière, L., Dengl, S., Mayer, A. & Cramer, P. A tandem SH2 domain in transcription elongation factor Spt6 binds the phosphorylated RNA polymerase II C-terminal repeat domain (CTD). J. Biol. Chem. 285, 41597–41603 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fuchs, S. M., Laribee, R. N. & Strahl, B. D. Protein modifications in transcription elongation. Biochim. Biophys. Acta 1789, 26–36 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Devaiah, B. N. et al. BRD4 is an atypical kinase that phosphorylates serine2 of the RNA polymerase II carboxy-terminal domain. Proc. Natl Acad. Sci. USA 109, 6927–6932 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chen, F. X. et al. PAF1, a molecular regulator of promoter-proximal pausing by RNA polymerase II. Cell 162, 1003–1015 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yu, M. et al. RNA polymerase II-associated factor 1 regulates the release and phosphorylation of paused RNA polymerase II. Science 350, 1383–1386 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Rodríguez-Molina, J. B., Tseng, S. C., Simonett, S. P., Taunton, J. & Ansari, A. Z. Engineered covalent inactivation of TFIIH-kinase reveals an elongation checkpoint and results in widespread mRNA stabilization. Mol. Cell 63, 433–444 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Liu, J., Fan, S., Lee, C.-J., Greenleaf, A. L. & Zhou, P. Specific interaction of the transcription elongation regulator TCERG1 with RNA polymerase II requires simultaneous phosphorylation at Ser2, Ser5, and Ser7 within the carboxyl-terminal domain repeat. J. Biol. Chem. 288, 10890–10901 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Qiu, H., Hu, C., Gaur, N. A. & Hinnebusch, A. G. Pol II CTD kinases Bur1 and Kin28 promote Spt5 CTR-independent recruitment of Paf1 complex. EMBO J. 31, 3494–3505 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yoh, S. M., Cho, H., Pickle, L., Evans, R. M. & Jones, K. A. The Spt6 SH2 domain binds Ser2-P RNAPII to direct Iws1-dependent mRNA splicing and export. Genes Dev. 21, 160–174 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yoh, S. M., Lucas, J. S. & Jones, K. A. The Iws1:Spt6:CTD complex controls cotranscriptional mRNA biosynthesis and HYPB/Setd2-mediated histone H3K36 methylation. Genes Dev. 22, 3422–3434 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bartkowiak, B. et al. CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1. Genes Dev. 24, 2303–2316 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bösken, C. A. et al. The structure and substrate specificity of human Cdk12/Cyclin K. Nat. Commun. 5, 3505 (2014).

    Article  PubMed  CAS  Google Scholar 

  84. Liang, K. et al. Characterization of human cyclin-dependent kinase 12 (CDK12) and CDK13 complexes in C-terminal domain phosphorylation, gene transcription, and RNA processing. Mol. Cell. Biol. 35, 928–938 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Blazek, D. et al. The Cyclin K/Cdk12 complex maintains genomic stability via regulation of expression of DNA damage response genes. Genes Dev. 25, 2158–2172 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bartkowiak, B., Yan, C. & Greenleaf, A. L. Engineering an analog-sensitive CDK12 cell line using CRISPR/Cas. Biochim. Biophys. Acta 1849, 1179–1187 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bentley, D. L. Coupling mRNA processing with transcription in time and space. Nat. Rev. Genet. 15, 163–175 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Baranello, L. et al. RNA polymerase II regulates topoisomerase 1 activity to favor efficient transcription. Cell 165, 357–371 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Suh, H., Hazelbaker, D. Z., Soares, L. M. & Buratowski, S. The C-terminal domain of Rpb1 functions on other RNA polymerase II subunits. Mol. Cell 51, 850–858 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Chen, C.-Y., Chang, C.-C., Yen, C.-F., Chiu, M. T.-K. & Chang, W.-H. Mapping RNA exit channel on transcribing RNA polymerase II by FRET analysis. Proc. Natl Acad. Sci. USA 106, 127–132 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Ho, C. K. & Shuman, S. Distinct roles for CTD Ser-2 and Ser-5 phosphorylation in the recruitment and allosteric activation of mammalian mRNA capping enzyme. Mol. Cell 3, 405–411 (1999).

    Article  CAS  PubMed  Google Scholar 

  92. Cooke, C. & Alwine, J. C. The cap and the 3′splice site similarly affect polyadenylation efficiency. Mol. Cell. Biol. 16, 2579–2584 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Flaherty, S. M., Fortes, P., Izaurralde, E., Mattaj, I. W. & Gilmartin, G. M. Participation of the nuclear cap binding complex in pre-mRNA 3′ processing. Proc. Natl Acad. Sci. USA 94, 11893–11898 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Schwer, B. & Shuman, S. Conditional inactivation of mRNA capping enzyme affects yeast pre-mRNA splicing in vivo. RNA 2, 574–583 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Topisirovic, I., Svitkin, Y. V. & Sonenberg, N. Cap and cap-binding proteins in the control of gene expression. Wiley Interdiscip. Rev. RNA 2, 277–298 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Carrillo Oesterreich, F. et al. Splicing of nascent RNA coincides with intron exit from RNA polymerase II. Cell 165, 372–381 (2016).

    Article  CAS  Google Scholar 

  97. Warner, J. R. The economics of ribosome biosynthesis in yeast. Trends Biochem. Sci. 24, 437–440 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Tardiff, D. F., Lacadie, S. A. & Rosbash, M. A genome-wide analysis indicates that yeast pre-mRNA splicing is predominantly posttranscriptional. Mol. Cell 24, 917–929 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Moore, M. J., Schwartzfarb, E. M., Silver, P. A. & Yu, M. C. Differential recruitment of the splicing machinery during transcription predicts genome-wide patterns of mRNA splicing. Mol. Cell 24, 903–915 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Carrillo Oesterreich, F., Preibisch, S. & Neugebauer, K. M. Global analysis of nascent RNA reveals transcriptional pausing in terminal exons. Mol. Cell 40, 571–581 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. David, C. J., Boyne, A. R., Millhouse, S. R. & Manley, J. L. The RNA polymerase II C-terminal domain promotes splicing activation through recruitment of a U2AF65-Prp19 complex. Genes Dev. 25, 972–983 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gu, B., Eick, D. & Bensaude, O. CTD serine-2 plays a critical role in splicing and termination factor recruitment to RNA polymerase II in vivo. Nucleic Acids Res. 41, 1591–1603 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Morris, D. P. & Greenleaf, A. L. The splicing factor, Prp40, binds the phosphorylated carboxyl-terminal domain of RNA polymerase II. J. Biol. Chem. 275, 39935–39943 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Milligan, L. et al. Strand-specific, high-resolution mapping of modified RNA polymerase II. Mol. Syst. Biol. 12, 874 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Nojima, T. et al. Mammalian NET-Seq reveals genome-wide nascent transcription coupled to RNA processing. Cell 161, 526–540 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mayer, A. et al. Native elongating transcript sequencing reveals human transcriptional activity at nucleotide resolution. Cell 161, 541–554 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ng, H. H., Robert, F., Young, R. A. & Struhl, K. Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol. Cell 11, 709–719 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. Krogan, N. J. et al. The Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: linking transcriptional elongation to histone methylation. Mol. Cell 11, 721–729 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Lee, J.-H. & Skalnik, D. G. Wdr82 Is a C-terminal domain-binding protein that recruits the Setd1A histone H3-Lys4 methyltransferase complex to transcription start sites of transcribed human genes. Mol. Cell. Biol. 28, 609–618 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Terzi, N., Churchman, L. S., Vasiljeva, L., Weissman, J. & Buratowski, S. H3K4 trimethylation by Set1 promotes efficient termination by the Nrd1−Nab3−Sen1 pathway. Mol. Cell. Biol. 31, 3569–3583 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Li, B. et al. The Set2 histone methyltransferase functions through the phosphorylated carboxyl-terminal domain of RNA polymerase II. J. Biol. Chem. 278, 8897–8903 (2003). This work reveals that co-transcriptional histone methylation is coupled to transcription by the CTD.

    Article  CAS  PubMed  Google Scholar 

  112. Xiao, T. et al. Phosphorylation of RNA polymerase II CTD regulates H3 methylation in yeast. Genes Dev. 17, 654–663 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Schaft, D. et al. The histone 3 lysine 36 methyltransferase, SET2, is involved in transcriptional elongation. Nucleic Acids Res. 31, 2475–2482 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Krogan, N. J. et al. Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol. Cell. Biol. 23, 4207–4218 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kizer, K. O. et al. A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation. Mol. Cell. Biol. 25, 3305–3316 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Vojnic, E., Simon, B., Strahl, B. D., Sattler, M. & Cramer, P. Structure and carboxyl-terminal domain (CTD) binding of the Set2 SRI domain that couples histone H3 Lys36 methylation to transcription. J. Biol. Chem. 281, 13–15 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Smolle, M. & Workman, J. L. Transcription-associated histone modifications and cryptic transcription. Biochim. Biophys. Acta 1829, 84–97 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Govind, C. K. et al. Phosphorylated Pol II CTD recruits multiple HDACs, including Rpd3C(S), for methylation-dependent deacetylation of ORF nucleosomes. Mol. Cell 39, 234–246 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Drouin, S. et al. DSIF and RNA polymerase II CTD phosphorylation coordinate the recruitment of Rpd3S to actively transcribed genes. PLoS Genet. 6, e1001173 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Ginsburg, D. S., Govind, C. K. & Hinnebusch, A. G. NuA4 lysine acetyltransferase Esa1 is targeted to coding regions and stimulates transcription elongation with Gcn5. Mol. Cell. Biol. 29, 6473–6487 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Govind, C. K., Zhang, F., Qiu, H., Hofmeyer, K. & Hinnebusch, A. G. Gcn5 promotes acetylation, eviction, and methylation of nucleosomes in transcribed coding regions. Mol. Cell 25, 31–42 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Jeppsson, K., Kanno, T., Shirahige, K. & Sjögren, C. The maintenance of chromosome structure: positioning and functioning of SMC complexes. Nat. Rev. Mol. Cell Biol. 15, 601–614 (2014).

