CRISPR–Cas-related technologies in basic and translational liver research

CRISPR–Cas9 has revolutionized biomedical research. Studies in the past few years have achieved notable successes in hepatology, such as correction of genetic disease genes and generation of liver cancer animal models. Where does this technology stand at the frontier of basic and translational liver research?

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: New CRISPR-Cas9-based technologies.

References

  1. 1

    Doudna, J. A. & Charpentier, E. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).

  2. 2

    Pankowicz, F. P. et al. CRISPR/Cas9: at the cutting edge of hepatology. Gut 66, 1329–1340 (2017).

  3. 3

    Hess, G. T. et al. Methods and applications of CRISPR-mediated base editing in eukaryotic genomes. Mol. Cell 68, 26–43 (2017).

  4. 4

    Yin, H. et al. Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nat. Biotechnol. 35, 1179–1187 (2017).

  5. 5

    Sanchez-Rivera, F. J. & Jacks, T. Applications of the CRISPR-Cas9 system in cancer biology. Nat. Rev. Cancer 15, 387–395 (2015).

  6. 6

    Song, C. Q. et al. Genome-wide CRISPR screen identifies regulators of mitogen-activated protein kinase as suppressors of liver tumors in mice. Gastroenterology 152, 1161–1173.e1 (2017).

  7. 7

    Wang, D. et al. Adenovirus-mediated somatic genome editing of Pten by CRISPR/Cas9 in mouse liver in spite of Cas9-specific immune responses. Hum. Gene Ther. 26, 432–442 (2015).

  8. 8

    Tsai, S. Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33, 187–197 (2014).

  9. 9

    Suzuki, K. et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540, 144–149 (2016).

  10. 10

    Abudayyeh, O. O. et al. RNA targeting with CRISPR-Cas13. Nature 550, 280–284 (2017).

Download references

Acknowledgements

S.C.Q. is a postdoc and W.X. is an assistant professor at the RNA therapeutic Institute at UMass Medical School. The authors thank Y. Hao for critical comments and discussions and A. Sheel for proofreading. W.X. was supported by grants from the National Institutes of Health (DP2HL137167 and P01HL131471), American Cancer Society (129056-RSG-16-093), Lung Cancer Research Foundation, Hyundai Hope on Wheels and ALS Association.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wen Xue.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Selected studies of CRISPR–Cas for somatic genome editing for liver disease and cancer. (PDF 100 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, C., Xue, W. CRISPR–Cas-related technologies in basic and translational liver research. Nat Rev Gastroenterol Hepatol 15, 251–252 (2018). https://doi.org/10.1038/nrgastro.2018.11

Download citation

Further reading