Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

The evolutionary causes and consequences of sex-biased gene expression

Abstract

Females and males often differ extensively in their physical traits. This sexual dimorphism is largely caused by differences in gene expression. Recent advances in genomics, such as RNA sequencing (RNA-seq), have revealed the nature and extent of sex-biased gene expression in diverse species. Here we highlight new findings regarding the causes of sex-biased expression, including sexual antagonism and incomplete dosage compensation. We also discuss how sex-biased expression can accelerate the evolution of sex-linked genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sex-biased expression and differential fitness of males and females.
Figure 2: Male-biased expression of Z-linked genes.
Figure 3: Sex-biased expression and the 'faster-X' effect.

Similar content being viewed by others

References

  1. Ellegren, H. & Parsch, J. The evolution of sex-biased genes and sex-biased gene expression. Nature Rev. Genet. 8, 689–698 (2007).

    Article  CAS  Google Scholar 

  2. Arnqvist, G. & Rowe, L. Sexual Conflict (Princeton Univ. Press, 2005).

    Book  Google Scholar 

  3. Chippindale, A. K., Gibson, J. R. & Rice, W. R. Negative genetic correlation for adult fitness between sexes reveals ontogenetic conflict in Drosophila. Proc. Natl Acad. Sci. USA 98, 1671–1675 (2001).

    Article  CAS  Google Scholar 

  4. Innocetti, P. & Morrow, E. H. The sexually antagonistic genes of Drosophila melanogaster. PLoS Biol. 16, e1000335 (2010).

    Article  Google Scholar 

  5. Connallon, T. & Clark, A. G. Association between sex-biased gene expression and mutations with sex-specific phenotypic consequences in Drosophila. Genome Biol. Evol. 3, 151–155 (2011).

    Article  CAS  Google Scholar 

  6. Telonis-Scott, M., Kopp, A., Wayne, M. L., Nuzhdin, S. V. & McIntyre, L. M. Sex-specific splicing in Drosophila: widespread occurrence, tissue specificity and evolutionary conservation. Genetics 181, 421–434 (2009).

    Article  CAS  Google Scholar 

  7. Hartmann, B. et al. Distinct regulatory programs establish widespread sex-specific alternative splicing in Drosophila melanogaster. RNA 17, 453–468 (2011).

    Article  CAS  Google Scholar 

  8. Gallach, M., Chandrasekaran, C. & Betran, E. Analyses of nuclearly encoded mitochondrial genes suggest gene duplication as a mechanism for resolving intralocus sexually antagonistic conflict in Drosophila. Genome Biol. Evol. 2, 835–850 (2010).

    Article  Google Scholar 

  9. Connallon, T. & Clark, A. G. The resolution of sexual antagonism by gene duplication. Genetics 187, 919–937 (2011).

    Article  Google Scholar 

  10. Gallach, M. & Betrán, E. Intralocus sexual conflict resolved through gene duplication. Trends Ecol. Evol. 26, 222–228 (2011).

    Article  Google Scholar 

  11. Wyman, M. J., Cutter, A. D. & Rowe, L. Gene duplication in the evolution of sexual dimorphism. Evolution 66, 1556–1566 (2012).

    Article  Google Scholar 

  12. Chen, S. et al. Reshaping of global gene expression networks and sex-biased gene expression by integration of a young gene. EMBO J. 31, 2798–2809 (2012).

    Article  CAS  Google Scholar 

  13. Cocquet, J. et al. A genetic basis for a postmeiotic X versus Y chromosome intragenomic conflict in the mouse. PLoS Genet. 8, e1002900 (2012).

    Article  CAS  Google Scholar 

  14. Parisi, M. et al. Paucity of genes on the D. melanogaster X chromosome showing male-biased expression. Science 299, 697–700 (2003).

    Article  CAS  Google Scholar 

  15. Meisel, R. P., Malone, J. H. & Clark, A. G. Disentangling the relationship between sex-biased gene expression and X-linkage. Genome Res. 22, 1255–1265 (2012).

    Article  CAS  Google Scholar 

  16. Assis, R., Zhou, Q. & Bachtrog, D. Sex-biased transcriptome evolution in Drosophila. Genome Biol. Evol. 4, 1189–1200 (2012).

    Article  Google Scholar 

  17. Reinius, B. et al. Abundance of female-biased and paucity of male-biased somatically expressed genes on the mouse X-chromosome. BMC Genomics 13, 607 (2012).

    Article  CAS  Google Scholar 

  18. Itoh, Y. et al. Dosage compensation is less effective in birds than in mammals. J. Biol. 6, 2 (2007).

    Article  Google Scholar 

  19. Ellegren, H. et al. Faced with inequality: chicken do not have a general dosage compensation of sex-linked genes. BMC Biol. 5, 40 (2007).

    Article  Google Scholar 

  20. Zha, X. et al. Dosage analysis of Z chromosome genes using microarray in silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 39, 315–321 (2009).

    Article  CAS  Google Scholar 

  21. Vicoso, B. & Bachtrog, D. Lack of global dosage compensation in Schistosoma mansoni, a female-heterogametic parasite. Genome Biol. Evol. 3, 230–235 (2011).

    Article  CAS  Google Scholar 

  22. Kaiser, V. B. & Ellegren, H. Nonrandom distribution of genes with sex-biased expression in the chicken genome. Evolution 60, 1945–1951 (2006).

    Article  CAS  Google Scholar 

  23. Arunkumar, K. P., Mita, K. & Nagaraju, J. The silkworm Z chromosome is enriched in testis-specific genes. Genetics 182, 493–501 (2009).

    Article  CAS  Google Scholar 

  24. Leder, E. H. et al. Female-biased expression on the X chromosome as a key step in sex chromosome evolution in threespine sticklebacks. Mol. Biol. Evol. 27, 1495–1503 (2010).

    Article  CAS  Google Scholar 

  25. Prince, E. G., Kirkland, D. & Demuth, J. P. Hyperexpression of the X chromosome in both sexes results in extensive female bias of X-linked genes in the flour beetle. Genome Biol. Evol. 2, 336–346 (2010).

    Article  Google Scholar 

  26. Gupta, V. et al. Global analysis of X-chromosome dosage compensation. J. Biol. 5, 3 (2006).

    Article  Google Scholar 

  27. Meiklejohn, C. D., Landeen, E. L., Cook, J. M., Kingan, S. B. & Presgraves, D. C. Sex chromosome-specific regulation in the Drosophila male germline but little evidence for chromosomal dosage compensation or meiotic inactivation. PLoS Biol. 9, e1001126 (2011).

    Article  CAS  Google Scholar 

  28. Meiklejohn, C. D. & Presgraves, D. C. Little evidence for demasculinization of the Drosophila X chromosome among genes expressed in the male germline. Genome Biol. Evol. 4, 895–904 (2012).

    Article  Google Scholar 

  29. Chang, P. L., Dunham, J. P., Nuzhdin, S. V. & Arbeitman, M. N. Somatic sex-specific transcriptome differences in Drosophila revealed by whole transcriptome sequencing. BMC Genomics 12, 364 (2011).

    Article  CAS  Google Scholar 

  30. Catalán, A., Hutter, S. & Parsch, J. Population and sex differences in Drosophila melanogaster brain gene expression. BMC Genomics 13, 654 (2012).

    Article  Google Scholar 

  31. Lemos, B., Araripe, L. O. & Hartl, D. L. Polymorphic Y chromosomes harbor cryptic variation with manifold functional consequences. Science 319, 91–93 (2008).

    Article  CAS  Google Scholar 

  32. Lemos, B., Branco, A. T. & Hartl, D. L. Epigenetic effects of polymorphic Y chromosomes modulate chromatin components, immune response, and sexual conflict. Proc. Natl Acad. Sci. USA 107, 15826–15831 (2010).

    Article  CAS  Google Scholar 

  33. Kashimada, K. & Koopman, P. Sry: the master switch in mammalian sex determination. Development 137, 3921–3930 (2010).

    Article  CAS  Google Scholar 

  34. Mank, J. E., Nam, K., Brunström, B. & Ellegren, H. Ontogenetic complexity of sexual dimorphism and sex-specific selection. Mol. Biol. Evol. 27, 1570–1578 (2010).

    Article  CAS  Google Scholar 

  35. Baker, D. A. et al. A comprehensive gene expression atlas of sex- and tissue-specificity in the malaria vector, Anopheles gambiae. BMC Genomics 12, 296 (2011).

    Article  Google Scholar 

  36. Haerty, W. et al. Evolution in the fast lane: rapidly evolving sex-related genes in Drosophila. Genetics 177, 1321–1335 (2007).

    Article  CAS  Google Scholar 

  37. Demuth, J. P. & Wade, M. J. Maternal expression increases the rate of bicoid evolution by relaxing selective constraint. Genetica 129, 37–43 (2007).

    Article  Google Scholar 

  38. Meisel, R. P. Towards a more nuanced understanding of the relationship between sex-biased gene expression and rates of protein-coding sequence evolution. Mol. Biol. Evol. 28, 1893–1900 (2011).

    Article  CAS  Google Scholar 

  39. Grath, S. & Parsch, J. Rate of amino acid substitution is influenced by the degree and conservation of male-biased transcription over 50 myr of Drosophila evolution. Genome Biol. Evol. 4, 346–359 (2012).

    Article  Google Scholar 

  40. Swanson, W. J. & Vacquier, V. D. The rapid evolution of reproductive proteins. Nature Rev. Genet. 3, 137–144 (2002).

    Article  CAS  Google Scholar 

  41. Charlesworth, B., Coyne, J. A. & Barton, N. H. The relative rates of evolution of sex chromosomes and autosomes. Am. Nat. 130, 113–146 (1987).

    Article  Google Scholar 

  42. Orr, H. A. & Betancourt, A. J. Haldane's sieve and adaptation from the standing genetic variation. Genetics 157, 875–884 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Vicoso, B. & Charlesworth, B. Effective population size and the faster-X effect, an extended model. Evolution 63, 2413–2426 (2009).

    Article  Google Scholar 

  44. Baines, J. F., Sawyer, S. A., Hartl, D. L. & Parsch, J. Effects of X-linkage and sex-biased gene expression on the rate of adaptive protein evolution in Drosophila. Mol. Biol. Evol. 25, 1639–1650 (2008).

    Article  CAS  Google Scholar 

  45. Sella, G., Petrov, D. A., Przeworski, M. & Andolfatto, P. Pervasive natural selection in the Drosophila genome? PLoS Genet. 5, e1000495 (2009).

    Article  Google Scholar 

  46. Eyre-Walker, A. & Keightley, P. D. Estimating the rate of adaptive molecular evolution in the presence of slightly deleterious mutations and population size change. Mol. Biol. Evol. 26, 2097–2108 (2009).

    Article  CAS  Google Scholar 

  47. Wilson, D. J., Hernandez, R. D., Andolfatto, P. & Przeworski, M. A population genetics-phylogenetics approach to inferring natural selection in coding sequences. PLoS Genet. 7, e1002395 (2011).

    Article  CAS  Google Scholar 

  48. Mank, J. E., Axelsson, E. & Ellegren, H. Fast-X on the Z: rapid evolution of sex-linked genes in birds. Genome Res. 17, 618–624 (2007).

    Article  CAS  Google Scholar 

  49. Mank, J. E., Nam, K. & Ellegren, H. Faster-Z evolution is predominantly due to genetic drift. Mol. Biol. Evol. 27, 661–670 (2010).

    Article  CAS  Google Scholar 

  50. Mank, J. E., Vicoso, B., Berlin, S. & Charlesworth, B. Effective population size and the faster-X effect, empirical results and their interpretation. Evolution 64, 663–674 (2010).

    Article  Google Scholar 

  51. Llopart, A. The rapid evolution of X-linked male-biased gene expression and the large-X effect in Drosophila yakuba, D. santomea, and their hybrids. Mol. Biol. Evol. 29, 3873–3886 (2012).

    Article  CAS  Google Scholar 

  52. Meisel, R. P., Malone, J. H. & Clark, A. G. Faster-X evolution of gene expression in Drosophila. PLoS Genet. 8, e1003013 (2012).

    Article  CAS  Google Scholar 

  53. Gnad, F. & Parsch, J. Sebida: a database for the functional and evolutionary analysis of genes with sex-biased expression. Bioinformatics 22, 2577–2579 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge funding (to J.P.) from the Deutsche Forschungsgemeinschaft, and (to H.E.) from the European Research Council, the Knut and Alice Wallenberg Foundation and the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

John Parsch's homepage

Hans Ellegren's homepage

Glossary

Cis-regulatory changes

Changes in gene regulatory sequences, such as promoters and enhancers, that alter the expression of genes located nearby on the same chromosome.

Effective population size

(Ne). An idealized description of the number of breeding individuals in a population over many generations. Ne is usually much smaller than the current census population size. As Ne increases, the influence of natural selection becomes greater, whereas the influence of genetic drift is diminished.

Genetic drift

Stochastic variation in allele frequency in a population across generations. The effect of genetic drift is more pronounced when the effective population size is small.

Pleiotropy

The situation in which a single gene influences multiple phenotypic traits. This places more constraint on the gene and can reduce its rate of evolution.

Purifying selection

Negative selection against deleterious mutations. This is thought to be the most prevalent form of natural selection.

Retroduplication

A mechanism that creates duplicate gene copies in new genomic positions through the reverse transcription of mRNAs from source genes (also known as retroposition).

Sexual antagonism

Conflict arising from traits that are beneficial to one sex but harmful to the other.

Slightly deleterious mutations

Mutations with a very small negative effect on fitness. When effective population size is low, their probability of fixation is mainly governed by stochastic events.

Standing variation

Existing genetic variation that is the result of past mutations that have become neither lost nor fixed in a population.

Trans-regulatory changes

Sequence changes that alter the expression of genes located on different chromosomes or far away on the same chromosome.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parsch, J., Ellegren, H. The evolutionary causes and consequences of sex-biased gene expression. Nat Rev Genet 14, 83–87 (2013). https://doi.org/10.1038/nrg3376

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3376

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research