    Article  CAS  PubMed  Google Scholar 

  123. Kouzine, F., Levens, D. & Baranello, L. DNA topology and transcription. Nucleus 5, 195–202 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Durand-Dubief, M., Svensson, J. P., Persson, J. & Ekwall, K. Topoisomerases, chromatin and transcription termination. Transcription 2, 66–70 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  125. King, I. F. et al. Topoisomerases facilitate transcription of long genes linked to autism. Nature 501, 58–62 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kanagaraj, R. et al. RECQ5 helicase associates with the C-terminal repeat domain of RNA polymerase II during productive elongation phase of transcription. Nucleic Acids Res. 38, 8131–8140 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Islam, M. N., Fox, D. III, Guo, R., Enomoto, T. & Wang, W. RecQL5 promotes genome stabilization through two parallel mechanisms — interacting with RNA polymerase II and acting as a helicase. Mol. Cell. Biol. 30, 2460–2472 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Li, M., Xu, X. & Liu, Y. The SET2−RPB1 interaction domain of human RECQ5 is important for transcription-associated genome stability. Mol. Cell. Biol. 31, 2090–2099 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lunde, B. M. et al. Cooperative interaction of transcription termination factors with the RNA polymerase II C-terminal domain. Nat. Struct. Mol. Biol. 17, 1195–1201 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kim, M. et al. The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II. Nature 432, 517–522 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Meinhart, A. & Cramer, P. Recognition of RNA polymerase II carboxy-terminal domain by 3′-RNA-processing factors. Nature 430, 223–226 (2004).

    Article  CAS  PubMed  Google Scholar 

  132. Ahn, S. H., Kim, M. & Buratowski, S. Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3′ end processing. Mol. Cell 13, 67–76 (2004). This publication describes how the specific phosphorylation of CTD Ser2 couples transcription to mRNA cleavage and polyadenylation.

    Article  CAS  PubMed  Google Scholar 

  133. Arigo, J. T., Eyler, D. E., Carroll, K. L. & Corden, J. L. Termination of cryptic unstable transcripts is directed by yeast RNA-binding proteins Nrd1 and Nab3. Mol. Cell 23, 841–851 (2006).

    Article  CAS  PubMed  Google Scholar 

  134. Thiebaut, M., Kisseleva-Romanova, E., Rougemaille, M., Boulay, J. & Libri, D. Transcription termination and nuclear degradation of cryptic unstable transcripts: a role for the nrd1-nab3 pathway in genome surveillance. Mol. Cell 23, 853–864 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Carroll, K. L., Ghirlando, R., Ames, J. M. & Corden, J. L. Interaction of yeast RNA-binding proteins Nrd1 and Nab3 with RNA polymerase II terminator elements. RNA 13, 361–373 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Vasiljeva, L., Kim, M., Mutschler, H., Buratowski, S. & Meinhart, A. The Nrd1−Nab3−Sen1 termination complex interacts with the Ser5-phosphorylated RNA polymerase II C-terminal domain. Nat. Struct. Mol. Biol. 15, 795–804 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Porrua, O. & Libri, D. Transcription termination and the control of the transcriptome: why, where and how to stop. Nat. Rev. Mol. Cell Biol. 16, 190–202 (2015).

    Article  CAS  PubMed  Google Scholar 

  138. Radó-Trilla, N. & Albà, M. Dissecting the role of low-complexity regions in the evolution of vertebrate proteins. BMC Evol. Biol. 12, 155 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Coletta, A. et al. Low-complexity regions within protein sequences have position-dependent roles. BMC Syst. Biol. 4, 43 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Berry, J., Weber, S. C., Vaidya, N., Haataja, M. & Brangwynne, C. P. RNA transcription modulates phase transition-driven nuclear body assembly. Proc. Natl Acad. Sci. USA 112, E5237–E5245 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Courchaine, E. M., Lu, A. & Neugebauer, K. M. Droplet organelles? EMBO J. 35, 1603–1612 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Xiang, S. et al. The LC domain of hnRNPA2 adopts similar conformations in hydrogel polymers, liquid-like droplets, and nuclei. Cell 163, 829–839 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Schwartz, J. C. et al. FUS binds the CTD of RNA polymerase II and regulates its phosphorylation at Ser2. Genes Dev. 26, 2690–2695 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Hintermair, C. et al. Specific threonine-4 phosphorylation and function of RNA polymerase II CTD during M phase progression. Sci. Rep. 6, 27401 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Cisse, I. I. et al. Real-time dynamics of RNA polymerase II clustering in live human cells. Science 341, 664–667 (2013).

    Article  CAS  PubMed  Google Scholar 

  146. Cho, W.-K. et al. RNA polymerase II cluster dynamics predict mRNA output in living cells. eLife 5, e13617 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Yao, J., Ardehali, M. B., Fecko, C. J., Webb, W. W. & Lis, J. T. Intranuclear distribution and local dynamics of RNA polymerase II during transcription activation. Mol. Cell 28, 978–990 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. Zobeck, K. L., Buckley, M. S., Zipfel, W. R. & Lis, J. T. Recruitment timing and dynamics of transcription factors at the Hsp70 loci in living cells. Mol. Cell 40, 965–975 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Altmeyer, M. et al. Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose). Nat. Commun. 6, 8088 (2015).

    Article  CAS  PubMed  Google Scholar 

  150. Patel, A. et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162, 1066–1077 (2015).

    Article  CAS  PubMed  Google Scholar 

  151. Liu, Z. et al. 3D imaging of Sox2 enhancer clusters in embryonic stem cells. eLife 3, e04236 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Seila, A. C. et al. Divergent transcription from active promoters. Science 322, 1849–1851 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kim, T.-K. et al. Widespread transcription at neuronal activity-regulated enhancers. Nature 465, 182–187 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Stasevich, T. J. et al. Regulation of RNA polymerase II activation by histone acetylation in single living cells. Nature 516, 272–275 (2014).

    Article  CAS  PubMed  Google Scholar 

  155. Stiller, J. W. & Cook, M. S. Functional unit of the RNA polymerase II C-terminal domain lies within heptapeptide pairs. Eukaryot. Cell 3, 735–740 (2004). This work describes how two heptapeptide repeats constitute the functional unit of the CTD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Chapman, R. D. et al. Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7. Science 318, 1780–1782 (2007).

    Article  CAS  PubMed  Google Scholar 

  157. Czudnochowski, N., Bösken, C. A. & Geyer, M. Serine-7 but not serine-5 phosphorylation primes RNA polymerase II CTD for P-TEFb recognition. Nat. Commun. 3, 842 (2012).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank S. Buratowski, A. Mayer, C. Patil, B. Portz and F. Winston for their critical reading of the manuscript. This work was supported by US National Institutes of Health National Human Genome Research Institute (NHGRI) grants R01HG007173 (to L.S.C.) and a Burroughs Wellcome Fund Career Award at the Scientific Interface (to L.S.C.). K.M.H. was supported by a US National Science Foundation Graduate Research Fellowship (DGE1144152).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Stirling Churchman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Low complexity

Protein domains with low variability of amino acids.

Multivalent interactions

Weak non-covalent interactions between biological molecules.

Liquid–liquid phase separation

The process of forming fluid, liquid-like droplets or compartments.

Promoter-proximal pausing

In metazoans, highly regulated pausing of RNA polymerase II downstream of promoters, which controls the transition into productive transcription elongation.

Bromodomain-containing protein 4

(BRD4). A transcription regulation factor that binds to acetylated chromatin and has atypical carboxy-terminal domain kinase activity.

RNA polymerase II-associated factor 1

(PAF1). A transcription elongation complex that regulates both transcription and chromatin modification.

Cryptic unstable transcripts

(CUTs). Non-coding RNAs that are rapidly degraded by the nuclear exosome.

Cajal bodies

Membrane-less nuclear compartments comprising mainly RNA and protein and where RNA processing and maturation occurs.

P bodies

Membrane-less cytoplasmic compartments where several RNA processing events occur.

Hydrogels

Macromolecular polymers composed of a network of multivalent interactions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harlen, K., Churchman, L. The code and beyond: transcription regulation by the RNA polymerase II carboxy-terminal domain. Nat Rev Mol Cell Biol 18, 263–273 (2017). https://doi.org/10.1038/nrm.2017.10

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2017.10

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing