Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dietary and lifestyle factors in functional dyspepsia

Abstract

Dietary factors are increasingly recognized to have an important role in triggering symptoms in a large proportion of patients with functional dyspepsia. Fatty foods seem to be the main culprits, but other foods (including carbohydrate-containing foods, milk and dairy products, citrus fruits, spicy foods, coffee and alcohol) have also been implicated. However, blind challenge tests do not provide consistent results. Moreover, although patients identify specific foods as triggers of their symptoms, these patients often do not seem to make behavioural adjustments in an attempt to improve symptoms; that is, any differences in dietary intake and lifestyle between patients and healthy individuals are small. Patients with functional dyspepsia exhibit mixed sensory–motor abnormalities, such as gastric hypersensitivity and impaired gastric accommodation of a meal. Nutrients, particularly fat, exacerbate these abnormalities and might thereby trigger postprandial symptoms. Cognitive factors, including anticipation related to previous negative experience with certain foods, might also have a role in triggering symptoms. Studies evaluating the potential beneficial effect of dietary interventions and changes in lifestyle are lacking, and this Review outlines a number of options that could be used as starting points for meaningful large-scale studies in the future.

Key Points

  • A large proportion of patients with functional dyspepsia report that their symptoms are triggered by meal ingestion

  • Dietary intake between patients with functional dyspepsia and healthy individuals is similar; patients with functional dyspepsia have a slightly reduced dietary fat intake and a tendency to consume smaller meals more frequently

  • Patients with functional dyspepsia exhibit abnormal sensory and reflex activity in the upper gastrointestinal tract, and these dysfunctions can be exacerbated by dietary and lifestyle factors

  • The reported relationship between food ingestion and symptom induction suggests a role for diet in the treatment of functional dyspepsia; however, the relationship is complex and difficult to define

  • Large, well-designed and adequately powered studies are required to address clearly defined questions focusing on specific subgroups in this heterogenous condition to evaluate the role of dietary interventions

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Dietary and lifestyle factors in functional dyspepsia.

References

  1. 1

    Tack, J. et al. Functional gastroduodenal disorders. Gastroenterology 130, 1466–1479 (2006).

    PubMed  PubMed Central  Google Scholar 

  2. 2

    Bisschops, R. et al. Relationship between symptoms and ingestion of a meal in functional dyspepsia. Gut 57, 1495–1503 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Delgado-Aros, S. et al. Contributions of gastric volumes and gastric emptying to meal size and postmeal symptoms in functional dyspepsia. Gastroenterology 127, 1685–1694 (2004).

    PubMed  Google Scholar 

  4. 4

    Hausken, T., Gilja, O. H., Undeland, K. A. & Berstad, A. Timing of postprandial dyspeptic symptoms and transpyloric passage of gastric contents. Scand. J. Gastroenterol. 33, 822–827 (1998).

    CAS  PubMed  Google Scholar 

  5. 5

    Pilichiewicz, A. N., Horowitz, M., Holtmann, G. J., Talley, N. J. & Feinle-Bisset, C. Relationship between symptoms and dietary patterns in patients with functional dyspepsia. Clin. Gastroenterol. Hepatol. 7, 317–322 (2009).

    PubMed  Google Scholar 

  6. 6

    Caldarella, M. P., Azpiroz, F. & Malagelada, J. R. Antro-fundic dysfunctions in functional dyspepsia. Gastroenterology 124, 1220–1229 (2003).

    PubMed  Google Scholar 

  7. 7

    Boyd, K. A. et al. High-fat diet effects on gut motility, hormone, and appetite responses to duodenal lipid in healthy men. Am. J. Physiol. Gastrointest. Liver Physiol. 284, G188–G196 (2003).

    CAS  PubMed  Google Scholar 

  8. 8

    Brennan, I. M. et al. Effects of acute dietary restriction on gut motor, hormone and energy intake responses to duodenal fat in obese men. Int. J. Obes. (Lond.) 35, 448–456 (2011).

    CAS  Google Scholar 

  9. 9

    Cunningham, K. M., Daly, J., Horowitz, M. & Read, N. W. Gastrointestinal adaptation to diets of differing fat composition in human volunteers. Gut 32, 483–486 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Stewart, J. E. et al. Marked differences in gustatory and gastrointestinal sensitivity to oleic acid between lean and obese men. Am. J. Clin. Nutr. 93, 703–711 (2011).

    CAS  PubMed  Google Scholar 

  11. 11

    Feinle-Bisset, C. & Horowitz, M. Dietary factors in functional dyspepsia. Neurogastroenterol. Motil. 18, 608–618 (2006).

    CAS  PubMed  Google Scholar 

  12. 12

    Tack, J., Caenepeel, P., Fischler, B., Piessevaux, H. & Janssens, J. Symptoms associated with hypersensitivity to gastric distention in functional dyspepsia. Gastroenterology 121, 526–535 (2001).

    CAS  PubMed  Google Scholar 

  13. 13

    Tack, J., Piessevaux, H., Coulie, B., Caenepeel, P. & Janssens, J. Role of impaired gastric accommodation to a meal in functional dyspepsia. Gastroenterology 115, 1346–1352 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Carvalho, R. V., Lorena, S. L., Almeida, J. R. & Mesquita, M. A. Food intolerance, diet composition, and eating patterns in functional dyspepsia patients. Dig. Dis. Sci. 55, 60–65 (2010).

    PubMed  Google Scholar 

  15. 15

    Filipovic, B. F. et al. Laboratory parameters and nutritional status in patients with functional dyspepsia. Eur. J. Intern. Med. 22, 300–304 (2011).

    PubMed  Google Scholar 

  16. 16

    Mullan, A. et al. Food and nutrient intakes and eating patterns in functional and organic dyspepsia. Eur. J. Clin. Nutr. 48, 97–105 (1994).

    CAS  PubMed  Google Scholar 

  17. 17

    Cuperus, P., Keeling, P. W. & Gibney, M. J. Eating patterns in functional dyspepsia: a case control study. Eur. J. Clin. Nutr. 50, 520–523 (1996).

    CAS  PubMed  Google Scholar 

  18. 18

    Hampel, H., Abraham, N. S. & El-Serag, H. B. Meta-analysis: obesity and the risk for gastroesophageal reflux disease and its complications. Ann. Intern. Med. 143, 199–211 (2005).

    PubMed  PubMed Central  Google Scholar 

  19. 19

    Sinn, D. H. et al. The speed of eating and functional dyspepsia in young women. Gut Liver 4, 173–178 (2010).

    PubMed  PubMed Central  Google Scholar 

  20. 20

    Saito, Y. A., Locke, G. R. 3rd, Weaver, A. L., Zinsmeister, A. R. & Talley, N. J. Diet and functional gastrointestinal disorders: a population-based case-control study. Am. J. Gastroenterol. 100, 2743–2748 (2005).

    PubMed  Google Scholar 

  21. 21

    Kearney, J. et al. Dietary intakes and adipose tissue levels of linoleic acid in peptic ulcer disease. Br. J. Nutr. 62, 699–706 (1989).

    CAS  PubMed  Google Scholar 

  22. 22

    De la Roca-Chiapas, J. M. et al. Stress profile, coping style, anxiety, depression, and gastric emptying as predictors of functional dyspepsia: a case-control study. J. Psychosom. Res. 68, 73–81 (2010).

    PubMed  Google Scholar 

  23. 23

    Aro, P. et al. Anxiety is associated with uninvestigated and functional dyspepsia (Rome III criteria) in a Swedish population-based study. Gastroenterology 137, 94–100 (2009).

    PubMed  Google Scholar 

  24. 24

    Miwa, H. Life style in persons with functional gastrointestinal disorders—large-scale internet survey of lifestyle in Japan. Neurogastroenterol. Motil. 24, 464–471 (2012).

    CAS  PubMed  Google Scholar 

  25. 25

    Gathaiya, N. et al. Novel associations with dyspepsia: a community-based study of familial aggregation, sleep dysfunction and somatization. Neurogastroenterol. Motil. 21, 922-e69 (2009).

    PubMed  PubMed Central  Google Scholar 

  26. 26

    Burri, E. et al. Abdomino-phrenic dysynergia in patients with functional dyspepsia [abstract]. Gut 60 (Suppl. 3), A43 (2011).

    Google Scholar 

  27. 27

    Villoria, A., Serra, J., Azpiroz, F. & Malagelada, J. R. Physical activity and intestinal gas clearance in patients with bloating. Am. J. Gastroenterol. 101, 2552–2557 (2006).

    PubMed  Google Scholar 

  28. 28

    Caldarella, M. P., Azpiroz, F. & Malagelada, J. R. Selective effects of nutrients on gut sensitivity and reflexes. Gut 56, 37–42 (2007).

    CAS  PubMed  Google Scholar 

  29. 29

    Richter, J. E. Stress and psychologic and environmental factors in functional dyspepsia. Scand. J. Gastroenterol. Suppl. 182, 40–46 (1991).

    CAS  PubMed  Google Scholar 

  30. 30

    Talley, N. J., Weaver, A. L. & Zinsmeister, A. R. Smoking, alcohol, and nonsteroidal anti-inflammatory drugs in outpatients with functional dyspepsia and among dyspepsia subgroups. Am. J. Gastroenterol. 89, 524–528 (1994).

    CAS  PubMed  Google Scholar 

  31. 31

    Eslick, G. D. Gastrointestinal symptoms and obesity: a meta-analysis. Obes. Rev. 13, 469–479 (2012).

    CAS  PubMed  Google Scholar 

  32. 32

    Pfeiffer, B. et al. Nutritional intake and gastrointestinal problems during competitive endurance events. Med. Sci. Sports Exerc. 44, 344–351 (2011).

    Google Scholar 

  33. 33

    Piche, T. et al. Colonic fermentation influences lower esophageal sphincter function in gastroesophageal reflux disease. Gastroenterology 124, 894–902 (2003).

    PubMed  Google Scholar 

  34. 34

    Piche, T. et al. Modulation by colonic fermentation of LES function in humans. Am. J. Physiol. Gastrointest. Liver Physiol. 278, G578–G584 (2000).

    CAS  PubMed  Google Scholar 

  35. 35

    Ropert, A. et al. Colonic fermentation and proximal gastric tone in humans. Gastroenterology 111, 289–296 (1996).

    CAS  PubMed  Google Scholar 

  36. 36

    Friedlander, P. H. Food and indigestion. An investigation of possible relationships. Br. Med. J. 2, 1454–1458 (1959).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Kaess, H., Kellermann, M. & Castro, A. Food intolerance in duodenal ulcer patients, non ulcer dyspeptic patients and healthy subjects. A prospective study. Klin. Wochenschr. 66, 208–211 (1988).

    CAS  PubMed  Google Scholar 

  38. 38

    Elta, G. H., Behler, E. M. & Colturi, T. J. Comparison of coffee intake and coffee-induced symptoms in patients with duodenal ulcer, nonulcer dyspepsia, and normal controls. Am. J. Gastroenterol. 85, 1339–1342 (1990).

    CAS  PubMed  Google Scholar 

  39. 39

    Feinle-Bisset, C., Vozzo, R., Horowitz, M. & Talley, N. J. Diet, food intake, and disturbed physiology in the pathogenesis of symptoms in functional dyspepsia. Am. J. Gastroenterol. 99, 170–181 (2004).

    PubMed  Google Scholar 

  40. 40

    Hammer, J., Fuhrer, M., Pipal, L. & Matiasek, J. Hypersensitivity for capsaicin in patients with functional dyspepsia. Neurogastroenterol. Motil. 20, 125–133 (2008).

    CAS  PubMed  Google Scholar 

  41. 41

    Pilichiewicz, A. N. et al. Functional dyspepsia is associated with a greater symptomatic response to fat but not carbohydrate, increased fasting and postprandial CCK, and diminished PYY. Am. J. Gastroenterol. 103, 2613–2623 (2008).

    CAS  PubMed  Google Scholar 

  42. 42

    Taggart, D. & Billington, B. P. Fatty foods and dyspepsia. Lancet 2, 465–466 (1966).

    CAS  PubMed  Google Scholar 

  43. 43

    Manichanh, C. et al. Flatulence: is it what it seems? Clinical, physiological and microbiological features. Gastroenterology 142 (Suppl. 1), S611–S612 (2012).

    Google Scholar 

  44. 44

    Seimon, R. V. et al. The droplet size of intraduodenal fat emulsions influences antropyloroduodenal motility, hormone release, and appetite in healthy males. Am. J. Clin. Nutr. 89, 1729–1736 (2009).

    CAS  PubMed  Google Scholar 

  45. 45

    Suarez, F. L., Savaiano, D. A. & Levitt, M. D. A comparison of symptoms after the consumption of milk or lactose-hydrolyzed milk by people with self-reported severe lactose intolerance. N. Engl. J. Med. 333, 1–4 (1995).

    CAS  PubMed  Google Scholar 

  46. 46

    Houghton, L. A., Mangall, Y. F., Dwivedi, A. & Read, N. W. Sensitivity to nutrients in patients with non-ulcer dyspepsia. Eur. J. Gastroenterol. Hepatol. 5, 109–114 (1993).

    Google Scholar 

  47. 47

    Feinle-Bisset, C., Meier, B., Fried, M. & Beglinger, C. Role of cognitive factors in symptom induction following high and low fat meals in patients with functional dyspepsia. Gut 52, 1414–1418 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Cecil, J. E., Francis, J. & Read, N. W. Relative contributions of intestinal, gastric, oro-sensory influences and information to changes in appetite induced by the same liquid meal. Appetite 31, 377–390 (1998).

    CAS  PubMed  Google Scholar 

  49. 49

    Accarino, A. M., Azpiroz, F. & Malagelada, J. R. Attention and distraction: effects on gut perception. Gastroenterology 113, 415–422 (1997).

    CAS  PubMed  Google Scholar 

  50. 50

    Accarino, A. M., Azpiroz, F. & Malagelada, J. R. Modification of small bowel mechanosensitivity by intestinal fat. Gut 48, 690–695 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Borovicka, J. et al. Role of lipase in the regulation of postprandial gastric acid secretion and emptying of fat in humans: a study with orlistat, a highly specific lipase inhibitor. Gut 46, 774–781 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Degen, L. et al. Role of free fatty acids in regulating gastric emptying and gallbladder contraction. Digestion 74, 131–139 (2006).

    CAS  PubMed  Google Scholar 

  53. 53

    Feinle, C., Grundy, D. & Read, N. W. Effects of duodenal nutrients on sensory and motor responses of the human stomach to distension. Am. J. Physiol. Gastrointest. Liver Physiol. 273, G721–G726 (1997).

    CAS  Google Scholar 

  54. 54

    Feinle, C., Grundy, D., Otto, B. & Fried, M. Relationship between increasing duodenal lipid doses, gastric perception, and plasma hormone levels in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 278, R1217–R1223 (2000).

    CAS  PubMed  Google Scholar 

  55. 55

    Feinle, C., Grundy, D. & Fried, M. Modulation of gastric distension-induced sensations by small intestinal receptors. Am. J. Physiol. Gastrointest. Liver Physiol. 280, G51–G57 (2001).

    CAS  PubMed  Google Scholar 

  56. 56

    Feinle, C. et al. Effects of fat digestion on appetite, APD motility, and gut hormones in response to duodenal fat infusion in humans. Am. J. Physiol. Gastrointest. Liver Physiol. 284, G798–G807 (2003).

    CAS  PubMed  Google Scholar 

  57. 57

    Heddle, R. et al. Motor mechanisms associated with slowing of the gastric emptying of a solid meal by an intraduodenal lipid infusion. J. Gastroenterol. Hepatol. 4, 437–447 (1989).

    CAS  PubMed  Google Scholar 

  58. 58

    Pilichiewicz, A. N. et al. Load-dependent effects of duodenal lipid on antropyloroduodenal motility, plasma CCK and PYY, and energy intake in healthy men. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, R2170–R2178 (2007).

    CAS  PubMed  Google Scholar 

  59. 59

    Pilichiewicz, A. N. et al. Load-dependent effects of duodenal glucose on glycemia, gastrointestinal hormones, antropyloroduodenal motility, and energy intake in healthy men. Am. J. Physiol. Endocrinol. Metab. 293, E743–E753 (2007).

    CAS  PubMed  Google Scholar 

  60. 60

    Ryan, A. T. et al. Intraduodenal protein modulates antropyloroduodenal motility, hormone release, glycemia, appetite, and energy intake in lean men. Am. J. Clin. Nutr. 96, 474–482 (2012).

    CAS  PubMed  Google Scholar 

  61. 61

    Seimon, R. V. et al. Effects of varying combinations of intraduodenal lipid and carbohydrate on antropyloroduodenal motility, hormone release, and appetite in healthy males. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R912–R920 (2009).

    CAS  PubMed  Google Scholar 

  62. 62

    Seimon, R. V. et al. Pooled-data analysis identifies pyloric pressures and plasma cholecystokinin concentrations as major determinants of acute energy intake in healthy, lean men. Am. J. Clin. Nutr. 92, 61–68 (2010).

    CAS  PubMed  Google Scholar 

  63. 63

    Azpiroz, F. & Tack, J. in Pathophysiology of the enteric nervous system: a basis for understanding functional diseases (eds Spiller, R. & Grundy, D.) 126–133 (Wiley-Blackwell, Hoboken, 2004).

    Google Scholar 

  64. 64

    Burri, E., Azpiroz, F., Hernandez, C., Accarino, A. & Malagelada, J. R. Biofeedback treatment of abdominal distention: a proof-of-concept [abstract]. Gut 59 (Suppl. 3), A137 (2010).

    Google Scholar 

  65. 65

    Boeckxstaens, G. E., Hirsch, D. P., Kuiken, S. D., Heisterkamp, S. H. & Tytgat, G. N. The proximal stomach and postprandial symptoms in functional dyspeptics. Am. J. Gastroenterol. 97, 40–48 (2002).

    CAS  PubMed  Google Scholar 

  66. 66

    Bradette, M., Pare, P., Douville, P. & Morin, A. Visceral perception in health and functional dyspepsia. Crossover study of gastric distension with placebo and domperidone. Dig. Dis. Sci. 36, 52–58 (1991).

    CAS  PubMed  Google Scholar 

  67. 67

    Mearin, F., Cucala, M., Azpiroz, F. & Malagelada, J. R. The origin of symptoms on the brain-gut axis in functional dyspepsia. Gastroenterology 101, 999–1006 (1991).

    CAS  PubMed  Google Scholar 

  68. 68

    Coffin, B., Azpiroz, F., Guarner, F. & Malagelada, J. R. Selective gastric hypersensitivity and reflex hyporeactivity in functional dyspepsia. Gastroenterology 107, 1345–1351 (1994).

    CAS  PubMed  Google Scholar 

  69. 69

    Greydanus, M. P. et al. Neurohormonal factors in functional dyspepsia: insights on pathophysiological mechanisms. Gastroenterology 100, 1311–1318 (1991).

    CAS  PubMed  Google Scholar 

  70. 70

    Holtmann, G., Goebell, H., Jockenhoevel, F. & Talley, N. J. Altered vagal and intestinal mechanosensory function in chronic unexplained dyspepsia. Gut 42, 501–506 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Barbera, R., Feinle, C. & Read, N. W. Abnormal sensitivity to duodenal lipid infusion in patients with functional dyspepsia. Eur. J. Gastroenterol. Hepatol. 7, 1051–1057 (1995).

    CAS  PubMed  Google Scholar 

  72. 72

    Feinle, C., Meier, O., Otto, B., D'Amato, M. & Fried, M. Role of duodenal lipid and cholecystokinin A receptors in the pathophysiology of functional dyspepsia. Gut 48, 347–355 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Barbera, R., Feinle, C. & Read, N. W. Nutrient-specific modulation of gastric mechanosensitivity in patients with functional dyspepsia. Dig. Dis. Sci. 40, 1636–1641 (1995).

    CAS  PubMed  Google Scholar 

  74. 74

    Little, T. J. & Feinle-Bisset, C. Effects of dietary fat on appetite and energy intake in health and obesity—oral and gastrointestinal sensory contributions. Physiol. Behav. 104, 613–620 (2011).

    CAS  PubMed  Google Scholar 

  75. 75

    Chua, A. S., Dinan, T. G., Rovati, L. C. & Keeling, P. W. Cholecystokinin hyperresponsiveness in dysmotility-type nonulcer dyspepsia. Ann. NY Acad. Sci. 713, 298–299 (1994).

    CAS  PubMed  Google Scholar 

  76. 76

    Lanzini, A. et al. Circulating ghrelin level is increased in coeliac disease as in functional dyspepsia and reverts to normal during gluten-free diet. Aliment. Pharmacol. Ther. 23, 907–913 (2006).

    CAS  PubMed  Google Scholar 

  77. 77

    Stewart, J. E., Feinle-Bisset, C. & Keast, R. S. Fatty acid detection during food consumption and digestion: associations with ingestive behavior and obesity. Prog. Lipid Res. 50, 225–233 (2011).

    CAS  PubMed  Google Scholar 

  78. 78

    Little, T. J. & Feinle-Bisset, C. Oral and gastrointestinal sensing of dietary fat and appetite regulation in humans: modification by diet and obesity. Front. Neurosci. 4, 178 (2010).

    PubMed  PubMed Central  Google Scholar 

  79. 79

    Stewart, J. E. et al. Oral sensitivity to fatty acids, food consumption and BMI in human subjects. Br. J. Nutr. 104, 145–152 (2010).

    CAS  PubMed  Google Scholar 

  80. 80

    Samsom, M., Verhagen, M. A., vanBerge Henegouwen, G. P. & Smout, A. J. Abnormal clearance of exogenous acid and increased acid sensitivity of the proximal duodenum in dyspeptic patients. Gastroenterology 116, 515–520 (1999).

    CAS  PubMed  Google Scholar 

  81. 81

    Talley, N. J. et al. Efficacy of omeprazole in functional dyspepsia: double-blind, randomized, placebo-controlled trials (the Bond and Opera studies). Aliment. Pharmacol. Ther. 12, 1055–1065 (1998).

    CAS  PubMed  Google Scholar 

  82. 82

    Caterina, M. J. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816–824 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Holzer, P. Capsaicin: cellular targets, mechanisms of action, and selectivity for thin sensory neurons. Pharmacol. Rev. 43, 143–201 (1991).

    CAS  PubMed  Google Scholar 

  84. 84

    Bortolotti, M., Coccia, G., Grossi, G. & Miglioli, M. The treatment of functional dyspepsia with red pepper. Aliment. Pharmacol. Ther. 16, 1075–1082 (2002).

    CAS  PubMed  Google Scholar 

  85. 85

    Oustamanolakis, P. & Tack, J. Dyspepsia: organic versus functional. J. Clin. Gastroenterol. 46, 175–190 (2012).

    PubMed  Google Scholar 

  86. 86

    Gibson, P. R. & Shepherd, S. J. Evidence-based dietary management of functional gastrointestinal symptoms: The FODMAP approach. J. Gastroenterol. Hepatol. 25, 252–258 (2010).

    Google Scholar 

  87. 87

    Villanova, N., Azpiroz, F. & Malagelada, J. R. Gastrogastric reflexes regulating gastric tone and their relationship to perception. Am. J. Physiol. Gastrointest. Liver Physiol. 273, G464–G469 (1997).

    CAS  Google Scholar 

  88. 88

    Villanova, N., Azpiroz, F. & Malagelada, J. R. Perception and gut reflexes induced by stimulation of gastrointestinal thermoreceptors in humans. J. Physiol. 502 (Pt 1), 215–222 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

C. Feinle-Bisset is supported by a Senior Research Fellowship (grant no 627002, 2010–2014) from the National Health and Medical Research Council of Australia. F. Azpiroz acknowledges support from the Dirección General de Investigación (SAF 2009-07416) and Centro para el Desarrollo Tecnólogico Industrial (CEN-20101016), Spain. CIBREREHD is funded by the Instituto de Salud Carlos III.

Author information

Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of the manuscript.

Corresponding author

Correspondence to Christine Feinle-Bisset.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Studies evaluating food intolerances and dietary habits in functional dyspepsia (DOC 44 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Feinle-Bisset, C., Azpiroz, F. Dietary and lifestyle factors in functional dyspepsia. Nat Rev Gastroenterol Hepatol 10, 150–157 (2013). https://doi.org/10.1038/nrgastro.2012.246

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing