Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mucins in pancreatic cancer and its microenvironment

Abstract

Pancreatic cancer remains a lethal malignancy with poor prognosis owing to therapeutic resistance, frequent recurrence and the absence of treatment strategies that specifically target the tumour and its supporting stroma. Deregulated cell-surface proteins drive neoplastic transformations and are envisioned to mediate crosstalk between the tumour and its microenvironment. Emerging studies have elaborated on the role of mucins in diverse biological functions, including enhanced tumorigenicity, invasiveness, metastasis and drug resistance through their characteristic O-linked and N-linked oligosaccharides (glycans), extended structures and unique domains. Multiple mucin domains differentially interact and regulate different components of the tumour microenvironment. This Review discusses: the expression pattern of various mucins in the pancreas under healthy, inflammatory, and cancerous conditions; the context-dependent attributes of mucins that differ under healthy and pathological conditions; the contribution of the tumour microenvironment in pancreatic cancer development and/or progression; diagnostic and/or prognostic efficacy of mucins; and mucin-based therapeutic strategies. Overall, this information should help to delineate the intricacies of pancreatic cancer by exploring the family of mucins, which, through various mechanisms in both tumour cells and the microenvironment, worsen disease outcome.

Key Points

  • Mucins, by virtue of their extended ectodomain, variety of domains and varied degree of glycosylation, act as multifaceted glycoproteins that have evolved convergently to protect the exposed surfaces of organisms

  • Pancreatic cancer is characterized by the aberrant expression of both transmembrane and secretory mucins

  • De novo expression of MUC4, MUC5AC, and MUC16 is observed in pancreatic cancer as early as pancreatic intraepithelial neoplasia and expression increases gradually with disease progression and subsequent metastasis

  • Altered attributes of mucins are used by tumour cells to facilitate their growth, proliferation, interaction with the extracellular matrix or stromal cells and detachment from the primary tumour for invasion and metastasis

  • CA19-9, the FDA-approved prognostic marker for pancreatic cancer, is a carbohydrate antigen (sialyl Lewisa) present on the surface of MUC1, MUC16 and MUC5AC; MUC1-based therapies are in preclinical and clinical trials

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domain structure of transmembrane and secretory mucins.
Figure 2: Mucins in transition from normal to malignant cells.
Figure 3: Antigenic and differently expressed O-glycans of pancreatic cancer.
Figure 4: Tumour cells crosstalk with stromal cells via mucins.
Figure 5: Mucins as therapeutic targets.

Similar content being viewed by others

References

  1. Cancer Facts and Statistics. American Cancer Society [online], (2013).

  2. Kufe, D. W. Mucins in cancer: function, prognosis and therapy. Nat. Rev. Cancer 9, 874–885 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hollingsworth, M. A. & Swanson, B. J. Mucins in cancer: protection and control of the cell surface. Nat. Rev. Cancer 4, 45–60 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Pflugfelder, S. C. et al. Detection of sialomucin complex (MUC4) in human ocular surface epithelium and tear fluid. Invest. Ophthalmol. Vis. Sci. 41, 1316–1326 (2000).

    CAS  PubMed  Google Scholar 

  5. Moniaux, N., Escande, F., Porchet, N., Aubert, J. P. & Batra, S. K. Structural organization and classification of the human mucin genes. Front. Biosci. 6, D1192–D1206 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Bafna, S., Kaur, S. & Batra, S. K. Membrane-bound mucins: the mechanistic basis for alterations in the growth and survival of cancer cells. Oncogene 29, 2893–2904 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Senapati, S., Sharma, P., Bafna, S., Roy, H. K. & Batra, S. K. The MUC gene family: their role in the diagnosis and prognosis of gastric cancer. Histol. Histopathol. 23, 1541–1552 (2008).

    CAS  PubMed  Google Scholar 

  8. Singh, A. P. et al. Clinical potential of mucins in diagnosis, prognosis, and therapy of ovarian cancer. Lancet Oncol. 9, 1076–1085 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nagata, K. et al. Mucin expression profile in pancreatic cancer and the precursor lesions. J. Hepatobiliary Pancreat. Surg. 14, 243–254 (2007).

    Article  PubMed  Google Scholar 

  10. Yonezawa, S., Higashi, M., Yamada, N., Yokoyama, S. & Goto, M. Significance of mucin expression in pancreatobiliary neoplasms. J. Hepatobiliary Pancreat. Sci. 17, 108–124 (2010).

    Article  PubMed  Google Scholar 

  11. Yonezawa, S. et al. MUC-1 mucin expression in invasive areas of intraductal papillary mucinous tumors of the pancreas. Pathol. Int. 48, 319–322 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Swartz, M. J. et al. MUC4 expression increases progressively in pancreatic intraepithelial neoplasia. Am. J. Clin. Pathol. 117, 791–796 (2002).

    Article  PubMed  Google Scholar 

  13. Saitou, M. et al. MUC4 expression is a novel prognostic factor in patients with invasive ductal carcinoma of the pancreas. J. Clin. Pathol. 58, 845–852 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Takikita, M. et al. Associations between selected biomarkers and prognosis in a population-based pancreatic cancer tissue microarray. Cancer Res. 69, 2950–2955 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yamasaki, H. et al. Expression and localization of MUC1, MUC2, MUC5AC and small intestinal mucin antigen in pancreatic tumors. Int. J. Oncol. 24, 107–113 (2004).

    CAS  PubMed  Google Scholar 

  16. Moniaux, N., Junker, W. M., Singh, A. P., Jones, A. M. & Batra, S. K. Characterization of human mucin MUC17. Complete coding sequence and organization. J. Biol. Chem. 281, 23676–23685 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Haridas, D. et al. Pathobiological implications of MUC16 expression in pancreatic cancer. PLoS ONE 6, e26839 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chauhan, S. C. et al. MUC13 mucin augments pancreatic tumorigenesis. Mol. Cancer Ther. 11, 24–33 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Nissim, S., Idos, G. E. & Wu, B. Genetic markers of malignant transformation in intraductal papillary mucinous neoplasm of the pancreas: a meta-analysis. Pancreas 41, 1195–1205 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shimamoto, T. et al. MUC1 is a useful molecular marker for malignant intraductal papillary mucinous neoplasms in pancreatic juice obtained from endoscopic retrograde pancreatography. Pancreas 39, 879–883 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Maker, A. V. et al. Pancreatic cyst fluid and serum mucin levels predict dysplasia in intraductal papillary mucinous neoplasms of the pancreas. Ann. Surg. Oncol. 18, 199–206 (2011).

    Article  PubMed  Google Scholar 

  22. Choudhury, A. et al. Alternate splicing at the 3′-end of the human pancreatic tumor-associated mucin MUC4 cDNA. Teratog. Carcinog. Mutagen. 21, 83–96 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Escande, F. et al. Genomic organization of MUC4 mucin gene. Towards the characterization of splice variants. Eur. J. Biochem. 269, 3637–3644 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Singh, P. K. & Hollingsworth, M. A. Cell surface-associated mucins in signal transduction. Trends Cell Biol. 16, 467–476 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Singh, A. P., Moniaux, N., Chauhan, S. C., Meza, J. L. & Batra, S. K. Inhibition of MUC4 expression suppresses pancreatic tumor cell growth and metastasis. Cancer Res. 64, 622–630 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Pochampalli, M. R., el Bejjani, R. M. & Schroeder, J. A. MUC1 is a novel regulator of ErbB1 receptor trafficking. Oncogene 26, 1693–1701 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Pochampalli, M. R., Bitler, B. G. & Schroeder, J. A. Transforming growth factor α dependent cancer progression is modulated by Muc1. Cancer Res. 67, 6591–6598 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Li, X., Wang, L., Nunes, D. P., Troxler, R. F. & Offner, G. D. Suppression of MUC1 synthesis downregulates expression of the epidermal growth factor receptor. Cancer Biol. Ther. 4, 968–973 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Hisatsune, A. et al. Anti-MUC1 antibody inhibits EGF receptor signaling in cancer cells. Biochem. Biophys. Res. Commun. 405, 377–381 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Li, Y. et al. Heregulin targets γ-catenin to the nucleolus by a mechanism dependent on the DF3/MUC1 oncoprotein. Mol. Cancer Res. 1, 765–775 (2003).

    CAS  PubMed  Google Scholar 

  31. Chaturvedi, P. et al. MUC4 mucin interacts with and stabilizes the HER2 oncoprotein in human pancreatic cancer cells. Cancer Res. 68, 2065–2070 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Funes, M., Miller, J. K., Lai, C., Carraway, K. L. & Sweeney, C. The mucin Muc4 potentiates neuregulin signaling by increasing the cell-surface populations of ErbB2 and ErbB3. J. Biol. Chem. 281, 19310–19319 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Price-Schiavi, S. A. et al. Rat Muc4 (sialomucin complex) reduces binding of anti-ErbB2 antibodies to tumor cell surfaces, a potential mechanism for herceptin resistance. Int. J. Cancer 99, 783–791 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Chaturvedi, P. et al. MUC4 mucin potentiates pancreatic tumor cell proliferation, survival, and invasive properties and interferes with its interaction to extracellular matrix proteins. Mol. Cancer Res. 5, 309–320 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Jonckheere, N. et al. The mucin MUC4 and its membrane partner ErbB2 regulate biological properties of human CAPAN-2 pancreatic cancer cells via different signalling pathways. PLoS ONE 7, e32232 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gupta, B. K. et al. Increased expression and aberrant localization of mucin 13 in metastatic colon cancer. J. Histochem. Cytochem. 60, 822–831 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xu, H. et al. Expression of KL-6/MUC1 in pancreatic ductal carcinoma and its potential relationship with β-catenin in tumor progression. Life Sci. 88, 1063–1069 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Singh, P. K. et al. Phosphorylation of MUC1 by Met modulates interaction with p53 and MMP1 expression. J. Biol. Chem. 283, 26985–26995 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lau, S. K. et al. EGFR-mediated carcinoma cell metastasis mediated by integrin αvβ5 depends on activation of c-Src and cleavage of MUC1. PLoS ONE 7, e36753 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bitler, B. G., Goverdhan, A. & Schroeder, J. A. MUC1 regulates nuclear localization and function of the epidermal growth factor receptor. J. Cell Sci. 123, 1716–1723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Inaguma, S., Kasai, K. & Ikeda, H. GLI1 facilitates the migration and invasion of pancreatic cancer cells through MUC5AC-mediated attenuation of E-cadherin. Oncogene 30, 714–723 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Kondo, A. et al. From glycomics to functional glycomics of sugar chains: Identification of target proteins with functional changes using gene targeting mice and knock down cells of FUT8 as examples. Biochim. Biophys. Acta 1764, 1881–1889 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Remmers, N. et al. Aberrant expression of mucin core proteins and O-linked glycans associated with progression of pancreatic cancer. Clin. Cancer Res. 19, 1981–1993 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Park, H. U. et al. Aberrant expression of MUC3 and MUC4 membrane-associated mucins and sialyl Lex antigen in pancreatic intraepithelial neoplasia. Pancreas 26, e48–e54 (2003).

    Article  PubMed  Google Scholar 

  45. Yue, T. et al. The prevalence and nature of glycan alterations on specific proteins in pancreatic cancer patients revealed using antibody-lectin sandwich arrays. Mol. Cell. Proteomics 8, 1697–1707 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kui, W. N. et al. Characterization of the oligosaccharides associated with the human ovarian tumor marker CA125. J. Biol. Chem. 278, 28619–28634 (2003).

    Article  CAS  Google Scholar 

  47. Tu, L. & Banfield, D. K. Localization of Golgi-resident glycosyltransferases. Cell. Mol. Life Sci. 67, 29–41 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Colley, K. J. Golgi localization of glycosyltransferases: more questions than answers. Glycobiology 7, 1–13 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Varki, A. Selectin ligands. Proc. Natl Acad. Sci. USA 91, 7390–7397 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yu, C. J. et al. Sialyl Lewis antigens: association with MUC5AC protein and correlation with post-operative recurrence of non-small cell lung cancer. Lung Cancer 47, 59–67 (2005).

    Article  PubMed  Google Scholar 

  51. Geng, Y., Marshall, J. R. & King, M. R. Glycomechanics of the metastatic cascade: tumor cell-endothelial cell interactions in the circulation. Ann. Biomed. Eng. 40, 790–805 (2012).

    Article  PubMed  Google Scholar 

  52. Chen, S. H., Dallas, M. R., Balzer, E. M. & Konstantopoulos, K. Mucin 16 is a functional selectin ligand on pancreatic cancer cells. FASEB J. 26, 1349–1359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Komatsu, M., Yee, L. & Carraway, K. L. Overexpression of sialomucin complex, a rat homologue of MUC4, inhibits tumor killing by lymphokine-activated killer cells. Cancer Res. 59, 2229–2236 (1999).

    CAS  PubMed  Google Scholar 

  54. Komatsu, M., Tatum, L., Altman, N. H., Carothers Carraway, C. A. & Carraway, K. L. Potentiation of metastasis by cell surface sialomucin complex (rat MUC4), a multifunctional anti-adhesive glycoprotein. Int. J. Cancer. 87, 480–486 (2000).

    CAS  Google Scholar 

  55. Besmer, D. M. et al. Pancreatic ductal adenocarcinoma mice lacking mucin 1 have a profound defect in tumor growth and metastasis. Cancer Res. 71, 4432–4442 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kohlgraf, K. G. et al. Contribution of the MUC1 tandem repeat and cytoplasmic tail to invasive and metastatic properties of a pancreatic cancer cell line. Cancer Res. 63, 5011–5020 (2003).

    CAS  PubMed  Google Scholar 

  57. Tinder, T. L. et al. MUC1 enhances tumor progression and contributes toward immunosuppression in a mouse model of spontaneous pancreatic adenocarcinoma. J. Immunol. 181, 3116–3125 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Zhao, Q. et al. Interaction between circulating galectin-3 and cancer-associated MUC1 enhances tumour cell homotypic aggregation and prevents anoikis. Mol. Cancer 9, 154 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sanders, W. J., Katsumoto, T. R., Bertozzi, C. R., Rosen, S. D. & Kiessling, L. L. L-selectin-carbohydrate interactions: relevant modifications of the Lewis x trisaccharide. Biochemistry 35, 14862–14867 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Cadron, I. et al. The impact of enzastaurin (LY317615.HCl) on CA125 biosynthesis and shedding in ovarian cancer cells. Gynecol. Oncol. 118, 64–68 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Agrawal, B., Gendler, S. J. & Longenecker, B. M. The biological role of mucins in cellular interactions and immune regulation: prospects for cancer immunotherapy. Mol. Med. Today 4, 397–403 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Hollingsworth, M. A. & Swanson, B. J. Mucins in cancer: protection and control of the cell surface. Nat. Rev. Cancer 4, 45–60 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Kleeff, J. et al. Pancreatic cancer microenvironment. Int. J. Cancer 121, 699–705 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Tsuboi, S. et al. A novel strategy for evasion of NK cell immunity by tumours expressing core2 O-glycans. EMBO J. 30, 3173–3185 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Senapati, S. et al. Novel INTeraction of MUC4 and galectin: potential pathobiological implications for metastasis in lethal pancreatic cancer. Clin. Cancer Res. 17, 267–274 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Gaida, M. M. et al. Expression of galectin-3 in pancreatic ductal adenocarcinoma. Pathol. Oncol. Res. 18, 299–307 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Okamoto, T. et al. Core2 O-glycan-expressing prostate cancer cells are resistant to NK cell immunity. Mol. Med. Report 7, 359–364 (2013).

    Article  CAS  Google Scholar 

  68. Suzuki, Y. et al. MUC1 carrying core 2 O-glycans functions as a molecular shield against NK cell attack, promoting bladder tumor metastasis. Int. J. Oncol. 40, 1831–1838 (2012).

    CAS  PubMed  Google Scholar 

  69. Swanson, B. J. et al. MUC1 is a counter-receptor for myelin-associated glycoprotein (Siglec-4a) and their interaction contributes to adhesion in pancreatic cancer perineural invasion. Cancer Res. 67, 10222–10229 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Konowalchuk, J. D. & Agrawal, B. MUC1 is a novel costimulatory molecule of human T cells and functions in an AP-1-dependent manner. Hum. Immunol. 73, 448–455 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Ohno, S. et al. Expression of Tn and sialyl-Tn antigens in endometrial cancer: its relationship with tumor-produced cyclooxygenase-2, tumor-infiltrated lymphocytes and patient prognosis. Anticancer Res. 26, 4047–4053 (2006).

    CAS  PubMed  Google Scholar 

  72. Feig, C. et al. The pancreas cancer microenvironment. Clin. Cancer Res. 18, 4266–4276 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nath, D. et al. Macrophage-tumour cell interactions: identification of MUC1 on breast cancer cells as a potential counter-receptor for the macrophage-restricted receptor, sialoadhesin. Immunology 98, 213–219 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Allavena, P. et al. Engagement of the mannose receptor by tumoral mucins activates an immune suppressive phenotype in human tumor-associated macrophages. Clin. Dev. Immunol. 2010, 547179 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Kitamoto, S. et al. MUC1 enhances hypoxia-driven angiogenesis through the regulation of multiple proangiogenic factors, Oncogene http://dx.doi.org/10.1038/onc.2012.478.

  76. Chaika, N. V. et al. MUC1 mucin stabilizes and activates hypoxia-inducible factor 1 α to regulate metabolism in pancreatic cancer. Proc. Natl Acad. Sci. USA 109, 13787–13792 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Tsutsumida, H. et al. RNA interference suppression of MUC1 reduces the growth rate and metastatic phenotype of human pancreatic cancer cells. Clin. Cancer Res. 12, 2976–2987 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Sawada, T. et al. Biphasic effect of cell surface sialic acids on pancreatic cancer cell adhesiveness. Biochem. Biophys. Res. Commun. 195, 1096–1103 (1993).

    Article  CAS  PubMed  Google Scholar 

  79. Senapati, S., Gnanapragassam, V. S., Moniaux, N., Momi, N. & Batra, S. K. Role of MUC4-NIDO domain in the MUC4-mediated metastasis of pancreatic cancer cells. Oncogene 31, 3346–5610 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Paszek, M. J., Boettiger, D., Weaver, V. M. & Hammer, D. A. Integrin clustering is driven by mechanical resistance from the glycocalyx and the substrate. PLoS Comput. Biol. 5, e1000604 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang, Y. et al. Diagnostic value of mucins (MUC1, MUC2 and MUC5AC) expression profile in endoscopic ultrasound-guided fine-needle aspiration specimens of the pancreas. Int. J. Cancer. 121, 2716–2722 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Carrara, S. et al. Mucin expression pattern in pancreatic diseases: findings from EUS-guided fine-needle aspiration biopsies. Am. J. Gastroenterol. 106, 1359–1363 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Jhala, N. et al. Biomarkers in diagnosis of pancreatic carcinoma in fine-needle aspirates. Am. J. Clin. Pathol. 126, 572–579 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Horn, A. et al. Immunocytochemistry for MUC4 and MUC16 is a useful adjunct in the diagnosis of pancreatic adenocarcinoma on fine-needle aspiration cytology. Arch. Pathol. Lab. Med. 137, 546–551 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tewes, M. et al. Molecular profiling and predictive value of circulating tumor cells in patients with metastatic breast cancer: an option for monitoring response to breast cancer related therapies. Breast Cancer Res. Treat. 115, 581–590 (2009).

    Article  PubMed  Google Scholar 

  87. Kaur, S., Baine, M. J., Jain, M., Sasson, A. R. & Batra, S. K. Early diagnosis of pancreatic cancer: challenges and new developments. Biomark. Med. 6, 597–612 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Ballehaninna, U. K. & Chamberlain, R. S. The clinical utility of serum CA 19–9 in the diagnosis, prognosis and management of pancreatic adenocarcinoma: An evidence based appraisal. J. Gastrointest. Oncol. 3, 105–119 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Goggins, M. Molecular markers of early pancreatic cancer. J. Clin. Oncol. 23, 4524–4531 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Goonetilleke, K. S. & Siriwardena, A. K. Systematic review of carbohydrate antigen (CA 19–9) as a biochemical marker in the diagnosis of pancreatic cancer. Eur. J. Surg. Oncol. 33, 266–270 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Yue, T. et al. Enhanced discrimination of malignant from benign pancreatic disease by measuring the CA 19–9 antigen on specific protein carriers. PLoS ONE 6, e29180 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Shiozaki, K., Yamaguchi, K., Takahashi, K., Moriya, S. & Miyagi, T. Regulation of sialyl Lewis antigen expression in colon cancer cells by sialidase NEU4. J. Biol. Chem. 286, 21052–21061 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Qiu, J. et al. Occurrence of autoantibodies to annexin I, 14-3-3 τ and LAMR1 in prediagnostic lung cancer sera. J. Clin. Oncol. 26, 5060–5066 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhong, L. et al. Profiling tumor-associated antibodies for early detection of non-small cell lung cancer. J. Thorac. Oncol. 1, 513–519 (2006).

    Article  PubMed  Google Scholar 

  95. Pedersen, J. W. et al. Early detection of cancer in the general population: a blinded case–control study of p53 autoantibodies in colorectal cancer. Br. J. Cancer 108, 107–114 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Pedersen, J. W. et al. Seromic profiling of colorectal cancer patients with novel glycopeptide microarray. Int. J. Cancer 128, 1860–1871 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Bafna, S., Kaur, S., Momi, N. & Batra, S. K. Pancreatic cancer cells resistance to gemcitabine: the role of MUC4 mucin. Br. J. Cancer 101, 1155–1161 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Karanikas, V. et al. Antibody and T cell responses of patients with adenocarcinoma immunized with mannan-MUC1 fusion protein. J. Clin. Invest. 100, 2783–2792 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ioannides, C. G. et al. Cytotoxic T cells from ovarian malignant tumors can recognize polymorphic epithelial mucin core peptides. J. Immunol. 151, 3693–3703 (1993).

    CAS  PubMed  Google Scholar 

  100. Rowse, G. J., Tempero, R. M., VanLith, M. L., Hollingsworth, M. A. & Gendler, S. J. Tolerance and immunity to MUC1 in a human MUC1 transgenic murine model. Cancer Res. 58, 315–321 (1998).

    CAS  PubMed  Google Scholar 

  101. Turner, M. S., Cohen, P. A. & Finn, O. J. Lack of effective MUC1 tumor antigen-specific immunity in MUC1-transgenic mice results from a Th/T regulatory cell imbalance that can be corrected by adoptive transfer of wild-type Th cells. J. Immunol. 178, 2787–2793 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Tempero, R. M. et al. CD4+ lymphocytes provide MUC1-specific tumor immunity in vivo that is undetectable in vitro and is absent in MUC1 transgenic mice. J. Immunol. 161, 5500–5506 (1998).

    CAS  PubMed  Google Scholar 

  103. Barratt-Boyes, S. M., Vlad, A. & Finn, O. J. Immunization of chimpanzees with tumor antigen MUC1 mucin tandem repeat peptide elicits both helper and cytotoxic T-cell responses. Clin. Cancer Res. 5, 1918–1924 (1999).

    CAS  PubMed  Google Scholar 

  104. Soares, M. M., Mehta, V. & Finn, O. J. Three different vaccines based on the 140-amino acid MUC1 peptide with seven tandemly repeated tumor-specific epitopes elicit distinct immune effector mechanisms in wild-type versus MUC1-transgenic mice with different potential for tumor rejection. J. Immunol. 166, 6555–6563 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Goydos, J. S., Elder, E., Whiteside, T. L., Finn, O. J. & Lotze, M. T. A phase I trial of a synthetic mucin peptide vaccine. Induction of specific immune reactivity in patients with adenocarcinoma. J. Surg. Res. 63, 298–304 (1996).

    Article  CAS  PubMed  Google Scholar 

  106. Ramanathan, R. K. et al. Phase I study of a MUC1 vaccine composed of different doses of MUC1 peptide with SB-AS2 adjuvant in resected and locally advanced pancreatic cancer. Cancer Immunol. Immunother. 54, 254–264 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Yamamoto, K. et al. MUC1 peptide vaccination in patients with advanced pancreas or biliary tract cancer. Anticancer Res. 25, 3575–3579 (2005).

    CAS  PubMed  Google Scholar 

  108. Kaufman, H. L. et al. Poxvirus-based vaccine therapy for patients with advanced pancreatic cancer. J. Transl. Med. 5, 60 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kawaoka, T. et al. Adoptive immunotherapy for pancreatic cancer: cytotoxic T lymphocytes stimulated by the MUC1-expressing human pancreatic cancer cell line YPK-1. Oncol. Rep. 20, 155–163 (2008).

    PubMed  Google Scholar 

  110. Kawaoka, T., Takashima, M., Yamamoto, K., Ueno, T. & Oka, M. Adoptive immunotherapy using MUC1--specific CTLs for unresectable pancreatic cancer [Japanese]. Nihon Rinsho 64 (Suppl. 1), 279–282 (2006).

    PubMed  Google Scholar 

  111. Kondo, H. et al. Adoptive immunotherapy for pancreatic cancer using MUC1 peptide-pulsed dendritic cells and activated T lymphocytes. Anticancer Res. 28, 379–387 (2008).

    CAS  PubMed  Google Scholar 

  112. Wu, J. et al. Identification of an HLA-A*0201-restrictive CTL epitope from MUC4 for applicable vaccine therapy. Immunopharmacol. Immunotoxicol. 31, 468–476 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Fan, X. N., Karsten, U., Goletz, S. & Cao, Y. Reactivity of a humanized antibody (hPankoMab) towards a tumor-related MUC1 epitope (TA-MUC1) with various human carcinomas. Pathol. Res. Pract. 206, 585–589 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Berek, J. et al. Oregovomab maintenance monoimmunotherapy does not improve outcomes in advanced ovarian cancer. J. Clin. Oncol. 27, 418–425 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Bitler, B. G. et al. Intracellular MUC1 peptides inhibit cancer progression. Clin. Cancer Res. 15, 100–109 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Raina, D. et al. Direct targeting of the mucin 1 oncoprotein blocks survival and tumorigenicity of human breast carcinoma cells. Cancer Res. 69, 5133–5141 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Savla, R., Taratula, O., Garbuzenko, O. & Minko, T. Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer. J. Control Release 153, 16–22 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Andrianifahanana, M. et al. MUC4-expressing pancreatic adenocarcinomas show elevated levels of both T1 and T2 cytokines: potential pathobiologic implications. Am. J. Gastroenterol. 101, 2319–2329 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Ren, J. et al. MUC1 oncoprotein functions in activation of fibroblast growth factor receptor signaling. Mol. Cancer Res. 4, 873–883 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Choudhury, A. et al. Retinoic acid-dependent transforming growth factor-β 2-mediated induction of MUC4 mucin expression in human pancreatic tumor cells follows retinoic acid receptor-α signaling pathway. J. Biol. Chem. 275, 33929–33936 (2000).

    Article  CAS  PubMed  Google Scholar 

  121. Strobel, O. et al. Pancreatic duct glands are distinct ductal compartments that react to chronic injury and mediate Shh-induced metaplasia. Gastroenterology 138, 1166–1177 (2010).

    Article  PubMed  Google Scholar 

  122. Colomb, F. et al. TNF regulates sialyl-Lewisx and 6-sulfo-sialyl-Lewisx expression in human lung through up-regulation of ST3GAL4 transcript isoform BX. Biochimie 94, 2045–2053 (2012).

    Article  CAS  PubMed  Google Scholar 

  123. Springer, G. F. T and Tn, general carcinoma autoantigens. Science 224, 1198–1206 (1984).

    Article  CAS  PubMed  Google Scholar 

  124. Nanashima, A. et al. High serum concentrations of sialyl Tn antigen in carcinomas of the biliary tract and pancreas. J. Hepatobiliary Pancreat. Surg. 6, 391–395 (1999).

    Article  CAS  PubMed  Google Scholar 

  125. Yu, L. G. et al. Galectin-3 interaction with Thomsen-Friedenreich disaccharide on cancer-associated MUC1 causes increased cancer cell endothelial adhesion. J. Biol. Chem. 282, 773–781 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Tsuboi, S. Hatakeyama, S., Ohyama, C. & Fukuda, M. Two opposing roles of O-glycans in tumor metastasis. Trends Mol. Med. 18, 224–232 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lee, S. H. et al. Core3 O-glycan synthase suppresses tumor formation and metastasis of prostate carcinoma PC3 and LNCaP cells through down-regulation of α2β1 integrin complex. J. Biol. Chem. 284, 17157–17169 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Terris, B. et al. Mucin gene expression in intraductal papillary-mucinous pancreatic tumours and related lesions. J. Pathol. 197, 632–637 (2002).

    Article  CAS  PubMed  Google Scholar 

  129. Yonezawa, S. et al. MUC2 gene expression is found in noninvasive tumors but not in invasive tumors of the pancreas and liver: its close relationship with prognosis of the patients. Hum. Pathol. 28, 344–352 (1997).

    Article  CAS  PubMed  Google Scholar 

  130. Yonezawa, S. et al. Gene expression of gastric type mucin (MUC5AC) in pancreatic tumors: its relationship with the biological behavior of the tumor. Pathol. Int. 49, 45–54 (1999).

    Article  CAS  PubMed  Google Scholar 

  131. Andrianifahanana, M. et al. Mucin (MUC) gene expression in human pancreatic adenocarcinoma and chronic pancreatitis: a potential role of MUC4 as a tumor marker of diagnostic significance. Clin. Cancer Res. 7, 4033–4040 (2001).

    CAS  PubMed  Google Scholar 

  132. Shimizu, A. et al. Coexpression of MUC16 and mesothelin is related to the invasion process in pancreatic ductal adenocarcinoma. Cancer Sci. 103, 739–746 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Higuchi, T. et al. Molecular cloning, genomic structure, and expression analysis of MUC20, a novel mucin protein, up-regulated in injured kidney. J. Biol. Chem. 279, 1968–1979 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Itoh, Y. et al. Identification and expression of human epiglycanin/MUC21: a novel transmembrane mucin. Glycobiology 18, 74–83 (2008).

    Article  CAS  PubMed  Google Scholar 

  135. Rückert, F., Pilarsky, C. & Grützmann, R. Serum tumor markers in pancreatic cancer—recent discoveries. Cancer 2, 1107 (2010).

    Article  CAS  Google Scholar 

  136. Ni, X. G. et al. The clinical value of serum CEA, CA19–9, and CA242 in the diagnosis and prognosis of pancreatic cancer. Eur. J. Surg. Oncol. 31, 164–169 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Tsutsumi, K. et al. Monitoring of CA19–9 and SPan-1 can facilitate the earlier confirmation of progressing pancreatic cancer during chemotherapy. Pancreatology 12, 409–416 (2012).

    Article  CAS  PubMed  Google Scholar 

  138. Bunger, S., Laubert, T., Roblick, U. J. & Habermann, J. K. Serum biomarkers for improved diagnostic of pancreatic cancer: a current overview. J. Cancer Res. Clin. Oncol. 137, 375–389 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. Yonezawa, S., Higashi, M., Yamada, N. & Goto, M. Precursor lesions of pancreatic cancer. Gut Liver 2, 137–154 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Gold, D. V. et al. PAM4 enzyme immunoassay alone and in combination with CA 19–9 for the detection of pancreatic adenocarcinoma. Cancer 119, 522–528 (2013).

    Article  CAS  PubMed  Google Scholar 

  141. Lepisto, A. J. et al. A phase I/II study of a MUC1 peptide pulsed autologous dendritic cell vaccine as adjuvant therapy in patients with resected pancreatic and biliary tumors. Cancer Ther. 6, 955–964 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Pecher, G., Haring, A., Kaiser, L. & Thiel, E. Mucin gene (MUC1) transfected dendritic cells as vaccine: results of a phase I/II clinical trial. Cancer Immunol. Immunother. 51, 669–673 (2002).

    Article  CAS  PubMed  Google Scholar 

  143. Gulec, S. A. et al. Treatment of advanced pancreatic carcinoma with 90Y-clivatuzumab tetraxetan: a phase I single-dose escalation trial, Clin. Cancer Res. 17, 4091–4100 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Cardillo, T. M., Ying, Z. & Gold, D. V. Therapeutic advantage of 90yttrium versus 131iodine-labeled PAM4 antibody in experimental pancreatic cancer. Clin. Cancer Res. 7, 3186–3192 (2001).

    CAS  PubMed  Google Scholar 

  145. Gold, D. V., Cardillo, T., Vardi, Y. & Blumenthal, R. Radioimmunotherapy of experimental pancreatic cancer with 131I-labeled monoclonal antibody PAM4. Int. J. Cancer 71, 660–667 (1997).

    Article  CAS  PubMed  Google Scholar 

  146. Gold, D. V., Cardillo, T., Goldenberg, D. M. & Sharkey, R. M. Localization of pancreatic cancer with radiolabeled monoclonal antibody PAM4. Crit. Rev. Oncol. Hematol. 39, 147–154 (2001).

    Article  CAS  PubMed  Google Scholar 

  147. Joshi, M. D. et al. MUC1 oncoprotein is a druggable target in human prostate cancer cells. Mol. Cancer Ther. 8, 3056–3065 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Brockhausen, I., Schachter, H. & Stanley, P. in Essentials of Glycobiology. 2nd edn Ch. 9 (Cold Spring Harbor, 2009).

    Google Scholar 

  149. Lang, T., Hansson, G. C. & Samuelsson, T. Gel-forming mucins appeared early in metazoan evolution. Proc. Natl Acad. Sci. USA 104, 16209–16214 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Chaturvedi, P., Singh, A. P. & Batra, S. K. Structure, evolution, and biology of the MUC4 mucin. FASEB J. 22, 966–981 (2008).

    Article  CAS  PubMed  Google Scholar 

  151. Duraisamy, S., Ramasamy, S., Kharbanda, S. & Kufe, D. Distinct evolution of the human carcinoma-associated transmembrane mucins, MUC1, MUC4 AND MUC16. Gene 373, 28–34 (2006).

    Article  CAS  PubMed  Google Scholar 

  152. Pelaseyed, T. et al. Unfolding dynamics of the mucin SEA domain probed by force spectroscopy suggest that it acts as a cell protective device. FEBS J. 280, 1491–1501 (2013).

    Article  CAS  PubMed  Google Scholar 

  153. Ho, S. B. et al. Activity of recombinant cysteine-rich domain proteins derived from the membrane-bound MUC17/Muc3 family mucins. Biochim. Biophys. Acta 1800, 629–638 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Ciccarelli, F. D., Doerks, T. & Bork, P. AMOP, a protein module alternatively spliced in cancer cells. Trends Biochem. Sci. 27, 113–115 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors on this work are supported, in part, by grants from the NIH (TMEN U54 CA163120, EDRN UO1 CA111294, SPORE P50 CA127297, RO1 CA131944, RO1 CA133774, RO1 CA78590 and RO3 CA167342).

Author information

Authors and Affiliations

Authors

Contributions

S. Kaur, S. Kumar, N. Momi and S. K. Batra contributed to all aspects of producing this article. A. R. Sasson substantially contributed to the discussion of content and reviewed and/or edited the article before submission.

Corresponding author

Correspondence to Surinder K. Batra.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaur, S., Kumar, S., Momi, N. et al. Mucins in pancreatic cancer and its microenvironment. Nat Rev Gastroenterol Hepatol 10, 607–620 (2013). https://doi.org/10.1038/nrgastro.2013.120

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2013.120

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer