Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The transformation of the DNA template in RNA polymerase II transcription: a historical perspective

Subjects

Abstract

The discovery of RNA polymerases I, II, and III opened up a new era in gene expression. Here I provide a personal retrospective account of the transformation of the DNA template, as it evolved from naked DNA to chromatin, in the biochemical analysis of transcription by RNA polymerase II. These studies have revealed new insights into the mechanisms by which transcription factors function with chromatin to regulate gene expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A model for transcriptional activation in which sequence-specific DNA-binding transcription factors function to counteract chromatin-mediated repression (anti-repression).
Fig. 2: Perspectives on the perceived importance of chromatin in transcriptional regulation.
Fig. 3: The 1994 version of the steps that lead to the activation of transcription.

Similar content being viewed by others

References

  1. Roeder, R. G. & Rutter, W. J. Multiple forms of DNA-dependent RNA polymerase in eukaryotic organisms. Nature 224, 234–237 (1969).

    Article  CAS  PubMed  Google Scholar 

  2. Kedinger, C., Gniazdowski, M., Mandel, J. L. Jr., Gissinger, F. & Chambon, P. α-amanitin: a specific inhibitor of one of two DNA-pendent RNA polymerase activities from calf thymus. Biochem. Biophys. Res. Commun. 38, 165–171 (1970).

    Article  CAS  PubMed  Google Scholar 

  3. Weil, P. A., Luse, D. S., Segall, J. & Roeder, R. G. Selective and accurate initiation of transcription at the Ad2 major late promotor in a soluble system dependent on purified RNA polymerase II and DNA. Cell 18, 469–484 (1979).

    Article  CAS  PubMed  Google Scholar 

  4. Manley, J. L., Fire, A., Cano, A., Sharp, P. A. & Gefter, M. L. DNA-dependent transcription of adenovirus genes in a soluble whole-cell extract. Proc. Natl Acad. Sci. USA 77, 3855–3859 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Matsui, T., Segall, J., Weil, P. A. & Roeder, R. G. Multiple factors required for accurate initiation of transcription by purified RNA polymerase II. J. Biol. Chem. 255, 11992–11996 (1980).

    CAS  PubMed  Google Scholar 

  6. Davison, B. L., Egly, J.-M., Mulvihill, E. R. & Chambon, P. Formation of stable preinitiation complexes between eukaryotic class B transcription factors and promoter sequences. Nature 301, 680–686 (1983).

    Article  CAS  PubMed  Google Scholar 

  7. Dignam, J. D., Lebovitz, R. M. & Roeder, R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11, 1475–1489 (1983).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Knezetic, J. A. & Luse, D. S. The presence of nucleosomes on a DNA template prevents initiation by RNA polymerase II in vitro. Cell 45, 95–104 (1986).

    Article  CAS  PubMed  Google Scholar 

  9. Lorch, Y., LaPointe, J. W. & Kornberg, R. D. Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones. Cell 49, 203–210 (1987).

    Article  CAS  PubMed  Google Scholar 

  10. Matsui, T. Transcription of adenovirus 2 major late and peptide IX genes under conditions of in vitro nucleosome assembly. Mol. Cell. Biol. 7, 1401–1408 (1987).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Workman, J. L. & Roeder, R. G. Binding of transcription factor TFIID to the major late promoter during in vitro nucleosome assembly potentiates subsequent initiation by RNA polymerase II. Cell 51, 613–622 (1987).

    Article  CAS  PubMed  Google Scholar 

  12. Knezetic, J. A., Jacob, G. A. & Luse, D. S. Assembly of RNA polymerase II preinitiation complexes before assembly of nucleosomes allows efficient initiation of transcription on nucleosomal templates. Mol. Cell. Biol. 8, 3114–3121 (1988).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Workman, J. L., Abmayr, S. M., Cromlish, W. A. & Roeder, R. G. Transcriptional regulation by the immediate early protein of pseudorabies virus during in vitro nucleosome assembly. Cell 55, 211–219 (1988).

    Article  CAS  PubMed  Google Scholar 

  14. Workman, J. L., Roeder, R. G. & Kingston, R. E. An upstream transcription factor, USF (MLTF), facilitates the formation of preinitiation complexes during in vitro chromatin assembly. EMBO J. 9, 1299–1308 (1990).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Meisterernst, M., Horikoshi, M. & Roeder, R. G. Recombinant yeast TFIID, a general transcription factor, mediates activation by the gene-specific factor USF in a chromatin assembly assay. Proc. Natl Acad. Sci. USA 87, 9153–9157 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Corthésy, B., Léonnard, P. & Wahli, W. Transcriptional potentiation of the vitellogenin B1 promoter by a combination of both nucleosome assembly and transcription factors: an in vitro dissection. Mol. Cell. Biol. 10, 3926–3933 (1990).

    Article  PubMed Central  PubMed  Google Scholar 

  17. Workman, J. L., Taylor, I. C. A. & Kingston, R. E. Activation domains of stably bound GAL4 derivatives alleviate repression of promoters by nucleosomes. Cell 64, 533–544 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Becker, P. B., Rabindran, S. K. & Wu, C. Heat shock-regulated transcription in vitro from a reconstituted chromatin template. Proc. Natl Acad. Sci. USA 88, 4109–4113 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Han, M. & Grunstein, M. Nucleosome loss activates yeast downstream promoters in vivo. Cell 55, 1137–1145 (1988).

    Article  CAS  PubMed  Google Scholar 

  20. Han, M., Kim, U.-J., Kayne, P. & Grunstein, M. Depletion of histone H4 and nucleosomes activates the PHO5 gene in Saccharomyces cerevisiae. EMBO J. 7, 2221–2228 (1988).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Kayne, P. S. et al. Extremely conserved histone H4 N terminus is dispensable for growth but essential for repressing the silent mating loci in yeast. Cell 55, 27–39 (1988).

    Article  CAS  PubMed  Google Scholar 

  22. Kadonaga, J. T. Regulation of RNA polymerase II transcription by sequence-specific DNA binding factors. Cell 116, 247–257 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Kerrigan, L. A., Croston, G. E., Lira, L. M. & Kadonaga, J. T. Sequence-specific transcriptional antirepression of the Drosophila Krüppel gene by the GAGA factor. J. Biol. Chem. 266, 574–582 (1991).

    CAS  PubMed  Google Scholar 

  24. Croston, G. E., Kerrigan, L. A., Lira, L. M., Marshak, D. R. & Kadonaga, J. T. Sequence-specific antirepression of histone H1-mediated inhibition of basal RNA polymerase II transcription. Science 251, 643–649 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Sadowski, I., Ma, J., Triezenberg, S. & Ptashne, M. GAL4-VP16 is an unusually potent transcriptional activator. Nature 335, 563–564 (1988).

    Article  CAS  PubMed  Google Scholar 

  26. Stein, A. Reconstitution of chromatin from purified components. Methods Enzymol. 170, 585–603 (1989).

    Article  CAS  PubMed  Google Scholar 

  27. Laybourn, P. J. & Kadonaga, J. T. Role of nucleosomal cores and histone H1 in regulation of transcription by RNA polymerase II. Science 254, 238–245 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Laybourn, P. J. & Kadonaga, J. T. Threshold phenomena and long-distance activation of transcription by RNA polymerase II. Science 257, 1682–1685 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Paranjape, S. M., Kamakaka, R. T. & Kadonaga, J. T. Role of chromatin structure in the regulation of transcription by RNA polymerase II. Annu. Rev. Biochem. 63, 265–297 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Glikin, G. C., Ruberti, I. & Worcel, A. Chromatin assembly in Xenopus oocytes: in vitro studies. Cell 37, 33–41 (1984).

    Article  CAS  PubMed  Google Scholar 

  31. Becker, P. B. & Wu, C. Cell-free system for assembly of transcriptionally repressed chromatin from Drosophila embryos. Mol. Cell. Biol. 12, 2241–2249 (1992).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Kamakaka, R. T., Bulger, M. & Kadonaga, J. T. Potentiation of RNA polymerase II transcription by Gal4-VP16 during but not after DNA replication and chromatin assembly. Genes Dev. 7, 1779–1795 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Tsukiyama, T., Becker, P. B. & Wu, C. ATP-dependent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor. Nature 367, 525–532 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Côté, J., Quinn, J., Workman, J. L. & Peterson, C. L. Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science 265, 53–60 (1994).

    Article  PubMed  Google Scholar 

  35. Kwon, H., Imbalzano, A. N., Khavari, P. A., Kingston, R. E. & Green, M. R. Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex. Nature 370, 477–481 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Pazin, M. J., Kamakaka, R. T. & Kadonaga, J. T. ATP-dependent nucleosome reconfiguration and transcriptional activation from preassembled chromatin templates. Science 266, 2007–2011 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Pazin, M. J. et al. NF-κ B-mediated chromatin reconfiguration and transcriptional activation of the HIV-1 enhancer in vitro. Genes Dev. 10, 37–49 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Kraus, W. L. & Kadonaga, J. T. p300 and estrogen receptor cooperatively activate transcription via differential enhancement of initiation and reinitiation. Genes Dev. 12, 331–342 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Ito, T., Bulger, M., Pazin, M. J., Kobayashi, R. & Kadonaga, J. T. ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90, 145–155 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Ito, T. et al. ACF consists of two subunits, Acf1 and ISWI, that function cooperatively in the ATP-dependent catalysis of chromatin assembly. Genes Dev. 13, 1529–1539 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Fyodorov, D. V. & Kadonaga, J. T. Chromatin assembly in vitro with purified recombinant ACF and NAP-1. Methods Enzymol. 371, 499–515 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Khuong, M. T., Fei, J., Cruz-Becerra, G. & Kadonaga, J. T. A simple and versatile system for the ATP-dependent assembly of chromatin. J. Biol. Chem. 292, 19478–19490 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Pazin, M. J. & Kadonaga, J. T. What’s up and down with histone deacetylation and transcription? Cell 89, 325–328 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Jiang, W., Nordeen, S. K. & Kadonaga, J. T. Transcriptional analysis of chromatin assembled with purified ACF and dNAP1 reveals that acetyl-CoA is required for preinitiation complex assembly. J. Biol. Chem. 275, 39819–39822 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Santoso, B. & Kadonaga, J. T. Reconstitution of chromatin transcription with purified components reveals a chromatin-specific repressive activity of p300. Nat. Struct. Mol. Biol. 13, 131–139 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Levenstein, M. E. & Kadonaga, J. T. Biochemical analysis of chromatin containing recombinant Drosophila core histones. J. Biol. Chem. 277, 8749–8754 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. An, W., Palhan, V. B., Karymov, M. A., Leuba, S. H. & Roeder, R. G. Selective requirements for histone H3 and H4 N termini in p300-dependent transcriptional activation from chromatin. Mol. Cell 9, 811–821 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. An, W. & Roeder, R. G. Reconstitution and transcriptional analysis of chromatin in vitro. Methods Enzymol. 377, 460–474 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Guermah, M., Kim, J. & Roeder, R. G. Transcription of in vitro assembled chromatin templates in a highly purified RNA polymerase II system. Methods 48, 353–360 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Lauberth, S. M. et al. H3K4me3 interactions with TAF3 regulate preinitiation complex assembly and selective gene activation. Cell 152, 1021–1036 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This perspective is dedicated to Robert G. (‘Bob’) Roeder in recognition of his immeasurable contributions to the understanding of transcription in eukaryotes. I thank E.P. Geiduschek, S. Lauberth, G. Kassavetis, J. Fei, G. Cruz, L. Vo ngoc, and C. Huang for reading the manuscript and providing helpful suggestions. I would like to express my gratitude to all of the past and present members of the Kadonaga laboratory, as well as to colleagues in the chromatin and transcription fields over the years. I apologize for any oversights or omissions. J.T.K. is the Amylin Chair in the Life Sciences. Research in the Kadonaga laboratory is supported by a grant from the US National Institutes of Health/National Institute of General Medical Sciences (R35 GM118060) to J.T.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James T. Kadonaga.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Peer review information: Beth Moorefield was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadonaga, J.T. The transformation of the DNA template in RNA polymerase II transcription: a historical perspective. Nat Struct Mol Biol 26, 766–770 (2019). https://doi.org/10.1038/s41594-019-0278-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41594-019-0278-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing