Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hepatotoxic effects of therapies for tuberculosis

Abstract

Hepatotoxic effects attributable to antituberculosis therapy are considered unique among drug-related liver problems because almost all first-line antituberculosis medications have such adverse effects, which vary in severity according to the drug and the regimen. In addition, all regimens for the treatment of active tuberculosis include a combination of medications that must typically be administered for at least 6 months to ensure complete cure of the disease and to minimize the development of drug-resistant bacterial strains. Hepatotoxic effects are a serious problem in patients who are undergoing treatment for tuberculosis, not only because of the morbidity and mortality they directly cause, but also because the liver symptoms can necessitate interruption of therapy or affect a patient's adherence to it, which can limit the efficacy of the antitubercular regimen.

Key Points

  • Tuberculosis is one of the most important infectious diseases worldwide; one-third of the global population is infected with mycobacteria

  • Almost all first-line antituberculosis medications have hepatotoxic effects but the degree of hepatotoxicity can vary considerably from one medication to another

  • Well-established environmental and patient-related risk factors enable practitioners to anticipate the hepatotoxic effect of antituberculosis medications

  • The hepatotoxic effects of antituberculosis medications can be prevented by first assessing the patient risk, selecting an appropriate initial regimen and finally monitoring liver function during therapy

  • In most patients, even if hepatotoxic effects develop, severe liver injury can be avoided and antituberculosis therapy can be completed by following a comprehensive management algorithm

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simplified schematic of isoniazid metabolism.
Figure 2: Suggested algorithm for the management of hepatotoxic effects associated with antituberculosis medication based on clinical experience and data from guidelines produced by the American Thoracic Society, the European Respiratory Society, the WHO, the International Union against Tuberculosis and Lung Disease and the British Thoracic Society.

Similar content being viewed by others

References

  1. World Health Organization Global tuberculosis control—surveillance, planning, financing [online], (2008).

  2. Frieden, T. R., Sterling, T. R., Munsiff, S. S., Watt, C. J. & Dye, C. Tuberculosis. Lancet 362, 887–899 (2003).

    PubMed  Google Scholar 

  3. Blumberg, H. M. et al. American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America: treatment of tuberculosis. Am. J. Respir. Crit. Care Med. 167, 603–662 (2003).

    PubMed  Google Scholar 

  4. France, A. M. et al. What's driving the decline in tuberculosis in Arkansas? A molecular epidemiologic analysis of tuberculosis trends in a rural, low-incidence population, 1997–2003. Am. J. Epidemiol. 166, 662–671 (2007).

    PubMed  Google Scholar 

  5. Ziakas, P. D. & Mylonakis, E. 4 months of rifampin compared with 9 months of isoniazid for the management of latent tuberculosis infection: a meta-analysis and cost-effectiveness study that focuses on compliance and liver toxicity. Clin. Infect. Dis. 49, 1883–1889 (2009).

    PubMed  Google Scholar 

  6. Sharma, U., Morris, C. & Safranek, S. What is the recommended approach to asymptomatic patients who develop a reactive PPD? J. Fam. Pract. 55, 163–165 (2006).

    PubMed  Google Scholar 

  7. Ena, J. & Valls, V. Short-course therapy with rifampin plus isoniazid, compared with standard therapy with isoniazid, for latent tuberculosis infection: a meta-analysis. Clin. Infect. Dis. 40, 670–676 (2005).

    CAS  PubMed  Google Scholar 

  8. Tostmann, A. et al. Antituberculosis drug-induced hepatotoxicity: concise up-to-date review. J. Gastroenterol. Hepatol. 23, 192–202 (2008).

    CAS  PubMed  Google Scholar 

  9. Pretet, S. & Perdrizet, S. [Toxicity of pyrazinamide in antituberculous treatments (author's transl)]. Rev. Fr. Mal. Respir. 8, 307–330 (1980).

    CAS  PubMed  Google Scholar 

  10. Chang, K. C., Leung, C. C., Yew, W. W., Lau, T. Y. & Tam, C. M. Hepatotoxicity of pyrazinamide: cohort and case-control analyses. Am. J. Respir. Crit. Care Med. 177, 1391–1396 (2008).

    PubMed  Google Scholar 

  11. Hong, Y. P. et al. Comparison of a daily and three intermittent retreatment regimens for pulmonary tuberculosis administered under programme conditions. Tubercle 69, 241–253 (1988).

    PubMed  Google Scholar 

  12. [No authors listed] Controlled trial of four thrice-weekly regimens and a daily regimen all given for 6 months for pulmonary tuberculosis. Lancet 1, 171–174 (1981).

  13. Chang, K. C., Leung, C. C., Yew, W. W. & Tam, C. M. Standard anti-tuberculosis treatment and hepatotoxicity: do dosing schedules matter? Eur. Respir. J. 29, 347–351 (2007).

    CAS  PubMed  Google Scholar 

  14. Jindani, A., Nunn, A. J. & Enarson, D. A. Two 8-month regimens of chemotherapy for treatment of newly diagnosed pulmonary tuberculosis: international multicentre randomised trial. Lancet 364, 1244–1251 (2004).

    CAS  PubMed  Google Scholar 

  15. Salfinger, M. & Heifets, L. B. Determination of pyrazinamide MICs for Mycobacterium tuberculosis at different pHs by the radiometric method. Antimicrob. Agents Chemother. 32, 1002–1004 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Schaberg, T., Rebhan, K. & Lode, H. Risk factors for side-effects of isoniazid, rifampin and pyrazinamide in patients hospitalized for pulmonary tuberculosis. Eur. Respir. J. 9, 2026–2030 (1996).

    CAS  PubMed  Google Scholar 

  17. Yee, D. et al. Incidence of serious side effects from first-line antituberculosis drugs among patients treated for active tuberculosis. Am. J. Respir. Crit. Care Med. 167, 1472–1477 (2003).

    PubMed  Google Scholar 

  18. Younossian, A. B., Rochat, T., Ketterer, J. P., Wacker, J. & Janssens, J. P. High hepatotoxicity of pyrazinamide and ethambutol for treatment of latent tuberculosis. Eur. Respir. J. 26, 462–464 (2005).

    CAS  PubMed  Google Scholar 

  19. Durand, F., Jebrak, G., Pessayre, D., Fournier, M. & Bernuau, J. Hepatotoxicity of antitubercular treatments. Rationale for monitoring liver status. Drug Saf. 15, 394–405 (1996).

    CAS  PubMed  Google Scholar 

  20. Durand, F. et al. Deleterious influence of pyrazinamide on the outcome of patients with fulminant or subfulminant liver failure during antituberculous treatment including isoniazid. Hepatology 21, 929–932 (1995).

    CAS  PubMed  Google Scholar 

  21. Knobel, B., Buyanowsky, G., Dan, M. & Zaidel, L. Pyrazinamide-induced granulomatous hepatitis. J. Clin. Gastroenterol. 24, 264–266 (1997).

    CAS  PubMed  Google Scholar 

  22. Ellard, G. A. & Haslam, R. M. Observations on the reduction of the renal elimination of urate in man caused by the administration of pyrazinamide. Tubercle 57, 97–103 (1976).

    CAS  PubMed  Google Scholar 

  23. Jasmer, R. M. et al. Short-course rifampin and pyrazinamide compared with isoniazid for latent tuberculosis infection: a multicenter clinical trial. Ann. Intern. Med. 137, 640–647 (2002).

    CAS  PubMed  Google Scholar 

  24. van Hest, R. et al. Hepatotoxicity of rifampin-pyrazinamide and isoniazid preventive therapy and tuberculosis treatment. Clin. Infect. Dis. 39, 488–496 (2004).

    CAS  PubMed  Google Scholar 

  25. McNeill, L., Allen, M., Estrada, C. & Cook, P. Pyrazinamide and rifampin vs isoniazid for the treatment of latent tuberculosis: improved completion rates but more hepatotoxicity. Chest 123, 102–106 (2003).

    CAS  PubMed  Google Scholar 

  26. Lee, A. M., Mennone, J. Z., Jones, R. C. & Paul, W. S. Risk factors for hepatotoxicity associated with rifampin and pyrazinamide for the treatment of latent tuberculosis infection: experience from three public health tuberculosis clinics. Int. J. Tuberc. Lung Dis. 6, 995–1000 (2002).

    CAS  PubMed  Google Scholar 

  27. Papastavros, T., Dolovich, L. R., Holbrook, A., Whitehead, L. & Loeb, M. Adverse events associated with pyrazinamide and levofloxacin in the treatment of latent multidrug-resistant tuberculosis. CMAJ 167, 131–136 (2002).

    PubMed  PubMed Central  Google Scholar 

  28. Self, T. H., Chrisman, C. R., Baciewicz, A. M. & Bronze, M. S. Isoniazid drug and food interactions. Am. J. Med. Sci. 317, 304–311 (1999).

    CAS  PubMed  Google Scholar 

  29. Blumberg, H. M., Leonard, M. K. Jr & Jasmer, R. M. Update on the treatment of tuberculosis and latent tuberculosis infection. JAMA 293, 2776–2784 (2005).

    CAS  PubMed  Google Scholar 

  30. Nolan, C. M., Goldberg, S. V. & Buskin, S. E. Hepatotoxicity associated with isoniazid preventive therapy: a 7-year survey from a public health tuberculosis clinic. JAMA 281, 1014–1018 (1999).

    CAS  PubMed  Google Scholar 

  31. Fountain, F. F., Tolley, E., Chrisman, C. R. & Self, T. H. Isoniazid hepatotoxicity associated with treatment of latent tuberculosis infection: a 7-year evaluation from a public health tuberculosis clinic. Chest 128, 116–123 (2005).

    CAS  PubMed  Google Scholar 

  32. Steele, M. A., Burk, R. F. & DesPrez, R. M. Toxic hepatitis with isoniazid and rifampin. A meta-analysis. Chest 99, 465–471 (1991).

    CAS  PubMed  Google Scholar 

  33. Fernández-Villar, A. et al. The influence of risk factors on the severity of anti-tuberculosis drug-induced hepatotoxicity. Int. J. Tuberc. Lung Dis. 8, 1499–1505 (2004).

    PubMed  Google Scholar 

  34. Sharifzadeh, M., Rasoulinejad, M., Valipour, F., Nouraie, M. & Vaziri, S. Evaluation of patient-related factors associated with causality, preventability, predictability and severity of hepatotoxicity during antituberculosis [correction of antituberclosis] treatment. Pharmacol. Res. 51, 353–358 (2005).

    CAS  PubMed  Google Scholar 

  35. Sharma, S. K., Balamurugan, A., Saha, P. K., Pandey, R. M. & Mehra, N. K. Evaluation of clinical and immunogenetic risk factors for the development of hepatotoxicity during antituberculosis treatment. Am. J. Respir. Crit. Care Med. 166, 916–919 (2002).

    PubMed  Google Scholar 

  36. Huang, Y. S. et al. Polymorphism of the N-acetyltransferase 2 gene as a susceptibility risk factor for antituberculosis drug-induced hepatitis. Hepatology 35, 883–889 (2002).

    CAS  PubMed  Google Scholar 

  37. Døssing, M., Wilcke, J. T., Askgaard, D. S. & Nybo, B. Liver injury during antituberculosis treatment: an 11-year study. Tuber. Lung Dis. 77, 335–340 (1996).

    PubMed  Google Scholar 

  38. Moulding, T. Isoniazid-associated hepatitis deaths: a review of available information. Am. Rev. Respir. Dis. 146, 1643–1644 (1992).

    CAS  PubMed  Google Scholar 

  39. Verma, S. & Kaplowitz, N. in Drug-Induced Liver Disease 2nd edn (eds Kaplowitz, N. & Deleve, L. D.) 547–566 (Informa Healthcare USA, Inc., New York, 2007).

    Google Scholar 

  40. Salpeter, S. R. Fatal isoniazid-induced hepatitis. Its risk during chemoprophylaxis. West. J. Med. 159, 560–564 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Snider, D. E. Jr & Caras, G. J. Isoniazid-associated hepatitis deaths: a review of available information. Am. Rev. Respir. Dis. 145, 494–497 (1992).

    PubMed  Google Scholar 

  42. Farrell, F. J., Keeffe, E. B., Man, K. M., Imperial, J. C. & Esquivel, C. O. Treatment of hepatic failure secondary to isoniazid hepatitis with liver transplantation. Dig. Dis. Sci. 39, 2255–2259 (1994).

    CAS  PubMed  Google Scholar 

  43. Mitchell, J. R. et al. Increased incidence of isoniazid hepatitis in rapid acetylators: possible relation to hydranize metabolites. Clin. Pharmacol. Ther. 18, 70–79 (1975).

    CAS  PubMed  Google Scholar 

  44. Maddrey, W. C. & Boitnott, J. K. Isoniazid hepatitis. Ann. Intern. Med. 79, 1–12 (1973).

    CAS  PubMed  Google Scholar 

  45. Maddrey, W. C. Isoniazid-induced liver disease. Semin. Liver Dis. 1, 129–133 (1981).

    CAS  PubMed  Google Scholar 

  46. Mitchell, J. R., Long, M. W., Thorgeirsson, U. P. & Jollow, D. J. Acetylation rates and monthly liver function tests during one year of isoniazid preventive therapy. Chest 68, 181–190 (1975).

    CAS  PubMed  Google Scholar 

  47. Yamamoto, T., Suou, T. & Hirayama, C. Elevated serum aminotransferase induced by isoniazid in relation to isoniazid acetylator phenotype. Hepatology 6, 295–298 (1986).

    CAS  PubMed  Google Scholar 

  48. Sarich, T. C. et al. A model of isoniazid-induced hepatotoxicity in rabbits. J. Pharmacol. Toxicol. Methods 34, 109–116 (1995).

    CAS  PubMed  Google Scholar 

  49. Noda, A., Hsu, K. Y., Noda, H., Yamamoto, Y. & Kurozumi, T. Is isoniazid-hepatotoxicity induced by the metabolite, hydrazine? J. UOEH 5, 183–190 (1983).

    CAS  PubMed  Google Scholar 

  50. Gent, W. L., Seifart, H. I., Parkin, D. P., Donald, P. R. & Lamprecht, J. H. Factors in hydrazine formation from isoniazid by paediatric and adult tuberculosis patients. Eur. J. Clin. Pharmacol. 43, 131–136 (1992).

    CAS  PubMed  Google Scholar 

  51. Noda, A. et al. Spin trapping of a free radical intermediate formed during microsomal metabolism of hydrazine. Biochem. Biophys. Res. Commun. 133, 1086–1091 (1985).

    CAS  PubMed  Google Scholar 

  52. Blair, I. A. et al. Plasma hydrazine concentrations in man after isoniazid and hydralazine administration. Hum. Toxicol. 4, 195–202 (1985).

    CAS  PubMed  Google Scholar 

  53. Kimmoun, E. & Samuel, D. Antituberculous drugs in patients with chronic liver disease. J. Gastroenterol. Hepatol. 17 (Suppl. 3), S408–S412 (2002).

    PubMed  Google Scholar 

  54. Pessayre, D. et al. Isoniazid-rifampin fulminant hepatitis. A possible consequence of the enhancement of isoniazid hepatotoxicity by enzyme induction. Gastroenterology 72, 284–289 (1977).

    CAS  PubMed  Google Scholar 

  55. Timbrell, J. A., Mitchell, J. R., Snodgrass, W. R. & Nelson, S. D. Isoniazid hepatoxicity: the relationship between covalent binding and metabolism in vivo. J. Pharmacol. Exp. Ther. 213, 364–369 (1980).

    CAS  PubMed  Google Scholar 

  56. Jenner, A. M. & Timbrell, J. A. In vitro microsomal metabolism of hydrazine. Xenobiotica 25, 599–609 (1995).

    CAS  PubMed  Google Scholar 

  57. Jenner, A. M. & Timbrell, J. A. Influence of inducers and inhibitors of cytochrome P450 on the hepatotoxicity of hydrazine in vivo. Arch. Toxicol. 68, 349–357 (1994).

    CAS  PubMed  Google Scholar 

  58. Chowdhury, A. et al. Mitochondrial oxidative stress and permeability transition in isoniazid and rifampicin induced liver injury in mice. J. Hepatol. 45, 117–126 (2006).

    CAS  PubMed  Google Scholar 

  59. Timbrell, J. A., Scales, M. D. & Streeter, A. J. Studies on hydrazine hepatotoxicity. 2. Biochemical findings. J. Toxicol. Environ. Health 10, 955–968 (1982).

    CAS  PubMed  Google Scholar 

  60. Chowdhury, A. et al. Induction of oxidative stress in antitubercular drug-induced hepatotoxicity. Indian J. Gastroenterol. 20, 97–100 (2001).

    CAS  PubMed  Google Scholar 

  61. McConnell, J. B., Powell-Jackson, P. R., Davis, M. & Williams, R. Use of liver function tests as predictors of rifampicin metabolism in cirrhosis. Q. J. Med. 50, 77–82 (1981).

    CAS  PubMed  Google Scholar 

  62. Girling, D. J. The hepatic toxicity of antituberculosis regimens containing isoniazid, rifampicin and pyrazinamide. Tubercle 59, 13–32 (1978).

    CAS  PubMed  Google Scholar 

  63. Villarino, M. E. et al. Rifampin preventive therapy for tuberculosis infection: experience with 157 adolescents. Am. J. Respir. Crit. Care Med. 155, 1735–1738 (1997).

    CAS  PubMed  Google Scholar 

  64. Girling, D. J. Adverse reactions to rifampicin in antituberculosis regimens. J. Antimicrob. Chemother. 3, 115–132 (1977).

    CAS  PubMed  Google Scholar 

  65. Kurokawa, I., Nakahigashi, Y. & Teramachi, M. Erythema multiforme-type drug eruption due to ethambutol with eosinophilia and liver dysfunction. Int. J. Antimicrob. Agents 21, 596–597 (2003).

    CAS  PubMed  Google Scholar 

  66. Saukkonen, J. J. et al. An official ATS statement: hepatotoxicity of antituberculosis therapy. Am. J. Respir. Crit. Care Med. 174, 935–952 (2006).

    CAS  PubMed  Google Scholar 

  67. Black, M., Mitchell, J. R., Zimmerman, H. J., Ishak, K. G. & Epler, G. R. Isoniazid-associated hepatitis in 114 patients. Gastroenterology 69, 289–302 (1975).

    CAS  PubMed  Google Scholar 

  68. Yew, W. W. & Leung, C. C. Antituberculosis drugs and hepatotoxicity. Am. J. Respir. Crit. Care Med. 175, 858 (2007).

    PubMed  Google Scholar 

  69. Ormerod, L. P., Skinner, C. & Wales, J. Hepatotoxicity of antituberculosis drugs. Thorax 51, 111–113 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Sharma, S. K. et al. Acute viral hepatitis as a confounding factor in patients with antituberculosis treatment induced hepatotoxicity. Indian J. Med. Res. 130, 200–201 (2009).

    CAS  PubMed  Google Scholar 

  71. Sarda, P. et al. Role of acute viral hepatitis as a confounding factor in antituberculosis treatment induced hepatotoxicity. Indian J. Med. Res. 129, 64–67 (2009).

    CAS  PubMed  Google Scholar 

  72. Kumar, A., Misra, P. K., Mehotra, R., Govil, Y. C. & Rana, G. S. Hepatotoxicity of rifampin and isoniazid. Is it all drug-induced hepatitis? Am. Rev. Respir. Dis. 143, 1350–1352 (1991).

    CAS  PubMed  Google Scholar 

  73. Türktas, H., Unsal, M., Tülek, N. & Orüc, O. Hepatotoxicity of antituberculosis therapy (rifampicin, isoniazid and pyrazinamide) or viral hepatitis. Tuber. Lung Dis. 75, 58–60 (1994).

    PubMed  Google Scholar 

  74. Suzuki, Y. et al. Drug lymphocyte stimulation test in the diagnosis of adverse reactions to antituberculosis drugs. Chest 134, 1027–1032 (2008).

    CAS  PubMed  Google Scholar 

  75. Bénichou, C. Criteria of drug-induced liver disorders. Report of an international consensus meeting. J. Hepatol. 11, 272–276 (1990).

    PubMed  Google Scholar 

  76. Chitturi, S. & Farrell, G. C. in Schiff's Diseases of the Liver 10th edn (eds Schiff, E. R., Sorrell, M. F. & Maddrey, W. C.) (Lippincott Williams & Wilkins, Philadelphia, 2007).

    Google Scholar 

  77. Westphal, J. F., Vetter, D. & Brogard, J. M. Hepatic side-effects of antibiotics. J. Antimicrob. Chemother. 33, 387–401 (1994).

    CAS  PubMed  Google Scholar 

  78. Pilheu, J. A., De Salvo, M. C. & Koch, O. Liver alterations in antituberculosis regimens containing pyrazinamide. Chest 80, 720–722 (1981).

    CAS  PubMed  Google Scholar 

  79. [No authors listed] From the Centers for Disease Control and Prevention. Fatal and severe hepatitis associated with rifampin and pyrazinamide for the treatment of latent tuberculosis infection—New York and Georgia, 2000. JAMA 285, 2572–2573 (2001).

  80. Kopanoff, D. E., Snider, D. E. Jr & Caras, G. J. Isoniazid-related hepatitis: a U.S. Public Health Service cooperative surveillance study. Am. Rev. Respir. Dis. 117, 991–1001 (1978).

    CAS  PubMed  Google Scholar 

  81. van den Brande, P., van Steenbergen, W., Vervoort, G. & Demedts, M. Aging and hepatotoxicity of isoniazid and rifampin in pulmonary tuberculosis. Am. J. Respir. Crit. Care Med. 152, 1705–1708 (1995).

    CAS  PubMed  Google Scholar 

  82. Ohkawa, K. et al. Risk factors for antituberculous chemotherapy-induced hepatotoxicity in Japanese pediatric patients. Clin. Pharmacol. Ther. 72, 220–226 (2002).

    PubMed  Google Scholar 

  83. Leung, C. C. et al. Initial experience on rifampin and pyrazinamide vs isoniazid in the treatment of latent tuberculosis infection among patients with silicosis in Hong Kong. Chest 124, 2112–2118 (2003).

    CAS  PubMed  Google Scholar 

  84. Grönhagen-Riska, C., Hellstrom, P. E. & Fröseth, B. Predisposing factors in hepatitis induced by isoniazid-rifampin treatment of tuberculosis. Am. Rev. Respir. Dis. 118, 461–466 (1978).

    PubMed  Google Scholar 

  85. Franks, A. L., Binkin, N. J., Snider, D. E. Jr, Rokaw, W. M. & Becker, S. Isoniazid hepatitis among pregnant and postpartum Hispanic patients. Public Health Rep. 104, 151–155 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Moulding, T. S., Redeker, A. G. & Kanel, G. C. Twenty isoniazid-associated deaths in one state. Am. Rev. Respir. Dis. 140, 700–705 (1989).

    CAS  PubMed  Google Scholar 

  87. Hunt, C. M., Westerkam, W. R. & Stave, G. M. Effect of age and gender on the activity of human hepatic CYP3A. Biochem. Pharmacol. 44, 275–283 (1992).

    CAS  PubMed  Google Scholar 

  88. Sheffield, L. J. & Phillimore, H. E. Clinical use of pharmacogenomic tests in 2009. Clin. Biochem. Rev. 30, 55–65 (2009).

    PubMed  PubMed Central  Google Scholar 

  89. Gordin, F. M., Cohn, D. L., Matts, J. P., Chaisson, R. E. & O'Brien, R. J. Hepatotoxicity of rifampin and pyrazinamide in the treatment of latent tuberculosis infection in HIV-infected persons: is it different than in HIV-uninfected persons? Clin. Infect. Dis. 39, 561–565 (2004).

    CAS  PubMed  Google Scholar 

  90. Mitchell, J. R. et al. Isoniazid liver injury: clinical spectrum, pathology, and probable pathogenesis. Ann. Intern. Med. 84, 181–192 (1976).

    CAS  PubMed  Google Scholar 

  91. Singh, J., Garg, P. K. & Tandon, R. K. Hepatotoxicity due to antituberculosis therapy. Clinical profile and reintroduction of therapy. J. Clin. Gastroenterol. 22, 211–214 (1996).

    CAS  PubMed  Google Scholar 

  92. Gurumurthy, P. et al. Lack of relationship between hepatic toxicity and acetylator phenotype in three thousand South Indian patients during treatment with isoniazid for tuberculosis. Am. Rev. Respir. Dis. 129, 58–61 (1984).

    CAS  PubMed  Google Scholar 

  93. Martinez-Roíg, A., Camí, J., Llorens-Terol, J., de la Torre, R. & Perich, F. Acetylation phenotype and hepatotoxicity in the treatment of tuberculosis in children. Pediatrics 77, 912–915 (1986).

    PubMed  Google Scholar 

  94. Pande, J. N., Singh, S. P., Khilnani, G. C., Khilnani, S. & Tandon, R. K. Risk factors for hepatotoxicity from antituberculosis drugs: a case-control study. Thorax 51, 132–136 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Ohno, M. et al. Slow N-acetyltransferase 2 genotype affects the incidence of isoniazid and rifampicin-induced hepatotoxicity. Int. J. Tuberc. Lung Dis. 4, 256–261 (2000).

    CAS  PubMed  Google Scholar 

  96. Kubota, R., Ohno, M., Hasunuma, T., Iijima, H. & Azuma, J. Dose-escalation study of isoniazid in healthy volunteers with the rapid acetylator genotype of arylamine N-acetyltransferase 2. Eur. J. Clin. Pharmacol. 63, 927–933 (2007).

    CAS  PubMed  Google Scholar 

  97. Kinzig-Schippers, M. et al. Should we use N-acetyltransferase type 2 genotyping to personalize isoniazid doses? Antimicrob. Agents Chemother. 49, 1733–1738 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Ellard, G. A. Variations between individuals and populations in the acetylation of isoniazid and its significance for the treatment of pulmonary tuberculosis. Clin. Pharmacol. Ther. 19, 610–625 (1976).

    CAS  PubMed  Google Scholar 

  99. Vuilleumier, N. et al. CYP2E1 genotype and isoniazid-induced hepatotoxicity in patients treated for latent tuberculosis. Eur. J. Clin. Pharmacol. 62, 423–429 (2006).

    CAS  PubMed  Google Scholar 

  100. Huang, Y. S. et al. Cytochrome P450 2E1 genotype and the susceptibility to antituberculosis drug-induced hepatitis. Hepatology 37, 924–930 (2003).

    CAS  PubMed  Google Scholar 

  101. Kliewer, S. A., Goodwin, B. & Willson, T. M. The nuclear pregnane X receptor: a key regulator of xenobiotic metabolism. Endocr. Rev. 23, 687–702 (2002).

    CAS  PubMed  Google Scholar 

  102. Hustert, E. et al. Natural protein variants of pregnane X receptor with altered transactivation activity toward CYP3A4. Drug Metab. Dispos. 29, 1454–1459 (2001).

    CAS  PubMed  Google Scholar 

  103. Ajith, T. A., Hema, U. & Aswathy, M. S. Zingiber officinale Roscoe prevents acetaminophen-induced acute hepatotoxicity by enhancing hepatic antioxidant status. Food Chem. Toxicol. 45, 2267–2272 (2007).

    CAS  PubMed  Google Scholar 

  104. Lucena, M. I. et al. Glutathione S-transferase m1 and t1 null genotypes increase susceptibility to idiosyncratic drug-induced liver injury. Hepatology 48, 588–596 (2008).

    PubMed  Google Scholar 

  105. Cross, F. S., Long, M. W., Banner, A. S. & Snider, D. E. Jr. Rifampin-isoniazid therapy of alcoholic and nonalcoholic tuberculous patients in a U.S. Public Health Service Cooperative Therapy Trial. Am. Rev. Respir. Dis. 122, 349–353 (1980).

    CAS  PubMed  Google Scholar 

  106. Tost, J. R. et al. Severe hepatotoxicity due to anti-tuberculosis drugs in Spain. Int. J. Tuberc. Lung Dis. 9, 534–540 (2005).

    CAS  PubMed  Google Scholar 

  107. Migliori, G. B. et al. Tuberculosis management in Europe. Task Force of the European Respiratory Society (ERS), the World Health Organisation (WHO) and the International Union against Tuberculosis and Lung Disease (IUATLD) Europe Region. Eur. Respir. J. 14, 978–992 (1999).

    CAS  PubMed  Google Scholar 

  108. Singh, J. et al. Antituberculosis treatment-induced hepatotoxicity: role of predictive factors. Postgrad. Med. J. 71, 359–362 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Buchanan, N., Eyberg, C. & Davis, M. D. Isoniazid pharmacokinetics in kwashiorkor. S. Afr. Med. J. 56, 299–300 (1979).

    CAS  PubMed  Google Scholar 

  110. Walter-Sack, I. & Klotz, U. Influence of diet and nutritional status on drug metabolism. Clin. Pharmacokinet. 31, 47–64 (1996).

    CAS  PubMed  Google Scholar 

  111. Fernández-Villar, A. et al. Isoniazid hepatotoxicity among drug users: the role of hepatitis C. Clin. Infect. Dis. 36, 293–298 (2003).

    PubMed  Google Scholar 

  112. McGlynn, K. A., Lustbader, E. D., Sharrar, R. G., Murphy, E. C. & London, W. T. Isoniazid prophylaxis in hepatitis B carriers. Am. Rev. Respir. Dis. 134, 666–668 (1986).

    CAS  PubMed  Google Scholar 

  113. Lee, B. H. et al. Inactive hepatitis B surface antigen carrier state and hepatotoxicity during antituberculosis chemotherapy. Chest 127, 1304–1311 (2005).

    CAS  PubMed  Google Scholar 

  114. Wong, W. M. et al. Antituberculosis drug-related liver dysfunction in chronic hepatitis B infection. Hepatology 31, 201–206 (2000).

    CAS  PubMed  Google Scholar 

  115. Patel, P. A. & Voigt, M. D. Prevalence and interaction of hepatitis B and latent tuberculosis in Vietnamese immigrants to the United States. Am. J. Gastroenterol. 97, 1198–1203 (2002).

    PubMed  Google Scholar 

  116. Wu, J. C. et al. Isoniazid-rifampin-induced hepatitis in hepatitis B carriers. Gastroenterology 98, 502–504 (1990).

    CAS  PubMed  Google Scholar 

  117. Yu, W. C. et al. Lamivudine enabled isoniazid and rifampicin treatment in pulmonary tuberculosis and hepatitis B co-infection. Int. J. Tuberc. Lung Dis. 10, 824–825 (2006).

    PubMed  Google Scholar 

  118. Ungo, J. R. et al. Antituberculosis drug-induced hepatotoxicity. The role of hepatitis C virus and the human immunodeficiency virus. Am. J. Respir. Crit. Care Med. 157, 1871–1876 (1998).

    CAS  PubMed  Google Scholar 

  119. Tsai, M. C., Lin, M. C. & Hung, C. H. Successful antiviral and antituberculosis treatment with pegylated interferon-alfa and ribavirin in a chronic hepatitis C patient with pulmonary tuberculosis. J. Formos. Med. Assoc. 108, 746–750 (2009).

    PubMed  Google Scholar 

  120. Thulstrup, A. M., Mølle, I., Svendsen, N. & Sørensen, H. T. Incidence and prognosis of tuberculosis in patients with cirrhosis of the liver. A Danish nationwide population based study. Epidemiol. Infect. 124, 221–225 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Acocella, G. et al. Kinetics of rifampicin and isoniazid administered alone and in combination to normal subjects and patients with liver disease. Gut 13, 47–53 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Prince, M. I., Burt, A. D. & Jones, D. E. Hepatitis and liver dysfunction with rifampicin therapy for pruritus in primary biliary cirrhosis. Gut 50, 436–439 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Nathwani, R. A. & Kaplowitz, N. Drug hepatotoxicity. Clin. Liver Dis. 10, 207–217 (2006).

    PubMed  Google Scholar 

  124. Aguado, J. M. et al. Clinical presentation and outcome of tuberculosis in kidney, liver, and heart transplant recipients in Spain. Spanish Transplantation Infection Study Group, GESITRA. Transplantation 63, 1278–1286 (1997).

    CAS  PubMed  Google Scholar 

  125. Singh, N. & Paterson, D. L. Mycobacterium tuberculosis infection in solid-organ transplant recipients: impact and implications for management. Clin. Infect. Dis. 27, 1266–1277 (1998).

    CAS  PubMed  Google Scholar 

  126. Singh, N., Wagener, M. M. & Gayowski, T. Safety and efficacy of isoniazid chemoprophylaxis administered during liver transplant candidacy for the prevention of posttransplant tuberculosis. Transplantation 74, 892–895 (2002).

    CAS  PubMed  Google Scholar 

  127. Meyers, B. R., Papanicolaou, G. A., Sheiner, P., Emre, S. & Miller, C. Tuberculosis in orthotopic liver transplant patients: increased toxicity of recommended agents; cure of disseminated infection with nonconventional regimens. Transplantation 69, 64–69 (2000).

    CAS  PubMed  Google Scholar 

  128. Clemente, W. T. et al. Tuberculosis in liver transplant recipients: a single Brazilian center experience. Transplantation 87, 397–401 (2009).

    PubMed  Google Scholar 

  129. Small, P. M. et al. Treatment of tuberculosis in patients with advanced human immunodeficiency virus infection. N. Engl. J. Med. 324, 289–294 (1991).

    CAS  PubMed  Google Scholar 

  130. Lee, B. L., Wong, D., Benowitz, N. L. & Sullam, P. M. Altered patterns of drug metabolism in patients with acquired immunodeficiency syndrome. Clin. Pharmacol. Ther. 53, 529–535 (1993).

    CAS  PubMed  Google Scholar 

  131. Núñez, M. Hepatotoxicity of antiretrovirals: incidence, mechanisms and management. J. Hepatol. 44 (Suppl. 1), S132–S139 (2006).

    PubMed  Google Scholar 

  132. Michailidis, C. et al. Clinical characteristics of IRIS syndrome in patients with HIV and tuberculosis. Antivir. Ther. 10, 417–422 (2005).

    PubMed  Google Scholar 

  133. Manosuthi, W., Kiertiburanakul, S., Phoorisri, T. & Sungkanuparph, S. Immune reconstitution inflammatory syndrome of tuberculosis among HIV-infected patients receiving antituberculous and antiretroviral therapy. J. Infect. 53, 357–363 (2006).

    PubMed  Google Scholar 

  134. Dean, G. L. et al. Treatment of tuberculosis in HIV-infected persons in the era of highly active antiretroviral therapy. AIDS 16, 75–83 (2002).

    CAS  PubMed  Google Scholar 

  135. Kaplan, J. E. et al. Guidelines for prevention and treatment of opportunistic infections in HIV-infected adults and adolescents: recommendations from CDC, the National Institutes of Health, and the HIV Medicine Association of the Infectious Diseases Society of America. MMWR Recomm. Rep. 58, 1–207 (2009).

    PubMed  Google Scholar 

  136. Harries, A. D. & Nunn, P. P. in Tuberculosis: the Essentials 4th edn (ed. Raviglione, M. C.) 279–299 (Informa Healthcare USA, New York, 2010).

    Google Scholar 

  137. Burman, W. J., Gallicano, K. & Peloquin, C. Therapeutic implications of drug interactions in the treatment of human immunodeficiency virus-related tuberculosis. Clin. Infect. Dis. 28, 419–430 (1999).

    CAS  PubMed  Google Scholar 

  138. Borin, M. T. et al. Pharmacokinetic study of the interaction between rifabutin and delavirdine mesylate in HIV-1 infected patients. Antiviral Res. 35, 53–63 (1997).

    CAS  PubMed  Google Scholar 

  139. Reid, A., Getahun, H. & Girardi, E. in Tuberculosis: the Essentials 4th edn (ed. Raviglione, M. C.) 144–169 (Informa Healthcare USA, New York, 2010).

    Google Scholar 

  140. McIlleron, H., Meintjes, G., Burman, W. J. & Maartens, G. Complications of antiretroviral therapy in patients with tuberculosis: drug interactions, toxicity, and immune reconstitution inflammatory syndrome. J. Infect. Dis. 196 (Suppl. 1), S63–S75 (2007).

    PubMed  Google Scholar 

  141. Pukenyte, E. et al. Incidence of and risk factors for severe liver toxicity in HIV-infected patients on anti-tuberculosis treatment. Int. J. Tuberc. Lung Dis. 11, 78–84 (2007).

    CAS  PubMed  Google Scholar 

  142. Berkowitz, F. E., Henderson, S. L., Fajman, N., Schoen, B. & Naughton, M. Acute liver failure caused by isoniazid in a child receiving carbamazepine. Int. J. Tuberc. Lung Dis. 2, 603–606 (1998).

    CAS  PubMed  Google Scholar 

  143. Crippin, J. S. Acetaminophen hepatotoxicity: potentiation by isoniazid. Am. J. Gastroenterol. 88, 590–592 (1993).

    CAS  PubMed  Google Scholar 

  144. Nolan, C. M., Sandblom, R. E., Thummel, K. E., Slattery, J. T. & Nelson, S. D. Hepatotoxicity associated with acetaminophen usage in patients receiving multiple drug therapy for tuberculosis. Chest 105, 408–411 (1994).

    CAS  PubMed  Google Scholar 

  145. [No authors listed] Chemotherapy and management of tuberculosis in the United Kingdom: recommendations 1998. Joint Tuberculosis Committee of the British Thoracic Society. Thorax 53, 536–548 (1998).

  146. Barza, M. & Scheife, R. T. Drug therapy reviews: Antimicrobial spectrum, pharmacology and therapeutic use of antibiotics—part 4: aminoglycosides. Am. J. Hosp. Pharm. 34, 723–737 (1977).

    CAS  PubMed  Google Scholar 

  147. Maus, C. E., Plikaytis, B. B. & Shinnick, T. M. Mutation of tlyA confers capreomycin resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 49, 571–577 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Snavely, S. R. & Hodges, G. R. The neurotoxicity of antibacterial agents. Ann. Intern. Med. 101, 92–104 (1984).

    CAS  PubMed  Google Scholar 

  149. Barth, J. et al. Single- and multiple-dose pharmacokinetics of intravenous moxifloxacin in patients with severe hepatic impairment. J. Antimicrob. Chemother. 62, 575–578 (2008).

    CAS  PubMed  Google Scholar 

  150. Esposito, S. et al. Clinical efficacy and tolerability of levofloxacin in patients with liver disease: a prospective, non comparative, observational study. J. Chemother. 18, 33–37 (2006).

    CAS  PubMed  Google Scholar 

  151. Wolfson, J. S. & Hooper, D. C. Overview of fluoroquinolone safety. Am. J. Med. 91, 153S–161S (1991).

    CAS  PubMed  Google Scholar 

  152. Coleman, C. I., Spencer, J. V., Chung, J. O. & Reddy, P. Possible gatifloxacin-induced fulminant hepatic failure. Ann. Pharmacother. 36, 1162–1167 (2002).

    PubMed  Google Scholar 

  153. Soto, S. et al. Moxifloxacin-induced acute liver injury. Am. J. Gastroenterol. 97, 1853–1854 (2002).

    PubMed  Google Scholar 

  154. Coban, S., Ceydilek, B., Ekiz, F., Erden, E. & Soykan, I. Levofloxacin-induced acute fulminant hepatic failure in a patient with chronic hepatitis B infection. Ann. Pharmacother. 39, 1737–1740 (2005).

    PubMed  Google Scholar 

  155. Attri, S. et al. Protective effect of N-acetylcysteine in isoniazid induced hepatic injury in growing rats. Indian J. Exp. Biol. 39, 436–440 (2001).

    CAS  PubMed  Google Scholar 

  156. Attri, S. et al. Isoniazid- and rifampicin-induced oxidative hepatic injury—protection by N-acetylcysteine. Hum. Exp. Toxicol. 19, 517–522 (2000).

    CAS  PubMed  Google Scholar 

  157. Tayal, V., Kalra, B. S., Agarwal, S., Khurana, N. & Gupta, U. Hepatoprotective effect of tocopherol against isoniazid and rifampicin induced hepatotoxicity in albino rabbits. Indian J. Exp. Biol. 45, 1031–1036 (2007).

    CAS  PubMed  Google Scholar 

  158. Kothekar, M. A., Ubaid, R. S., Jaju, J. B. & Mateenuddin, M. Effect of the antioxidants alpha-tocopherol acetate and sodium selenite on hepatotoxicity induced by antitubercular drugs in rats. Indian J. Physiol. Pharmacol. 48, 119–122 (2004).

    CAS  PubMed  Google Scholar 

  159. Ergul, Y. et al. The effect of vitamin C on the oxidative liver injury due to isoniazid in rats. Pediatr. Int. 52, 69–74 (2009).

    PubMed  Google Scholar 

  160. Eminzade, S., Uraz, F. & Izzettin, F. V. Silymarin protects liver against toxic effects of anti-tuberculosis drugs in experimental animals. Nutr. Metab. 5, 18 (2008).

    Google Scholar 

  161. Tasduq, S. A., Peerzada, K., Koul, S., Bhat, R. & Johri, R. K. Biochemical manifestations of anti-tuberculosis drugs induced hepatotoxicity and the effect of silymarin. Hepatol. Res. 31, 132–135 (2005).

    CAS  PubMed  Google Scholar 

  162. Adhvaryu, M. R., Reddy, N. & Parabia, M. H. Effects of four Indian medicinal herbs on Isoniazid-, Rifampicin- and Pyrazinamide-induced hepatic injury and immunosuppression in guinea pigs. World J. Gastroenterol. 13, 3199–3205 (2007).

    PubMed  PubMed Central  Google Scholar 

  163. Ubaid, R. S., Anantrao, K. M., Jaju, J. B. & Mateenuddin, M. Effect of Ocimum sanctum (OS) leaf extract on hepatotoxicity induced by antitubercular drugs in rats. Indian J. Physiol. Pharmacol. 47, 465–470 (2003).

    PubMed  Google Scholar 

  164. Santhosh, S., Sini, T. K., Anandan, R. & Mathew, P. T. Effect of chitosan supplementation on antitubercular drugs-induced hepatotoxicity in rats. Toxicology 219, 53–59 (2006).

    CAS  PubMed  Google Scholar 

  165. Kalra, B. S., Aggarwal, S., Khurana, N. & Gupta, U. Effect of cimetidine on hepatotoxicity induced by isoniazid-rifampicin combination in rabbits. Indian J. Gastroenterol. 26, 18–21 (2007).

    PubMed  Google Scholar 

  166. Lauterburg, B. H., Todd, E. L., Smith, C. V. & Mitchell, J. R. Cimetidine inhibits the formation of the reactive, toxic metabolite of isoniazid in rats but not in man. Hepatology 5, 607–609 (1985).

    CAS  PubMed  Google Scholar 

  167. Peloquin, C. A. Therapeutic drug monitoring in the treatment of tuberculosis. Drugs 62, 2169–2183 (2002).

    CAS  PubMed  Google Scholar 

  168. Ginsberg, A. M. Emerging drugs for active tuberculosis. Semin. Respir. Crit. Care Med. 29, 552–559 (2008).

    PubMed  Google Scholar 

  169. Ginsberg, A. & Spigelman, M. in Tuberculosis: the Essentials 4th edn (ed. Raviglione, M. C.) 344–363 (Informa Healthcare USA, New York, 2009).

    Google Scholar 

  170. Anand, A. C., Nightingale, P. & Neuberger, J. M. Early indicators of prognosis in fulminant hepatic failure: an assessment of the King's criteria. J. Hepatol. 26, 62–68 (1997).

    CAS  PubMed  Google Scholar 

  171. O'Grady, J. G., Alexander, G. J., Hayllar, K. M. & Williams, R. Early indicators of prognosis in fulminant hepatic failure. Gastroenterology 97, 439–445 (1989).

    CAS  PubMed  Google Scholar 

  172. Sharma, S. K. et al. Safety of 3 different reintroduction regimens of antituberculosis drugs after development of antituberculosis treatment-induced hepatotoxicity. Clin. Infect. Dis. 50, 833–839 (2010).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

B. E. Senousy, S. I. Belal and P. V. Draganov researched the data for the article, provided a substantial contribution to discussions of the content and contributed equally to writing the article. P. V. Draganov reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Peter V. Draganov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senousy, B., Belal, S. & Draganov, P. Hepatotoxic effects of therapies for tuberculosis. Nat Rev Gastroenterol Hepatol 7, 543–556 (2010). https://doi.org/10.1038/nrgastro.2010.134

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2010.134

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing