Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Beyond β-catenin: prospects for a larger catenin network in the nucleus

Abstract

β-catenin is widely regarded as the primary transducer of canonical WNT signals to the nucleus. In most vertebrates, there are eight additional catenins that are structurally related to β-catenin, and three α-catenin genes encoding actin-binding proteins that are structurally related to vinculin. Although these catenins were initially identified in association with cadherins at cell–cell junctions, more recent evidence suggests that the majority of catenins also localize to the nucleus and regulate gene expression. Moreover, the number of catenins reported to be responsive to canonical WNT signals is increasing. Here, we posit that multiple catenins form a functional network in the nucleus, possibly engaging in conserved protein–protein interactions that are currently better characterized in the context of actin-based cell junctions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: An overview of vertebrate catenins.
Figure 2: Conditions that promote catenin nuclear signalling.
Figure 3: p120 catenin isoform 1 is responsive to canonical WNT signals.
Figure 4: p120 catenin modulates gene transcription via various zinc-finger domain transcriptional repressors.
Figure 5: Models for transcription inhibition by αE-catenin.

References

  1. 1

    Carnahan, R. H., Rokas, A., Gaucher, E. A. & Reynolds, A. B. The molecular evolution of the p120-catenin subfamily and its functional associations. PLoS ONE 5, e15747 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    McCrea, P. D., Maher, M. T. & Gottardi, C. J. Nuclear signaling from cadherin adhesion complexes. Curr. Top. Dev. Biol. 112, 129–196 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Hatzfeld, M., Wolf, A. & Keil, R. Plakophilins in desmosomal adhesion and signaling. Cell Commun. Adhes. 21, 25–42 (2014).

    CAS  PubMed  Google Scholar 

  4. 4

    Johnson, J. L., Najor, N. A. & Green, K. J. Desmosomes: regulators of cellular signaling and adhesion in epidermal health and disease. Cold Spring Harb. Perspect. Med. 4, a015297 (2014).

    PubMed  PubMed Central  Google Scholar 

  5. 5

    Hulpiau, P., Gul, I. S. & van Roy, F. New insights into the evolution of metazoan cadherins and catenins. Prog. Mol. Biol. Transl. Sci. 116, 71–94 (2013).

    CAS  PubMed  Google Scholar 

  6. 6

    Kowalczyk, A. P. & Nanes, B. A. Adherens junction turnover: regulating adhesion through cadherin endocytosis, degradation, and recycling. Subcell. Biochem. 60, 197–222 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Kourtidis, A., Ngok, S. P. & Anastasiadis, P. Z. p120 catenin: an essential regulator of cadherin stability, adhesion-induced signaling, and cancer progression. Prog. Mol. Biol. Transl. Sci. 116, 409–432 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Takeichi, M. Dynamic contacts: rearranging adherens junctions to drive epithelial remodelling. Nat. Rev. Mol. Cell Biol. 15, 397–410 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Meng, W., Mushika, Y., Ichii, T. & Takeichi, M. Anchorage of microtubule minus ends to adherens junctions regulates epithelial cell–cell contacts. Cell 135, 948–959 (2008).

    CAS  Google Scholar 

  10. 10

    Kurita, S., Yamada, T., Rikitsu, E., Ikeda, W. & Takai, Y. Binding between the junctional proteins afadin and PLEKHA7 and implication in the formation of adherens junction in epithelial cells. J. Biol. Chem. 288, 29356–29368 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Maiden, S. L. & Hardin, J. The secret life of α-catenin: moonlighting in morphogenesis. J. Cell Biol. 195, 543–552 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    McCrea, P. D. & Park, J. I. Developmental functions of the p120-catenin sub-family. Biochim. Biophys. Acta 1773, 17–33 (2007).

    CAS  PubMed  Google Scholar 

  13. 13

    Vite, A., Li, J. & Radice, G. L. New functions for alpha-catenins in health and disease: from cancer to heart regeneration. Cell Tissue Res. 360, 773–783 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Coates, J. C. Armadillo repeat proteins: beyond the animal kingdom. Trends Cell Biol. 13, 463–471 (2003).

    CAS  PubMed  Google Scholar 

  15. 15

    Hulpiau, P. & van Roy, F. New insights into the evolution of metazoan cadherins. Mol. Biol. Evol. 28, 647–657 (2011).

    CAS  PubMed  Google Scholar 

  16. 16

    Oda, H. & Takeichi, M. Evolution: structural and functional diversity of cadherin at the adherens junction. J. Cell Biol. 193, 1137–1146 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Han, S. P. & Yap, A. S. An α-catenin déjà vu. Nat. Cell Biol. 15, 238–239 (2013).

    CAS  PubMed  Google Scholar 

  18. 18

    Daniel, J. M. & Reynolds, A. B. The tyrosine kinase substrate p120cas binds directly to E-cadherin but not to the adenomatous polyposis coli protein or α-catenin. Mol. Cell. Biol. 15, 4819–4824 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Yap, A. S., Niessen, C. M. & Gumbiner, B. M. The juxtamembrane region of the cadherin cytoplasmic tail supports lateral clustering, adhesive strengthening, and interaction with p120ctn. J. Cell Biol. 141, 779–789 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Reynolds, A. B. & Carnahan, R. H. Regulation of cadherin stability and turnover by p120ctn: implications in disease and cancer. Semin. Cell Dev. Biol. 15, 657–663 (2004).

    CAS  PubMed  Google Scholar 

  21. 21

    Wildenberg, G. A. et al. p120-catenin and p190RhoGAP regulate cell–cell adhesion by coordinating antagonism between Rac and Rho. Cell 127, 1027–1039 (2006).

    CAS  PubMed  Google Scholar 

  22. 22

    Klompstra, D., Anderson, D. C., Yeh, J. Y., Zilberman, Y. & Nance, J. An instructive role for C. elegans E-cadherin in translating cell contact cues into cortical polarity. Nat. Cell Biol. 17, 726–735 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Kourtidis, A. et al. Distinct E-cadherin-based complexes regulate cell behaviour through miRNA processing or Src and p120 catenin activity. Nat. Cell Biol. 17, 1145–1157 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Schackmann, R. C. et al. Cytosolic p120-catenin regulates growth of metastatic lobular carcinoma through Rock1-mediated anoikis resistance. J. Clin. Invest. 121, 3176–3188 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Bellovin, D. I., Bates, R. C., Muzikansky, A., Rimm, D. L. & Mercurio, A. M. Altered localization of p120 catenin during epithelial to mesenchymal transition of colon carcinoma is prognostic for aggressive disease. Cancer Res. 65, 10938–10945 (2005).

    CAS  PubMed  Google Scholar 

  26. 26

    Perez-Moreno, M. et al. p120-catenin mediates inflammatory responses in the skin. Cell 124, 631–644 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Anastasiadis, P. Z. p120-ctn: a nexus for contextual signaling via Rho GTPases. Biochim. Biophys. Acta 1773, 34–46 (2007).

    CAS  PubMed  Google Scholar 

  28. 28

    Pieters, T., van Hengel, J. & van Roy, F. Functions of p120ctn in development and disease. Front. Biosci. (Landmark Ed) 17, 760–783 (2012).

    CAS  Google Scholar 

  29. 29

    Alema, S. & Salvatore, A. M. p120 catenin and phosphorylation: mechanisms and traits of an unresolved issue. Biochim. Biophys. Acta 1773, 47–58 (2007).

    CAS  PubMed  Google Scholar 

  30. 30

    Kowalczyk, A. P. & Green, K. J. Structure, function, and regulation of desmosomes. Prog. Mol. Biol. Transl. Sci. 116, 95–118 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Berika, M. & Garrod, D. Desmosomal adhesion in vivo. Cell Commun. Adhes. 21, 65–75 (2014).

    CAS  PubMed  Google Scholar 

  32. 32

    Keil, R. & Hatzfeld, M. The armadillo protein p0071 is involved in Rab11-dependent recycling. J. Cell Sci. 127, 60–71 (2014).

    CAS  PubMed  Google Scholar 

  33. 33

    Miller, R. K., Hong, J. Y., Munoz, W. A. & McCrea, P. D. Beta-catenin versus the other armadillo catenins: assessing our current view of canonical Wnt signaling. Prog. Mol. Biol. Transl. Sci. 116, 387–407 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Hatzfeld, M. The p120 family of cell adhesion molecules. Eur. J. Cell Biol. 84, 205–214 (2005).

    CAS  PubMed  Google Scholar 

  35. 35

    Hatzfeld, M. Plakophilins: multifunctional proteins or just regulators of desmosomal adhesion? Biochim. Biophys. Acta 1773, 69–77 (2007).

    CAS  PubMed  Google Scholar 

  36. 36

    Roczniak-Ferguson, A. & Reynolds, A. B. Regulation of p120-catenin nucleocytoplasmic shuttling activity. J. Cell Sci. 116, 4201–4212 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Morgan, R. G., Ridsdale, J., Tonks, A. & Darley, R. L. Factors affecting the nuclear localization of β-catenin in normal and malignant tissue. J. Cell. Biochem. 115, 1351–1361 (2014).

    CAS  PubMed  Google Scholar 

  38. 38

    Andrade, M. A., Petosa, C., O'Donoghue, S. I., Muller, C. W. & Bork, P. Comparison of ARM and HEAT protein repeats. J. Mol. Biol. 309, 1–18 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Chook, Y. M. & Blobel, G. Karyopherins and nuclear import. Curr. Opin. Struct. Biol. 11, 703–715 (2001).

    CAS  PubMed  Google Scholar 

  40. 40

    Fagotto, F. Looking beyond the Wnt pathway for the deep nature of β-catenin. EMBO Rep. 14, 422–433 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Giannini, A. et al. Nuclear export of α-catenin: overlap between nuclear export signal sequences and the β-catenin binding site. Exp. Cell Res. 295, 150–160 (2004).

    CAS  PubMed  Google Scholar 

  42. 42

    Daniel, J. M. & Reynolds, A. B. The catenin p120ctn interacts with Kaiso, a novel BTB/POZ domain zinc finger transcription factor. Mol. Cell. Biol. 19, 3614–3623 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    van Hengel, J., Vanhoenacker, P., Staes, K. & van Roy, F. Nuclear localization of the p120ctn Armadillo-like catenin is counteracted by a nuclear export signal and by E-cadherin expression. Proc. Natl Acad. Sci. USA 96, 7980–7985 (1999).

    CAS  PubMed  Google Scholar 

  44. 44

    Zhang, P. X. et al. p120-catenin isoform 3 regulates subcellular localization of Kaiso and promotes invasion in lung cancer cells via a phosphorylation-dependent mechanism. Int. J. Oncol. 38, 1625–1635 (2011).

    CAS  PubMed  Google Scholar 

  45. 45

    Park, J. I. et al. Kaiso/p120-catenin and TCF/β-catenin complexes coordinately regulate canonical Wnt gene targets. Dev. Cell 8, 843–854 (2005).

    CAS  PubMed  Google Scholar 

  46. 46

    Lee, M., Ji, H., Furuta, Y., Park, J. I. & McCrea, P. D. p120-catenin regulates REST and CoREST, and modulates mouse embryonic stem cell differentiation. J. Cell Sci. 127, 4037–4051 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Karnovsky, A. & Klymkowsky, M. W. Anterior axis duplication in Xenopus induced by the over-expression of the cadherin-binding protein plakoglobin. Proc. Natl Acad. Sci. USA 92, 4522–4526 (1995).

    CAS  PubMed  Google Scholar 

  48. 48

    Klymkowsky, M. W., Williams, B. O., Barish, G. D., Varmus, H. E. & Vourgourakis, Y. E. Membrane-anchored plakoglobins have multiple mechanisms of action in Wnt signaling. Mol. Biol. Cell 10, 3151–3169 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Simcha, I. et al. Differential nuclear translocation and transactivation potential of β-catenin and plakoglobin. J. Cell Biol. 141, 1433–1448 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Williams, B. O., Barish, G. D., Klymkowsky, M. W. & Varmus, H. E. A comparative evaluation of β-catenin and plakoglobin signaling activity. Oncogene 19, 5720–5728 (2000).

    CAS  PubMed  Google Scholar 

  51. 51

    Zhurinsky, J., Shtutman, M. & Ben-Ze'ev, A. Differential mechanisms of LEF/TCF family-dependent transcriptional activation by β-catenin and plakoglobin. Mol. Cell. Biol. 20, 4238–4252 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Miravet, S. et al. The transcriptional factor Tcf-4 contains different binding sites for β-catenin and plakoglobin. J. Biol. Chem. 277, 1884–1891 (2002).

    CAS  PubMed  Google Scholar 

  53. 53

    Solanas, G. et al. β-catenin and plakoglobin N- and C-tails determine ligand specificity. J. Biol. Chem. 279, 49849–49856 (2004).

    CAS  PubMed  Google Scholar 

  54. 54

    Lien, W. H. & Fuchs, E. Wnt some lose some: transcriptional governance of stem cells by Wnt/β-catenin signaling. Genes Dev. 28, 1517–1532 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Valenta, T., Hausmann, G. & Basler, K. The many faces and functions of β-catenin. EMBO J. 31, 2714–2736 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Nusse, R. Wnt signaling. Cold Spring Harb. Perspect. Biol. 4, a011163 (2012).

    PubMed  PubMed Central  Google Scholar 

  57. 57

    Clevers, H. & Nusse, R. Wnt/β-catenin signaling and disease. Cell 149, 1192–1205 (2012).

    CAS  Google Scholar 

  58. 58

    Holland, J. D., Klaus, A., Garratt, A. N. & Birchmeier, W. Wnt signaling in stem and cancer stem cells. Curr. Opin. Cell Biol. 25, 254–264 (2013).

    CAS  PubMed  Google Scholar 

  59. 59

    Ireton, R. C. et al. A novel role for p120 catenin in E-cadherin function. J. Cell Biol. 159, 465–476 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Anastasiadis, P. Z. et al. Inhibition of RhoA by p120 catenin. Nat. Cell Biol. 2, 637–644 (2000).

    CAS  PubMed  Google Scholar 

  61. 61

    Fang, X. et al. Vertebrate development requires ARVCF and p120 catenins and their interplay with RhoA and Rac. J. Cell Biol. 165, 87–98 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Bonne, S., van Hengel, J., Nollet, F., Kools, P. & van Roy, F. Plakophilin-3, a novel Armadillo-like protein present in nuclei and desmosomes of epithelial cells. J. Cell Sci. 112, 2265–2276 (1999).

    CAS  PubMed  Google Scholar 

  63. 63

    Chen, X., Bonne, S., Hatzfeld, M., van Roy, F. & Green, K. J. Protein binding and functional characterization of plakophilin 2. Evidence for its diverse roles in desmosomes and β-catenin signaling. J. Biol. Chem. 277, 10512–10522 (2002).

    CAS  PubMed  Google Scholar 

  64. 64

    Mertens, C., Kuhn, C. & Franke, W. W. Plakophilins 2a and 2b: constitutive proteins of dual location in the karyoplasm and the desmosomal plaque. J. Cell Biol. 135, 1009–1025 (1996).

    CAS  PubMed  Google Scholar 

  65. 65

    Mariner, D. J., Wang, J. & Reynolds, A. B. ARVCF localizes to the nucleus and adherens junction and is mutually exclusive with p120(ctn) in E-cadherin complexes. J. Cell Sci. 113, 1481–1490 (2000).

    CAS  PubMed  Google Scholar 

  66. 66

    Koutras, C., Lessard, C. B. & Levesque, G. A nuclear function for the presenilin 1 neuronal partner NPRAP/δ-catenin. J. Alzheimers Dis. 27, 307–316 (2011).

    CAS  PubMed  Google Scholar 

  67. 67

    Hatzfeld, M. & Nachtsheim, C. Cloning and characterization of a new armadillo family member, 0071, associated with the junctional plaque: evidence for a subfamily of closely related proteins. J. Cell Sci. 109, 2767–2778 (1996).

    CAS  PubMed  Google Scholar 

  68. 68

    Schmidt, A. et al. Plakophilins 1a and 1b: widespread nuclear proteins recruited in specific epithelial cells as desmosomal plaque components. Cell Tissue Res. 290, 481–499 (1997).

    CAS  PubMed  Google Scholar 

  69. 69

    Klymkowsky, M. W. Plakophilin, armadillo repeats, and nuclear localization. Microsc. Res. Tech. 45, 43–54 (1999).

    CAS  PubMed  Google Scholar 

  70. 70

    Bogaerts, S., Vanlandschoot, A., van Hengel, J. & van Roy, F. Nuclear translocation of αN-catenin by the novel zinc finger transcriptional repressor ZASC1. Exp. Cell Res. 311, 1–13 (2005).

    CAS  PubMed  Google Scholar 

  71. 71

    Kausalya, P. J., Phua, D. C. & Hunziker, W. Association of ARVCF with zonula occludens (ZO)-1 and ZO-2: binding to PDZ-domain proteins and cell–cell adhesion regulate plasma membrane and nuclear localization of ARVCF. Mol. Biol. Cell 15, 5503–5515 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Daniel, J. M., Spring, C. M., Crawford, H. C., Reynolds, A. B. & Baig, A. The p120ctn-binding partner Kaiso is a bi-modal DNA-binding protein that recognizes both a sequence-specific consensus and methylated CpG dinucleotides. Nucleic Acids Res. 30, 2911–2919 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Ruzov, A. et al. The interaction of xKaiso with xTcf3: a revised model for integration of epigenetic and Wnt signalling pathways. Development 136, 723–727 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Prokhortchouk, A. et al. The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor. Genes Dev. 15, 1613–1618 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Ruzov, A. et al. Kaiso is a genome-wide repressor of transcription that is essential for amphibian development. Development 131, 6185–6194 (2004).

    CAS  PubMed  Google Scholar 

  76. 76

    Blattler, A. et al. ZBTB33 binds unmethylated regions of the genome associated with actively expressed genes. Epigenetics Chromatin 6, 13 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    Defossez, P. A. et al. The human enhancer blocker CTC-binding factor interacts with the transcription factor Kaiso. J. Biol. Chem. 280, 43017–43023 (2005).

    CAS  PubMed  Google Scholar 

  78. 78

    Koh, D. I. et al. KAISO, a critical regulator of p53-mediated transcription of CDKN1A and apoptotic genes. Proc. Natl Acad. Sci. USA 111, 15078–15083 (2014).

    CAS  PubMed  Google Scholar 

  79. 79

    Kim, S. W. et al. Non-canonical Wnt signals are modulated by the Kaiso transcriptional repressor and p120-catenin. Nat. Cell Biol. 6, 1212–1220 (2004).

    CAS  PubMed  Google Scholar 

  80. 80

    Spring, C. M. et al. The catenin p120ctn inhibits Kaiso-mediated transcriptional repression of the β-catenin/TCF target gene matrilysin. Exp. Cell Res. 305, 253–265 (2005).

    CAS  PubMed  Google Scholar 

  81. 81

    Donaldson, N. S. et al. Kaiso represses the cell cycle gene cyclin D1 via sequence-specific and methyl-CpG-dependent mechanisms. PLoS ONE 7, e50398 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    van de Ven, R. A. et al. Nuclear p120-catenin regulates the anoikis resistance of mouse lobular breast cancer cells through Kaiso-dependent Wnt11 expression. Dis. Model. Mech. 8, 373–384 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Hong, J. Y. et al. Down's-syndrome-related kinase Dyrk1A modulates the p120-catenin–Kaiso trajectory of the Wnt signaling pathway. J. Cell Sci. 125, 561–569 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Liu, X. et al. MUC1 regulates cyclin D1 gene expression through p120 catenin and β-catenin. Oncogenesis 3, e107 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Jiang, G. et al. p120-catenin isoforms 1 and 3 regulate proliferation and cell cycle of lung cancer cells via β-catenin and Kaiso respectively. PLoS ONE 7, e30303 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Brannon, M., Gomperts, M., Sumoy, L., Moon, R. T. & Kimelman, D. A β-catenin/XTcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus. Genes Dev. 11, 2359–2370 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Tetsu, O. & McCormick, F. β-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422–426 (1999).

    CAS  PubMed  Google Scholar 

  88. 88

    Gustavson, M. D., Crawford, H. C., Fingleton, B. & Matrisian, L. M. Tcf binding sequence and position determines β-catenin and Lef-1 responsiveness of MMP-7 promoters. Mol. Carcinog. 41, 125–139 (2004).

    CAS  PubMed  Google Scholar 

  89. 89

    Pieters, T., van Roy, F. & van Hengel, J. Functions of p120ctn isoforms in cell–cell adhesion and intracellular signaling. Front. Biosci. (Landmark Ed) 17, 1669–1694 (2012).

    CAS  Google Scholar 

  90. 90

    Bass-Zubek, A. E., Godsel, L. M., Delmar, M. & Green, K. J. Plakophilins: multifunctional scaffolds for adhesion and signaling. Curr. Opin. Cell Biol. 21, 708–716 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Keirsebilck, A. et al. Molecular cloning of the human p120ctn catenin gene (CTNND1): expression of multiple alternatively spliced isoforms. Genomics 50, 129–146 (1998).

    CAS  PubMed  Google Scholar 

  92. 92

    Yanagisawa, M. et al. A p120 catenin isoform switch affects Rho activity, induces tumor cell invasion, and predicts metastatic disease. J. Biol. Chem. 283, 18344–18354 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Markham, N. O. et al. DIPA-family coiled-coils bind conserved isoform-specific head domain of p120-catenin family: potential roles in hydrocephalus and heterotopia. Mol. Biol. Cell 25, 2592–2603 (2014).

    PubMed  PubMed Central  Google Scholar 

  94. 94

    Hong, J. Y. et al. Shared molecular mechanisms regulate multiple catenin proteins: canonical Wnt signals and components modulate p120-catenin isoform-1 and additional p120 subfamily members. J. Cell Sci. 123, 4351–4365 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Kim, H. et al. δ-catenin promotes E-cadherin processing and activates β-catenin-mediated signaling: implications on human prostate cancer progression. Biochim. Biophys. Acta 1822, 509–521 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Oh, M. et al. GSK-3 phosphorylates δ-catenin and negatively regulates its stability via ubiquitination/proteosome-mediated proteolysis. J. Biol. Chem. 284, 28579–28589 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97

    Hosking, C. R. et al. The transcriptional repressor Glis2 is a novel binding partner for p120 catenin. Mol. Biol. Cell 18, 1918–1927 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98

    Negrini, S., Prada, I., D'Alessandro, R. & Meldolesi, J. REST: an oncogene or a tumor suppressor? Trends Cell Biol. 23, 289–295 (2013).

    CAS  PubMed  Google Scholar 

  99. 99

    Qureshi, I. A., Gokhan, S. & Mehler, M. F. REST and CoREST are transcriptional and epigenetic regulators of seminal neural fate decisions. Cell Cycle 9, 4477–4486 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Nelson, R. W. & Gumbiner, B. M. A cell-free assay system for β-catenin signaling that recapitulates direct inductive events in the early Xenopus laevis embryo. J. Cell Biol. 147, 367–374 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101

    Kam, Y. & Quaranta, V. Cadherin-bound β-catenin feeds into the Wnt pathway upon adherens junctions dissociation: evidence for an intersection between β-catenin pools. PLoS ONE 4, e4580 (2009).

    PubMed  PubMed Central  Google Scholar 

  102. 102

    Howard, S., Deroo, T., Fujita, Y. & Itasaki, N. A positive role of cadherin in Wnt/β-catenin signalling during epithelial–mesenchymal transition. PLoS ONE 6, e23899 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103

    Gavard, J. & Mege, R. M. Once upon a time there was β-catenin in cadherin-mediated signalling. Biol. Cell 97, 921–926 (2005).

    CAS  PubMed  Google Scholar 

  104. 104

    Nelson, W. J. & Nusse, R. Convergence of Wnt, β-catenin, and cadherin pathways. Science 303, 1483–1487 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105

    McEwen, A. E., Escobar, D. E. & Gottardi, C. J. Signaling from the adherens junction. Subcell. Biochem. 60, 171–196 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Xiao, K., Oas, R. G., Chiasson, C. M. & Kowalczyk, A. P. Role of p120-catenin in cadherin trafficking. Biochim. Biophys. Acta 1773, 8–16 (2007).

    CAS  PubMed  Google Scholar 

  107. 107

    He, Y., Ki, H., Kim, H. & Kim, K. δ-catenin interacts with LEF-1 and negatively regulates its transcriptional activity. Cell Biol. Int. 39, 954–961 (2015).

    CAS  PubMed  Google Scholar 

  108. 108

    Rodova, M., Kelly, K. F., VanSaun, M., Daniel, J. M. & Werle, M. J. Regulation of the rapsyn promoter by Kaiso and δ-catenin. Mol. Cell. Biol. 24, 7188–7196 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109

    Gu, D. et al. Caspase-3 cleavage links δ-catenin to the novel nuclear protein ZIFCAT. J. Biol. Chem. 286, 23178–23188 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110

    Harmon, R. M. & Green, K. J. Structural and functional diversity of desmosomes. Cell Commun. Adhes. 20, 171–187 (2013).

    CAS  PubMed  Google Scholar 

  111. 111

    Munoz, W. A. et al. Plakophilin-3 catenin associates with the ETV1/ER81 transcription factor to positively modulate gene activity. PLoS ONE 9, e86784 (2014).

    PubMed  PubMed Central  Google Scholar 

  112. 112

    Oh, S., Shin, S. & Janknecht, R. ETV1, 4 and 5: an oncogenic subfamily of ETS transcription factors. Biochim. Biophys. Acta 1826, 1–12 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113

    Hollenhorst, P. C., McIntosh, L. P. & Graves, B. J. Genomic and biochemical insights into the specificity of ETS transcription factors. Annu. Rev. Biochem. 80, 437–471 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114

    Goossens, S. et al. A unique and specific interaction between αT-catenin and plakophilin-2 in the area composita, the mixed-type junctional structure of cardiac intercalated discs. J. Cell Sci. 120, 2126–2136 (2007).

    CAS  PubMed  Google Scholar 

  115. 115

    Mertens, C. et al. Nuclear particles containing RNA polymerase III complexes associated with the junctional plaque protein plakophilin 2. Proc. Natl Acad. Sci. USA 98, 7795–7800 (2001).

    CAS  PubMed  Google Scholar 

  116. 116

    Sobolik-Delmaire, T., Reddy, R., Pashaj, A., Roberts, B. J. & Wahl, J. K. 3rd Plakophilin-1 localizes to the nucleus and interacts with single-stranded DNA. J. Invest. Dermatol. 130, 2638–2646 (2010).

    CAS  PubMed  Google Scholar 

  117. 117

    Hofmann, I. et al. Identification of the junctional plaque protein plakophilin 3 in cytoplasmic particles containing RNA-binding proteins and the recruitment of plakophilins 1 and 3 to stress granules. Mol. Biol. Cell 17, 1388–1398 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118

    Wolf, A. et al. Plakophilin 1 stimulates translation by promoting eIF4A1 activity. J. Cell Biol. 188, 463–471 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119

    Buckley, C. D. et al. The minimal cadherin–catenin complex binds to actin filaments under force. Science 346, 1254211 (2014).

    PubMed  PubMed Central  Google Scholar 

  120. 120

    Priya, R. & Yap, A. S. Active tension: the role of cadherin adhesion and signaling in generating junctional contractility. Curr. Top. Dev. Biol. 112, 65–102 (2015).

    CAS  PubMed  Google Scholar 

  121. 121

    Schneider, S., Herrenknecht, K., Butz, S., Kemler, R. & Hausen, P. Catenins in Xenopus embryogenesis and their relation to the cadherin-mediated cell–cell adhesion system. Development 118, 629–640 (1993).

    CAS  PubMed  Google Scholar 

  122. 122

    Benjamin, J. M. et al. αE-catenin regulates actin dynamics independently of cadherin-mediated cell–cell adhesion. J. Cell Biol. 189, 339–352 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123

    Gottardi, C. J. & Gumbiner, B. M. Distinct molecular forms of β-catenin are targeted to adhesive or transcriptional complexes. J. Cell Biol. 167, 339–349 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124

    Takahashi, N., Ishihara, S., Takada, S., Tsukita, S. & Nagafuchi, A. Posttranscriptional regulation of α-catenin expression is required for Wnt signaling in L cells. Biochem. Biophys. Res. Commun. 277, 691–698 (2000).

    CAS  PubMed  Google Scholar 

  125. 125

    Giannini, A. L., Vivanco, M. & Kypta, R. M. α-catenin inhibits β-catenin signaling by preventing formation of a β-catenin·T-cell factor·DNA complex. J. Biol. Chem. 275, 21883–21888 (2000).

    CAS  PubMed  Google Scholar 

  126. 126

    Hwang, S. G. et al. Regulation of β-catenin signaling and maintenance of chondrocyte differentiation by ubiquitin-independent proteasomal degradation of α-catenin. J. Biol. Chem. 280, 12758–12765 (2005).

    CAS  PubMed  Google Scholar 

  127. 127

    Merdek, K. D., Nguyen, N. T. & Toksoz, D. Distinct activities of the α-catenin family, α-catulin and α-catenin, on β-catenin-mediated signaling. Mol. Cell. Biol. 24, 2410–2422 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128

    Sehgal, R. N., Gumbiner, B. M. & Reichardt, L. F. Antagonism of cell adhesion by an α-catenin mutant, and of the Wnt-signaling pathway by α-catenin in Xenopus embryos. J. Cell Biol. 139, 1033–1046 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129

    Choi, S. H. et al. α-catenin interacts with APC to regulate β-catenin proteolysis and transcriptional repression of Wnt target genes. Genes Dev. 27, 2473–2488 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130

    Daugherty, R. L. et al. α-catenin is an inhibitor of transcription. Proc. Natl Acad. Sci. USA 111, 5260–5265 (2014).

    CAS  PubMed  Google Scholar 

  131. 131

    El-Bahrawy, M., Talbot, I., Poulsom, R. & Alison, M. Variable nuclear localization of α-catenin in colorectal carcinoma. Lab. Invest. 82, 1167–1174 (2002).

    CAS  PubMed  Google Scholar 

  132. 132

    Hofmann, W. A. et al. Actin is part of pre-initiation complexes and is necessary for transcription by RNA polymerase II. Nat. Cell Biol. 6, 1094–1101 (2004).

    CAS  Google Scholar 

  133. 133

    Hu, P., Wu, S. & Hernandez, N. A role for β-actin in RNA polymerase III transcription. Genes Dev. 18, 3010–3015 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134

    Kukalev, A., Nord, Y., Palmberg, C., Bergman, T. & Percipalle, P. Actin and hnRNP U cooperate for productive transcription by RNA polymerase II. Nat. Struct. Mol. Biol. 12, 238–244 (2005).

    CAS  PubMed  Google Scholar 

  135. 135

    Philimonenko, V. V. et al. Nuclear actin and myosin I are required for RNA polymerase I transcription. Nat. Cell Biol. 6, 1165–1172 (2004).

    CAS  Google Scholar 

  136. 136

    Vasioukhin, V., Bauer, C., Degenstein, L., Wise, B. & Fuchs, E. Hyperproliferation and defects in epithelial polarity upon conditional ablation of α-catenin in skin. Cell 104, 605–617 (2001).

    CAS  Google Scholar 

  137. 137

    Kobielak, A. & Fuchs, E. Links between α-catenin, NF-κB, and squamous cell carcinoma in skin. Proc. Natl Acad. Sci. USA 103, 2322–2327 (2006).

    CAS  PubMed  Google Scholar 

  138. 138

    Piao, H. L. et al. α-catenin acts as a tumour suppressor in E-cadherin-negative basal-like breast cancer by inhibiting NF-κB signalling. Nat. Cell Biol. 16, 245–254 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. 139

    Lien, W. H., Klezovitch, O., Fernandez, T. E., Delrow, J. & Vasioukhin, V. αE-catenin controls cerebral cortical size by regulating the Hedgehog signaling pathway. Science 311, 1609–1612 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. 140

    Rhee, J., Ryu, J. H., Kim, J. H., Chun, C. H. & Chun, J. S. α-catenin inhibits β-catenin-T-cell factor/lymphoid enhancing factor transcriptional activity and collagen type II expression in articular chondrocytes through formation of Gli3R·α-catenin·β-catenin ternary complex. J. Biol. Chem. 287, 11751–11760 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. 141

    Schlegelmilch, K. et al. Yap1 acts downstream of α-catenin to control epidermal proliferation. Cell 144, 782–795 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142

    Silvis, M. R. et al. α-catenin is a tumor suppressor that controls cell accumulation by regulating the localization and activity of the transcriptional coactivator Yap1. Sci. Signal. 4, ra33 (2011).

    PubMed  PubMed Central  Google Scholar 

  143. 143

    Drees, F., Pokutta, S., Yamada, S., Nelson, W. J. & Weis, W. I. α-catenin is a molecular switch that binds E-cadherin–β-catenin and regulates actin-filament assembly. Cell 123, 903–915 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. 144

    Hansen, S. D. et al. αE-catenin actin-binding domain alters actin filament conformation and regulates binding of nucleation and disassembly factors. Mol. Biol. Cell 24, 3710–3720 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. 145

    de Lanerolle, P. & Serebryannyy, L. Nuclear actin and myosins: life without filaments. Nat. Cell Biol. 13, 1282–1288 (2011).

    CAS  PubMed  Google Scholar 

  146. 146

    Huveneers, S. & de Rooij, J. Mechanosensitive systems at the cadherin–F-actin interface. J. Cell Sci. 126, 403–413 (2013).

    CAS  PubMed  Google Scholar 

  147. 147

    Battaglia, S., Maguire, O. & Campbell, M. J. Transcription factor co-repressors in cancer biology: roles and targeting. Int. J. Cancer 126, 2511–2519 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. 148

    Barrett, C. W. et al. Kaiso directs the transcriptional corepressor MTG16 to the Kaiso binding site in target promoters. PLoS ONE 7, e51205 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. 149

    Filion, G. J. et al. A family of human zinc finger proteins that bind methylated DNA and repress transcription. Mol. Cell. Biol. 26, 169–181 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. 150

    Fournier, A., Sasai, N., Nakao, M. & Defossez, P. A. The role of methyl-binding proteins in chromatin organization and epigenome maintenance. Brief. Funct. Genomics 11, 251–264 (2012).

    CAS  PubMed  Google Scholar 

  151. 151

    Yoon, H. G., Chan, D. W., Reynolds, A. B., Qin, J. & Wong, J. N-CoR mediates DNA methylation-dependent repression through a methyl CpG binding protein Kaiso. Mol. Cell 12, 723–734 (2003).

    CAS  Google Scholar 

  152. 152

    Turner, T. N. et al. Loss of δ-catenin function in severe autism. Nature 520, 51–56 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank their colleagues in the field, and the reviewers for their helpful comments, and apologize to those whose work was not cited owing to space considerations. P.D.M. was supported by U.S. National Institutes of Health (NIH) grant GM107079 and C.J.G. by GM076561.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Pierre D. McCrea or Cara J. Gottardi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Related links

Related links

FURTHER INFORMATION

WNT homepage

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McCrea, P., Gottardi, C. Beyond β-catenin: prospects for a larger catenin network in the nucleus. Nat Rev Mol Cell Biol 17, 55–64 (2016). https://doi.org/10.1038/nrm.2015.3

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing