Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The digestive neuronal–glial–epithelial unit: a new actor in gut health and disease

Abstract

The monolayer of columnar epithelial cells lining the gastrointestinal tract—the intestinal epithelial barrier (IEB)—is the largest exchange surface between the body and the external environment. The permeability of the IEB has a central role in the regulation of fluid and nutrient intake as well as in the control of the passage of pathogens. The functions of the IEB are highly regulated by luminal as well as internal components, such as bacteria or immune cells, respectively. Evidence indicates that two cell types of the enteric nervous system (ENS), namely enteric neurons and enteric glial cells, are potent modulators of IEB functions, giving rise to the novel concept of a digestive 'neuronal–glial–epithelial unit' akin to the neuronal–glial–endothelial unit in the brain. In this Review, we summarize findings demonstrating that the ENS is a key regulator of IEB function and is actively involved in pathologies associated with altered barrier function.

Key Points

  • Altered functioning of the intestinal epithelial barrier (IEB) has a central role in the aetiology of a wide range of diseases; efficient IEB healing is essential to maintain IEB homeostasis

  • An anatomical unit comprised of enteric neurons, enteric glial cells and intestinal epithelial cells sets the basis for a functional digestive neuronal–glial–epithelial unit

  • Enteric neuromediators as well as gliomediators can differentially modulate major IEB functions such as paracellular permeability, intestinal epithelial cell proliferation and wound healing

  • Changes in the phenotype of enteric neurons and glial cells occur in various diseases but the involvement of the enteric nervous system (active or bystander) in these pathologies remains to be defined

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Junctional complexes regulating epithelial cells interactions.
Figure 2: The ENS forms a complex network in close proximity to the IEB.
Figure 3: Soluble factors produced by the ENS regulate IEB functions.

Similar content being viewed by others

References

  1. Sancho, E., Batlle, E. & Clevers, H. Live and let die in the intestinal epithelium. Curr. Opin. Cell Biol. 15, 763–770 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Blikslager, A. T., Moeser, A. J., Gookin, J. L., Jones, S. L. & Odle, J. Restoration of barrier function in injured intestinal mucosa. Physiol. Rev. 87, 545–564 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Taupin, D. & Podolsky, D. K. Trefoil factors: initiators of mucosal healing. Nat. Rev. Mol. Cell Biol. 4, 721–732 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Sturm, A. & Dignass, A. U. Epithelial restitution and wound healing in inflammatory bowel disease. World J. Gastroenterol. 14, 348–353 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rescigno, M. The intestinal epithelial barrier in the control of homeostasis and immunity. Trends Immunol. 32, 256–264 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Turner, J. R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 9, 799–809 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Severson, E. A. & Parkos, C. A. Mechanisms of outside-in signaling at the tight junction by junctional adhesion molecule A. Ann. NY Acad. Sci. 1165, 10–18 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Vetrano, S. & Danese, S. The role of JAM-A in inflammatory bowel disease: unrevealing the ties that bind. Ann. NY Acad. Sci. 1165, 308–313 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Capaldo, C. T. & Macara, I. G. Depletion of E-cadherin disrupts establishment but not maintenance of cell junctions in Madin-Darby canine kidney epithelial cells. Mol. Biol. Cell 18, 189–200 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Van Itallie, C. M. et al. The density of small tight junction pores varies among cell types and is increased by expression of claudin-2. J. Cell Sci. 121, 298–305 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Watson, C. J., Hoare, C. J., Garrod, D. R., Carlson, G. L. & Warhurst, G. Interferon-γ selectively increases epithelial permeability to large molecules by activating different populations of paracellular pores. J. Cell Sci. 118, 5221–5230 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Watson, C. J., Rowland, M. & Warhurst, G. Functional modeling of tight junctions in intestinal cell monolayers using polyethylene glycol oligomers. Am. J. Physiology. Cell Physiol. 281, C388–C397 (2001).

    Article  CAS  Google Scholar 

  13. Anderson, J. M. & Van Itallie, C. M. Tight junctions. Curr. Biol. 18, R941–R943 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Artursson, P., Ungell, A. L. & Lofroth, J. E. Selective paracellular permeability in two models of intestinal absorption: cultured monolayers of human intestinal epithelial cells and rat intestinal segments. Pharm. Res. 10, 1123–1129 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Knipp, G. T., Ho, N. F., Barsuhn, C. L. & Borchardt, R. T. Paracellular diffusion in Caco-2 cell monolayers: effect of perturbation on the transport of hydrophilic compounds that vary in charge and size. J. Pharm. Sci. 86, 1105–1110 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Krug, S. M. et al. Tricellulin forms a barrier to macromolecules in tricellular tight junctions without affecting ion permeability. Mol. Biol. Cell 20, 3713–3724 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shen, L. et al. Myosin light chain phosphorylation regulates barrier function by remodeling tight junction structure. J. Cell Sci. 119, 2095–2106 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Su, L. et al. Targeted epithelial tight junction dysfunction causes immune activation and contributes to development of experimental colitis. Gastroenterology 136, 551–563 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Jou, T. S., Schneeberger, E. E. & Nelson, W. J. Structural and functional regulation of tight junctions by RhoA and Rac1 small GTPases. J. Cell Biol. 142, 101–115 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schlegel, N., Meir, M., Spindler, V., Germer, C. T. & Waschke, J. Differential role of Rho GTPases in intestinal epithelial barrier regulation in vitro. J. Cell. Physiol. 226, 1196–1203 (2010).

    Article  CAS  Google Scholar 

  21. Bruewer, M., Hopkins, A. M., Hobert, M. E., Nusrat, A. & Madara, J. L. RhoA, Rac1, and Cdc42 exert distinct effects on epithelial barrier via selective structural and biochemical modulation of junctional proteins and F-actin. Am. J. Physiol. Cell Physiol. 287, C327–C335 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Rojas, R., Ruiz, W. G., Leung, S. M., Jou, T. S. & Apodaca, G. Cdc42-dependent modulation of tight junctions and membrane protein traffic in polarized Madin-Darby canine kidney cells. Mol. Biol. Cell 12, 2257–2274 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ivanov, A. I., Samarin, S. N., Bachar, M., Parkos, C. A. & Nusrat, A. Protein kinase C activation disrupts epithelial apical junctions via ROCK-II dependent stimulation of actomyosin contractility. BMC Cell Biol. 10, 36 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Collares-Buzato, C. B., Jepson, M. A., Simmons, N. L. & Hirst, B. H. Increased tyrosine phosphorylation causes redistribution of adherens junction and tight junction proteins and perturbs paracellular barrier function in MDCK epithelia. Eur. J. Cell Biol. 76, 85–92 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Chen, Y., Lu, Q., Schneeberger, E. E. & Goodenough, D. A. Restoration of tight junction structure and barrier function by down-regulation of the mitogen-activated protein kinase pathway in ras-transformed Madin-Darby canine kidney cells. Mol. Biol. Cell 11, 849–862 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ciccocioppo, R. et al. Altered expression, localization, and phosphorylation of epithelial junctional proteins in celiac disease. Am. J. Clin. Pathol. 125, 502–511 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Resta-Lenert, S., Smitham, J. & Barrett, K. E. Epithelial dysfunction associated with the development of colitis in conventionally housed mdr1a-/- mice. Am. J. Physiol. Gastrointest. Liver Physiol. 289, G153–G162 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Tsukamoto, T. & Nigam, S. K. Role of tyrosine phosphorylation in the reassembly of occludin and other tight junction proteins. Am. J. Physiol. 276, F737–F750 (1999).

    CAS  PubMed  Google Scholar 

  29. Findley, M. K. & Koval, M. Regulation and roles for claudin-family tight junction proteins. IUBMB Life 61, 431–437 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ivanov, A. I., Nusrat, A. & Parkos, C. A. Endocytosis of epithelial apical junctional proteins by a clathrin-mediated pathway into a unique storage compartment. Mol. Biol. Cell 15, 176–188 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Amasheh, M. et al. Quercetin enhances epithelial barrier function and increases claudin-4 expression in Caco-2 cells. J. Nutr. 138, 1067–1073 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Yu, T. X. et al. Chk2-dependent HuR phosphorylation regulates occludin mRNA translation and epithelial barrier function. Nucleic Acids Res. 39, 8472–8487 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Youakim, A. & Ahdieh, M. Interferon-γ decreases barrier function in T84 cells by reducing ZO-1 levels and disrupting apical actin. Am. J. Physiol. 276, G1279–G1288 (1999).

    CAS  PubMed  Google Scholar 

  34. Keita, A. V. & Soderholm, J. D. The intestinal barrier and its regulation by neuroimmune factors. Neurogastroenterol. Motil. 22, 718–733 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Israel, E. J. Neonatal necrotizing enterocolitis, a disease of the immature intestinal mucosal barrier. Acta Paediatr. Suppl. 396, 27–32 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. da Silva, M. E. et al. Diabetes mellitus-related autoantibodies in childhood autoimmune hepatitis. J. Pediatr. Endocrinol. Metab. 15, 831–840 (2002).

    Article  PubMed  Google Scholar 

  37. Gebbers, J. O. & Laissue, J. A. Bacterial translocation in the normal human appendix parallels the development of the local immune system. Ann. NY Acad. Sci. 1029, 337–343 (2004).

    Article  PubMed  Google Scholar 

  38. Tlaskalova-Hogenova, H. et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell. Mol. Immunol. 8, 110–120 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. De Quelen, F. et al. n-3 polyunsaturated fatty acids in the maternal diet modify the postnatal development of nervous regulation of intestinal permeability in piglets. J. Physiol. 589, 4341–4352 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vaarala, O. Leaking gut in type 1 diabetes. Curr. Opin. Gastroenterol. 24, 701–706 (2008).

    Article  PubMed  Google Scholar 

  41. Weber, P., Brune, T., Ganser, G. & Zimmer, K. P. Gastrointestinal symptoms and permeability in patients with juvenile idiopathic arthritis. Clin. Exp. Rheumatol. 21, 657–662 (2003).

    CAS  PubMed  Google Scholar 

  42. de Magistris, L. et al. Alterations of the intestinal barrier in patients with autism spectrum disorders and in their first-degree relatives. J. Pediatr. Gastroenterol. Nutr. 51, 418–424 (2010).

    Article  PubMed  Google Scholar 

  43. Soderholm, J. D. et al. Epithelial permeability to proteins in the noninflamed ileum of Crohn's disease? Gastroenterology 117, 65–72 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Soderholm, J. D. et al. Augmented increase in tight junction permeability by luminal stimuli in the non-inflamed ileum of Crohn's disease. Gut 50, 307–313 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Buhner, S. et al. Genetic basis for increased intestinal permeability in families with Crohn's disease: role of CARD15 3020insC mutation? Gut 55, 342–347 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Arnott, I. D., Kingstone, K. & Ghosh, S. Abnormal intestinal permeability predicts relapse in inactive Crohn disease. Scand. J. Gastroenterol. 35, 1163–1169 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. D'Inca, R. et al. Intestinal permeability test as a predictor of clinical course in Crohn's disease. Am. J. Gastroenterol. 94, 2956–2960 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Wyatt, J., Vogelsang, H., Hubl, W., Waldhoer, T. & Lochs, H. Intestinal permeability and the prediction of relapse in Crohn's disease. Lancet 341, 1437–1439 (1993).

    Article  CAS  PubMed  Google Scholar 

  49. Buning, C. et al. Increased small intestinal permeability in ulcerative colitis: rather genetic than environmental and a risk factor for extensive disease? Inflamm. Bowel Dis. 18, 1932–1939 (2012).

    Article  PubMed  Google Scholar 

  50. Schurmann, G., Bruwer, M. & Senninger, N. Ulcerative colitis: fate of pediatric ileoanal pouches [German]. Z. Gastroenterol. 37, 987–989 (1999).

    CAS  PubMed  Google Scholar 

  51. Wallon, C., Braaf, Y., Wolving, M., Olaison, G. & Soderholm, J. D. Endoscopic biopsies in Ussing chambers evaluated for studies of macromolecular permeability in the human colon. Scand. J. Gastroenterol. 40, 586–595 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Olson, T. S. et al. The primary defect in experimental ileitis originates from a nonhematopoietic source. J. Exp. Med. 203, 541–552 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Reuter, B. K. & Pizarro, T. T. Mechanisms of tight junction dysregulation in the SAMP1/YitFc model of Crohn's disease-like ileitis. Ann. NY Acad. Sci. 1165, 301–307 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Madsen, K. L. et al. Interleukin-10 gene-deficient mice develop a primary intestinal permeability defect in response to enteric microflora. Inflamm. Bowel Dis. 5, 262–270 (1999).

    Article  CAS  PubMed  Google Scholar 

  55. Arrieta, M. C., Madsen, K., Doyle, J. & Meddings, J. Reducing small intestinal permeability attenuates colitis in the IL10 gene-deficient mouse. Gut 58, 41–48 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Piche, T. et al. Impaired intestinal barrier integrity in the colon of patients with irritable bowel syndrome: involvement of soluble mediators. Gut 58, 196–201 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Ait-Belgnaoui, A., Bradesi, S., Fioramonti, J., Theodorou, V. & Bueno, L. Acute stress-induced hypersensitivity to colonic distension depends upon increase in paracellular permeability: role of myosin light chain kinase. Pain 113, 141–147 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Dai, C., Zhao, D. H. & Jiang, M. VSL#3 probiotics regulate the intestinal epithelial barrier in vivo and in vitro via the p38 and ERK signaling pathways. Int. J. Mol. Med. 29, 202–208 (2012).

    CAS  PubMed  Google Scholar 

  59. Roka, R. et al. Colonic luminal proteases activate colonocyte proteinase-activated receptor-2 and regulate paracellular permeability in mice. Neurogastroenterol. Motil. 19, 57–65 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Okamoto, R. & Watanabe, M. Cellular and molecular mechanisms of the epithelial repair in IBD. Dig. Dis. Sci. 50 (Suppl. 1), S34–S38 (2005).

    Article  PubMed  Google Scholar 

  61. Fiorino, G., Cesarini, M., Indriolo, A. & Malesci, A. Mucosal healing in ulcerative colitis: where do we stand? Curr. Drug Targets 12, 1417–1423 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Flynn, A. & Kane, S. Mucosal healing in Crohn's disease and ulcerative colitis: what does it tell us? Curr. Opin. Gastroenterol. 27, 342–345 (2011).

    Article  PubMed  Google Scholar 

  63. Michetti, P. Assessment and importance of mucosal healing. Presented at UEGW 2011.

  64. Gilbert, S. et al. Enterocyte STAT5 promotes mucosal wound healing via suppression of myosin light chain kinase-mediated loss of barrier function and inflammation. EMBO Mol. Med. 4, 109–124 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wedel, T. et al. Organization of the enteric nervous system in the human colon demonstrated by wholemount immunohistochemistry with special reference to the submucous plexus. Ann. Anat. 181, 327–337 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Grundy, D. & Schemann, M. Enteric nervous system. Curr. Opin. Gastroenterol. 22, 102–110 (2006).

    Article  PubMed  Google Scholar 

  67. Furness, J. B. et al. Sensitization of enteric reflexes in the rat colon in vitro. Auton. Neurosci. 97, 19–25 (2002).

    Article  PubMed  Google Scholar 

  68. Dogiel. Über den Bau der Ganglien in den Geflechten des Darmes und der Gallenblase des Menschen und der Säugetiere [German]. Arch. Anat. Physiol. Leipzig. Anat. Abt. Jg 130–158 (1899).

  69. Gulbransen, B. D. & Sharkey, K. A. Novel functional roles for enteric glia in the gastrointestinal tract. Nat. Rev. Gastroenterol. Hepatol. http://dx.doi.org/10.1038/nrgastro.2012.138.

  70. Cook, R. D. & Burnstock, G. The ultrastructure of Auerbach's plexus in the guinea-pig. II. Non-neuronal elements. J. Neurocytol. 5, 195–206 (1976).

    Article  CAS  PubMed  Google Scholar 

  71. Gabella, G. Glial cells in the myenteric plexus. Z. Naturforsch. B 26, 244–245 (1971).

    Article  CAS  PubMed  Google Scholar 

  72. Hanani, M. & Reichenbach, A. Morphology of horseradish peroxidase (HRP)-injected glial cells in the myenteric plexus of the guinea-pig. Cell Tissue Res. 278, 153–160 (1994).

    Article  CAS  PubMed  Google Scholar 

  73. Jessen, K. R. & Mirsky, R. Astrocyte-like glia in the peripheral nervous system: an immunohistochemical study of enteric glia. J. Neurosci. 3, 2206–2218 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ferri, G. L. et al. Evidence for the presence of S-100 protein in the glial component of the human enteric nervous system. Nature 297, 409–410 (1982).

    Article  CAS  PubMed  Google Scholar 

  75. Hoff, S. et al. Quantitative assessment of glial cells in the human and guinea pig enteric nervous system with an anti-Sox8/9/10 antibody. J. Comp. Neurol. 509, 356–371 (2008).

    Article  PubMed  Google Scholar 

  76. Sasselli, V., Pachnis, V. & Burns, A. J. The enteric nervous system. Dev. Biol. 366, 64–73 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Boesmans, W., van den Berghe, P. & Pachnis, V. Glial heterogeneity in the enteric nervous system [Abstract]. Neurogastroenterol. Motil. 24 (Suppl. s2), 36 (2012).

    Google Scholar 

  78. Song, Z. M., Brookes, S. J., Llewellyn-Smith, I. J. & Costa, M. Ultrastructural studies of the myenteric plexus and smooth muscle in organotypic cultures of the guinea-pig small intestine. Cell Tissue Res. 280, 627–637 (1995).

    Article  CAS  PubMed  Google Scholar 

  79. Neunlist, M. et al. Human ENS regulates the intestinal epithelial barrier permeability and a tight junction-associated protein ZO-1 via VIPergic pathways. Am. J. Physiol. Gastrointest. Liver Physiol. 285, G1028–G1036 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Song, Z. M., Brookes, S. J., Steele, P. A. & Costa, M. Projections and pathways of submucous neurons to the mucosa of the guinea-pig small intestine. Cell Tissue Res. 269, 87–98 (1992).

    Article  CAS  PubMed  Google Scholar 

  81. Neunlist, M., Frieling, T., Rupprecht, C. & Schemann, M. Polarized enteric submucosal circuits involved in secretory responses of the guinea-pig proximal colon. J. Physiol. 506 (Pt 2), 539–550 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Neunlist, M. et al. Changes in chemical coding of myenteric neurones in ulcerative colitis. Gut 52, 84–90 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Porter, A. J., Wattchow, D. A., Brookes, S. J. & Costa, M. Projections of nitric oxide synthase and vasoactive intestinal polypeptide-reactive submucosal neurons in the human colon. J. Gastroenterol. Hepatol. 14, 1180–1187 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Mestres, P., Diener, M. & Rummel, W. Electron microscopy of the mucosal plexus of the rat colon. Acta Anat. (Basel) 143, 275–282 (1992).

    Article  CAS  Google Scholar 

  85. Neunlist, M. et al. Enteric glia inhibit intestinal epithelial cell proliferation partly through a TGF-β1-dependent pathway. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G231–G241 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Van Landeghem, L. et al. Enteric glia promote intestinal mucosal healing via activation of focal adhesion kinase and release of proEGF. Am. J. Physiol. Gastrointest. Liver Physiol. 300, G976–G987 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Savidge, T. C., Sofroniew, M. V. & Neunlist, M. Starring roles for astroglia in barrier pathologies of gut and brain. Lab. Invest. 87, 731–736 (2007).

    Article  PubMed  Google Scholar 

  88. Schemann, M. & Grundy, D. Electrophysiological identification of vagally innervated enteric neurons in guinea pig stomach. Am. J. Physiol. 263, G709–G718 (1992).

    CAS  PubMed  Google Scholar 

  89. Luyer, M. D. et al. Nutritional stimulation of cholecystokinin receptors inhibits inflammation via the vagus nerve. J. Exp. Med. 202, 1023–1029 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ghia, J. E., Blennerhassett, P., Kumar-Ondiveeran, H., Verdu, E. F. & Collins, S. M. The vagus nerve: a tonic inhibitory influence associated with inflammatory bowel disease in a murine model. Gastroenterology 131, 1122–1130 (2006).

    Article  PubMed  Google Scholar 

  91. Costantini, T. W. et al. Vagal nerve stimulation protects against burn-induced intestinal injury through activation of enteric glia cells. Am. J. Physiol. Gastrointest. Liver Physiol. 299, G1308–G1318 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Meurette, G. et al. Sacral nerve stimulation enhances epithelial barrier of the rectum: results from a porcine model. Neurogastroenterol. Motil. 24, 267–273 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Greenwood, B. & Mantle, M. Mucin and protein release in the rabbit jejunum: effects of bethanechol and vagal nerve stimulation. Gastroenterology 103, 496–505 (1992).

    Article  CAS  PubMed  Google Scholar 

  94. van der Zanden, E. P. et al. Vagus nerve activity augments intestinal macrophage phagocytosis via nicotinic acetylcholine receptor α4β2. Gastroenterology 137, 1029–1039 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Boudry, G., Morise, A., Seve, B. & LE Huërou-Luron, I. Effect of milk formula protein content on intestinal barrier function in a porcine model of LBW neonates. Pediatr. Res. 69, 4–9 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Cameron, H. L. & Perdue, M. H. Muscarinic acetylcholine receptor activation increases transcellular transport of macromolecules across mouse and human intestinal epithelium in vitro. Neurogastroenterol. Motil. 19, 47–56 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Gareau, M. G., Jury, J. & Perdue, M. H. Neonatal maternal separation of rat pups results in abnormal cholinergic regulation of epithelial permeability. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G198–G203 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Sun, Y., Fihn, B. M., Sjovall, H. & Jodal, M. Enteric neurons modulate the colonic permeability response to luminal bile acids in rat colon in vivo. Gut 53, 362–367 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wallon, C. et al. Eosinophils express muscarinic receptors and corticotropin-releasing factor to disrupt the mucosal barrier in ulcerative colitis. Gastroenterology 140, 1597–1607 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Hallgren, A., Flemstrom, G. & Nylander, O. Interaction between neurokinin A, VIP, prostanoids, and enteric nerves in regulation of duodenal function. Am. J. Physiol. 275, G95–G103 (1998).

    CAS  PubMed  Google Scholar 

  101. Zakko, S., Barton, G., Weber, E., Dunger-Baldauf, C. & Ruhl, A. Randomised clinical trial: the clinical effects of a novel neurokinin receptor antagonist, DNK333, in women with diarrhoea-predominant irritable bowel syndrome. Aliment. Pharmacol. Ther. 33, 1311–1321 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Blais, A., Aymard, P. & Lacour, B. Paracellular calcium transport across Caco-2 and HT29 cell monolayers. Pflugers Arch. 434, 300–305 (1997).

    Article  CAS  PubMed  Google Scholar 

  103. Nylander, O. & Sjoblom, M. Modulation of mucosal permeability by vasoactive intestinal peptide or lidocaine affects the adjustment of luminal hypotonicity in rat duodenum. Acta Physiol. (Oxf.) 189, 325–335 (2007).

    Article  CAS  Google Scholar 

  104. Conlin, V. S. et al. Vasoactive intestinal peptide ameliorates intestinal barrier disruption associated with Citrobacter rodentium-induced colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 297, G735–G750 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Ben-Horin, S. & Chowers, Y. Neuroimmunology of the gut: physiology, pathology, and pharmacology. Curr. Opin. Pharmacol. 8, 490–495 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Strassheim, D. et al. M3 muscarinic acetylcholine receptors regulate cytoplasmic myosin by a process involving RhoA and requiring conventional protein kinase C isoforms. J. Biol. Chem. 274, 18675–18685 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Bjerknes, M. & Cheng, H. Modulation of specific intestinal epithelial progenitors by enteric neurons. Proc. Natl Acad. Sci. USA 98, 12497–12502 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Toumi, F. et al. Human submucosal neurones regulate intestinal epithelial cell proliferation: evidence from a novel co-culture model. Neurogastroenterol. Motil. 15, 239–242 (2003).

    Article  CAS  PubMed  Google Scholar 

  109. Cheng, K. et al. Acetylcholine release by human colon cancer cells mediates autocrine stimulation of cell proliferation. Am. J. Physiol. Gastrointest. Liver Physiol. 295, G591–G597 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Goode, T. et al. Neurokinin-1 receptor (NK-1R) expression is induced in human colonic epithelial cells by proinflammatory cytokines and mediates proliferation in response to substance P. J. Cell. Physiol. 197, 30–41 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Gross, E. R., Gershon, M. D., Margolis, K. G., Gertsberg, Z. V. & Cowles, R. A. Neuronal serotonin regulates growth of the intestinal mucosa in mice. Gastroenterology 143, 408–417 e402 (2012).

    Article  CAS  PubMed  Google Scholar 

  112. Wright, K. et al. Differential expression of cannabinoid receptors in the human colon: cannabinoids promote epithelial wound healing. Gastroenterology 129, 437–453 (2005).

    Article  PubMed  Google Scholar 

  113. Konturek, P. C. et al. Role of brain-gut axis in healing of gastric ulcers. J. Physiol. Pharmacol. 55, 179–192 (2004).

    CAS  PubMed  Google Scholar 

  114. Bulut, K. et al. Sensory neuropeptides and epithelial cell restitution: the relevance of SP- and CGRP-stimulated mast cells. Int. J. Colorectal Dis. 23, 535–541 (2008).

    Article  PubMed  Google Scholar 

  115. Felderbauer, P. et al. Substance P induces intestinal wound healing via fibroblasts—evidence for a TGF-β-dependent effect. Int. J. Colorectal Dis. 22, 1475–1480 (2007).

    Article  PubMed  Google Scholar 

  116. Aube, A. C. et al. Changes in enteric neurone phenotype and intestinal functions in a transgenic mouse model of enteric glia disruption. Gut 55, 630–637 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bush, T. G. et al. Fulminant jejuno-ileitis following ablation of enteric glia in adult transgenic mice. Cell 93, 189–201 (1998).

    Article  CAS  PubMed  Google Scholar 

  118. Cornet, A. et al. Enterocolitis induced by autoimmune targeting of enteric glial cells: a possible mechanism in Crohn's disease? Proc. Natl Acad. Sci. USA 98, 13306–13311 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Savidge, T. C. et al. Enteric glia regulate intestinal barrier function and inflammation via release of S-nitrosoglutathione. Gastroenterology 132, 1344–1358 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Nasser, Y. et al. Role of enteric glia in intestinal physiology: effects of the gliotoxin fluorocitrate on motor and secretory function. Am. J. Physiol. Gastrointest. Liver Physiol. 291, G912–G927 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Flamant, M. et al. Enteric glia protect against Shigella flexneri invasion in intestinal epithelial cells: a role for S-nitrosoglutathione. Gut 60, 473–484 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. Dijkstra, G., van Goor, H., Jansen, P. L. & Moshage, G. Targeting nitric oxide in the gastrointestinal tract. Curr. Opin. Investig. Drugs 5, 529–536 (2004).

    CAS  PubMed  Google Scholar 

  123. Xiao, W. D. et al. The protective effect of enteric glial cells on intestinal epithelial barrier function is enhanced by inhibiting inducible nitric oxide synthase activity under lipopolysaccharide stimulation. Mol. Cell. Neurosci. 46, 527–534 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. MacEachern, S. J., Patel, B. A., McKay, D. M. & Sharkey, K. A. Nitric oxide regulation of colonic epithelial ion transport: a novel role for enteric glia in the myenteric plexus. J. Physiol. 589, 3333–3348 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Steinkamp, M. et al. Glial-derived neurotrophic factor regulates apoptosis in colonic epithelial cells. Gastroenterology 124, 1748–1757 (2003).

    Article  CAS  PubMed  Google Scholar 

  126. Zhang, D. K. et al. Glial-derived neurotrophic factor regulates intestinal epithelial barrier function and inflammation and is therapeutic for murine colitis. J. Pathol. 222, 213–222 (2010).

    Article  CAS  PubMed  Google Scholar 

  127. Anitha, M. et al. GDNF rescues hyperglycemia-induced diabetic enteric neuropathy through activation of the PI3K/Akt pathway. J. Clin. Invest. 116, 344–356 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Baudry, C. et al. Diet-induced obesity has neuroprotective effects in murine gastric enteric nervous system: involvement of leptin and glial cell line-derived neurotrophic factor. J. Physiol. 590, 533–544 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Costantini, T. W. et al. Targeting α-7 nicotinic acetylcholine receptor in the enteric nervous system: a cholinergic agonist prevents gut barrier failure after severe burn injury. Am. J. Pathol. 181, 478–486 (2012).

    Article  CAS  PubMed  Google Scholar 

  130. Bach-Ngohou, K. et al. Enteric glia modulate epithelial cell proliferation and differentiation through 15-deoxy-12,14-prostaglandin J2. J. Physiol. 588, 2533–2544 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Van Landeghem, L. et al. Regulation of intestinal epithelial cells transcriptome by enteric glial cells: impact on intestinal epithelial barrier functions. BMC Genomics 10, 507 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Esposito, G. et al. Enteric glial-derived S100B protein stimulates nitric oxide production in celiac disease. Gastroenterology 133, 918–925 (2007).

    Article  CAS  PubMed  Google Scholar 

  133. Wedel, T., Krammer, H. J., Kuhnel, W. & Sigge, W. Alterations of the enteric nervous system in neonatal necrotizing enterocolitis revealed by whole-mount immunohistochemistry. Pediatr. Pathol. Lab. Med. 18, 57–70 (1998).

    Article  CAS  PubMed  Google Scholar 

  134. Rolli-Derkinderen, M. et al. Enteric glial cells from patients with Crohn's disease misreact to inflammation and induce intestinal epithelial cell permeability [Abstract]. Neurogastroenterol. Motil. 24 (Suppl. s2), 44 (2012).

    Google Scholar 

  135. von Boyen, G. B. et al. Distribution of enteric glia and GDNF during gut inflammation. BMC Gastroenterol. 11, 3 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hamby, M. E. & Sofroniew, M. V. Reactive astrocytes as therapeutic targets for CNS disorders. Neurotherapeutics 7, 494–506 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Cirillo, C. et al. Increased mucosal nitric oxide production in ulcerative colitis is mediated in part by the enteroglial-derived S100B protein. Neurogastroenterol. Motil. 21, 1209-e1112 (2009).

    Article  CAS  Google Scholar 

  138. Cirillo, C. et al. Proinflammatory stimuli activates human-derived enteroglial cells and induces autocrine nitric oxide production. Neurogastroenterol. Motil. 23, e372–w382 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. Villanacci, V. et al. Enteric nervous system abnormalities in inflammatory bowel diseases. Neurogastroenterol. Motil. 20, 1009–1016 (2008).

    Article  CAS  PubMed  Google Scholar 

  140. Ruhl, A., Franzke, S., Collins, S. M. & Stremmel, W. Interleukin-6 expression and regulation in rat enteric glial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 280, G1163–G1171 (2001).

    Article  CAS  PubMed  Google Scholar 

  141. Bradley, J. S. Jr, Parr, E. J. & Sharkey, K. A. Effects of inflammation on cell proliferation in the myenteric plexus of the guinea-pig ileum. Cell Tissue Res. 289, 455–461 (1997).

    Article  PubMed  Google Scholar 

  142. von Boyen, G. B. et al. Proinflammatory cytokines increase glial fibrillary acidic protein expression in enteric glia. Gut 53, 222–228 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kirchgessner, A. L., Liu, M. T., Raymond, J. R. & Gershon, M. D. Identification of cells that express 5-hydroxytryptamine1A receptors in the nervous systems of the bowel and pancreas. J. Comp. Neurol. 364, 439–455 (1996).

    Article  CAS  PubMed  Google Scholar 

  144. Cooke, H. J., Sidhu, M. & Wang, Y. Z. 5-HT activates neural reflexes regulating secretion in the guinea-pig colon. Neurogastroenterol. Motil. 9, 181–186 (1997).

    Article  CAS  PubMed  Google Scholar 

  145. Crone, S. A., Negro, A., Trumpp, A., Giovannini, M. & Lee, K. F. Colonic epithelial expression of ErbB2 is required for postnatal maintenance of the enteric nervous system. Neuron 37, 29–40 (2003).

    Article  CAS  PubMed  Google Scholar 

  146. Moriez, R. et al. Neuroplasticity and neuroprotection in enteric neurons: role of epithelial cells. Biochem. Biophy. Res. Commun. 382, 577–582 (2009).

    Article  CAS  Google Scholar 

  147. Tixier, E., Galmiche, J. P. & Neunlist, M. Intestinal neuro-epithelial interactions modulate neuronal chemokines production. Bioche. Biophys. Res. Commun. 344, 554–561 (2006).

    Article  CAS  Google Scholar 

  148. Tixier, E., Lalanne, F., Just, I., Galmiche, J. P. & Neunlist, M. Human mucosa/submucosa interactions during intestinal inflammation: involvement of the enteric nervous system in interleukin-8 secretion. Cell. Microbiol. 7, 1798–1810 (2005).

    Article  CAS  PubMed  Google Scholar 

  149. Bertrand, P. P., Kunze, W. A., Bornstein, J. C., Furness, J. B. & Smith, M. L. Analysis of the responses of myenteric neurons in the small intestine to chemical stimulation of the mucosa. Am. J. Physiol. 273, G422–G435 (1997).

    CAS  PubMed  Google Scholar 

  150. Grider, J. R. & Piland, B. E. The peristaltic reflex induced by short-chain fatty acids is mediated by sequential release of 5-HT and neuronal CGRP but not BDNF. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G429–G437 (2007).

    Article  CAS  PubMed  Google Scholar 

  151. Soret, R. et al. Short-chain fatty acids regulate the enteric neurons and control gastrointestinal motility in rats. Gastroenterology 138, 1772–1782 (2010).

    Article  CAS  PubMed  Google Scholar 

  152. van Haver, E. R. et al. Postnatal and diet-dependent increases in enteric glial cells and VIP-containing neurones in preterm pigs. Neurogastroenterol. Motil. 20, 1070–1079 (2008).

    Article  CAS  PubMed  Google Scholar 

  153. Lebouvier, T. et al. Routine colonic biopsies as a new tool to study the enteric nervous system in living patients. Neurogastroenterol. Motil. 22, e11–14 (2010).

    CAS  PubMed  Google Scholar 

  154. Cirillo, C., Tack, J. & Vanden Berghe, P. Nerve activity recordings in routine human intestinal biopsies. Gut http://dx.doi.org/gutjnl-2011-301777.

  155. Buhner, S. et al. Activation of human enteric neurons by supernatants of colonic biopsy specimens from patients with irritable bowel syndrome. Gastroenterology 137, 1425–1434 (2009).

    Article  CAS  PubMed  Google Scholar 

  156. Cenac, N. et al. Role for protease activity in visceral pain in irritable bowel syndrome. J. Clin. Invest. 117, 636–647 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work in our laboratory is financed by grants from the INSERM, University of Nantes, Fondation pour la Recherche Médicale, INCa, ANR-EnteNeurObesity, INSERM-DHOS, Ligue contre le Cancer, Fondation SanTDige, France Parkinson, Michael J. Fox Fondation, CECAP (Comité d'Entente et de Coordination des Associations de Parkinsoniens) and Parkinsoniens de Vendée.

Author information

Authors and Affiliations

Authors

Contributions

M. Neunlist and L. Van Landeghem contributed to all aspects of this manuscript. M. Mahé contributed to researching data, writing and reviewing/editing the manuscript. P. Derkinderen contributed to discussion of content and reviewing/editing the manuscript. M. Rolli-Derkinderen contributed to discussion of content, writing and reviewing/editing the manuscript. S. Bruley des Varannes contributed to reviewing/editing the manuscript.

Corresponding author

Correspondence to Michel Neunlist.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neunlist, M., Van Landeghem, L., Mahé, M. et al. The digestive neuronal–glial–epithelial unit: a new actor in gut health and disease. Nat Rev Gastroenterol Hepatol 10, 90–100 (2013). https://doi.org/10.1038/nrgastro.2012.221

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2012.221

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research