Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular and evolutionary dynamics of animal sex-chromosome turnover

Abstract

Prevailing models of sex-chromosome evolution were largely inspired by the stable and highly differentiated XY pairs of model organisms, such as those of mammals and flies. Recent work has uncovered an incredible diversity of sex-determining systems, bringing some of the assumptions of these traditional models into question. One particular question that has arisen is what drives some sex chromosomes to be maintained over millions of years and differentiate fully, while others are replaced by new sex-determining chromosomes before differentiation has occurred. Here, I review recent data on the variability of sex-determining genes and sex chromosomes in different non-model vertebrates and invertebrates, and discuss some theoretical models that have been put forward to account for this diversity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Putative steps in the evolution of heteromorphic sex chromosomes.
Fig. 2: A ‘trap’ model of sex-chromosome turnover and conservation.
Fig. 3: Convergent recruitment of sex-determining genes as new master switches of sex determination in vertebrates and insects.

Similar content being viewed by others

References

  1. Ohno, S. Sex Chromosomes and Sex-linked Genes (Springer-Verlag, 1966).

  2. Bachtrog, D. et al. Sex determination: why so many ways of doing it? PLoS Biol. 12, e1001899 (2014).

    PubMed  PubMed Central  Google Scholar 

  3. Beukeboom, L. W. & Perrin, N. The Evolution of Sex Determination (Oxford Univ. Press, 2014).

  4. Livernois, A. M., Graves, J. A. M. & Waters, P. D. The origin and evolution of vertebrate sex chromosomes and dosage compensation. Heredity 108, 50–58 (2012).

    CAS  PubMed  Google Scholar 

  5. Bellott, D. W. et al. Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. Nature 508, 494–499 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Charlesworth, D. & Charlesworth, B. Sex differences in fitness and selection for centric fusions between sex-chromosomes and autosomes. Genet. Res. 35, 205–214 (1980).

    CAS  PubMed  Google Scholar 

  7. Rice, W. R. Genetic hitchhiking and the evolution of reduced genetic activity of the Y sex chromosome. Genetics 116, 161–167 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Charlesworth, D., Charlesworth, B. & Marais, G. Steps in the evolution of heteromorphic sex chromosomes. Heredity 95, 118–128 (2005).

    CAS  PubMed  Google Scholar 

  9. Jordan, C. Y. & Charlesworth, D. The potential for sexually antagonistic polymorphism in different genome regions. Genome Biol. Evol. 66, 505–516 (2012).

    Google Scholar 

  10. Wright, A. E., Dean, R., Zimmer, F. & Mank, J. E. How to make a sex chromosome. Nat. Commun. 7, 12087 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Charlesworth, B., Jordan, C. Y. & Charlesworth, D. The evolutionary dynamics of sexually antagonistic mutations in pseudoautosomal regions of sex chromosomes. Genome Biol. Evol. 68, 1339–1350 (2014).

    CAS  Google Scholar 

  12. Lahn, B. T. & Page, D. C. Four evolutionary strata on the human X chromosome. Science 286, 964–967 (1999).

    CAS  PubMed  Google Scholar 

  13. Handley, L.-J. L., Ceplitis, H. & Ellegren, H. Evolutionary strata on the chicken Z chromosome: implications for sex chromosome evolution. Genetics 167, 367–376 (2004).

    PubMed  PubMed Central  Google Scholar 

  14. Ponnikas, S., Sigeman, H., Abbott, J. K. & Hansson, B. Why do sex chromosomes stop recombining? Trends Genet. 34, 492–503 (2018).

    CAS  PubMed  Google Scholar 

  15. Bachtrog, D. Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nat. Rev. Genet. 14, 113–124 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Charlesworth, B. The evolution of chromosomal sex determination and dosage compensation. Curr. Biol. 6, 149–162 (1996).

    CAS  PubMed  Google Scholar 

  17. Charlesworth, B. Model for evolution of Y chromosomes and dosage compensation. Proc. Natl Acad. Sci. USA 75, 5618–5622 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lucchesi, J. C. & Kuroda, M. I. Dosage compensation in Drosophila. CSH Perspect. Biol. 7, a019398 (2015).

    Google Scholar 

  19. Lucchesi, J. C. Gene dosage compensation and the evolution of sex chromosomes. Science 202, 711–716 (1978).

    CAS  PubMed  Google Scholar 

  20. Crowson, D., Barrett, S. C. H. & Wright, S. I. Purifying and positive selection influence patterns of gene loss and gene expression in the evolution of a plant sex chromosome system. Mol. Biol. Evol. 34, 1140–1154 (2017).

    CAS  PubMed  Google Scholar 

  21. Bull, J. J. Evolution of Sex Determining Mechanisms (Benjamin/Cummings Publishing, 1983).

  22. Lahn, B. T. & Page, D. C. Functional coherence of the human Y chromosome. Science 278, 675–680 (1997).

    CAS  PubMed  Google Scholar 

  23. Brosseau, G. E. Genetic analysis of the male fertility factors on the Y chromosome of Drosophila melanogaster. Genetics 45, 257–274 (1960).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Pokorná, M. & Kratochvíl, L. Phylogeny of sex-determining mechanisms in squamate reptiles: are sex chromosomes an evolutionary trap? Zool. J. Linn. Soc. 156, 168–183 (2009).

    Google Scholar 

  25. Rovatsos, M., Altmanová, M., Pokorná, M. & Kratochvíl, L. Conserved sex chromosomes across adaptively radiated Anolis lizards. Genome Biol. Evol. 68, 2079–2085 (2014).

    Google Scholar 

  26. Rovatsos, M., Pokorná, M., Altmanová, M. & Kratochvíl, L. Cretaceous park of sex determination: sex chromosomes are conserved across iguanas. Biol. Lett. 10, 20131093 (2014).

    PubMed  PubMed Central  Google Scholar 

  27. Rovatsos, M., Praschag, P., Fritz, U. & Kratochvšl, L. Stable Cretaceous sex chromosomes enable molecular sexing in softshell turtles (Testudines: Trionychidae). Sci. Rep. 7, 42150 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Fraïsse, C., Picard, M. A. L. & Vicoso, B. The deep conservation of the Lepidoptera Z chromosome suggests a non-canonical origin of the W. Nat. Commun. 8, 1486 (2017).

    PubMed  PubMed Central  Google Scholar 

  29. Iannucci, A. et al. Conserved sex chromosomes and karyotype evolution in monitor lizards (Varanidae). Heredity 123, 215–227 (2019).

    PubMed  PubMed Central  Google Scholar 

  30. Ross, J. A., Urton, J. R., Boland, J., Shapiro, M. D. & Peichel, C. L. Turnover of sex chromosomes in the stickleback fishes (Gasterosteidae). PLoS Genet. 5, e1000391 (2009).

    PubMed  PubMed Central  Google Scholar 

  31. Furman, B. L. S. & Evans, B. J. Sequential turnovers of sex chromosomes in African clawed frogs (Xenopus) suggest some genomic regions are good at sex determination. G3 (Bethesda) 6, 3625–3633 (2016).

    CAS  Google Scholar 

  32. Miura, I. Sex determination and sex chromosomes in Amphibia. Sex. Dev. 11, 298–306 (2017).

    CAS  PubMed  Google Scholar 

  33. Ezaz, T., Sarre, S. D., O’Meally, D., Graves, J. A. M. & Georges, A. Sex chromosome evolution in lizards: independent origins and rapid transitions. Cytogenet. Genome Res. 127, 249–260 (2009).

    CAS  PubMed  Google Scholar 

  34. Gamble, T. et al. Restriction site-associated DNA sequencing (RAD-seq) reveals an extraordinary number of transitions among gecko sex-determining systems. Mol. Biol. Evol. 32, 1296–1309 (2015).

    CAS  PubMed  Google Scholar 

  35. Vicoso, B. & Bachtrog, D. Numerous transitions of sex chromosomes in Diptera. PLoS Biol. 13, e1002078 (2015).

    PubMed  PubMed Central  Google Scholar 

  36. Gammerdinger, W. J. & Kocher, T. D. Unusual diversity of sex chromosomes in African cichlid fishes. Genes 9, 480 (2018).

    PubMed Central  Google Scholar 

  37. Jeffries, D. L. et al. A rapid rate of sex-chromosome turnover and non-random transitions in true frogs. Nat. Commun. 9, 4088 (2018).

    PubMed  PubMed Central  Google Scholar 

  38. Graves, J. A. M. & Peichel, C. L. Are homologies in vertebrate sex determination due to shared ancestry or to limited options? Genome Biol. 11, 205 (2010).

    Google Scholar 

  39. Pennell, M. W., Mank, J. E. & Peichel, C. L. Transitions in sex determination and sex chromosomes across vertebrate species. Mol. Ecol. 27, 3950–3963 (2018).

    PubMed  PubMed Central  Google Scholar 

  40. Zhou, Q. et al. Complex evolutionary trajectories of sex chromosomes across bird taxa. Science 346, 1246338 (2014).

    PubMed  PubMed Central  Google Scholar 

  41. McKee, B. D., Yan, R. & Tsai, J.-H. Meiosis in male Drosophila. Spermatogenesis 2, 167–184 (2012).

    PubMed  PubMed Central  Google Scholar 

  42. Berset-Brändli, L., Jaquiéry, J., Broquet, T., Ulrich, Y. & Perrin, N. Extreme heterochiasmy and nascent sex chromosomes in European tree frogs. Proc. R. Soc. B 275, 1577–1585 (2008).

    PubMed  PubMed Central  Google Scholar 

  43. Sardell, J. M. et al. Sex differences in recombination in sticklebacks. G3 (Bethesda) 8, 1971–1983 (2018).

    CAS  Google Scholar 

  44. Bergero, R., Gardner, J., Bader, B., Yong, L. & Charlesworth, D. Exaggerated heterochiasmy in a fish with sex-linked male coloration polymorphisms. Proc. Natl Acad. Sci. USA 116, 6924–6931 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Perrin, N. Sex reversal: a fountain of youth for sex chromosomes? Genome Biol. Evol. 63, 3043–3049 (2009).

    Google Scholar 

  46. Rodrigues, N., Studer, T., Dufresnes, C. & Perrin, N. Sex-chromosome recombination in common frogs brings water to the fountain-of-youth. Mol. Biol. Evol. 35, 942–948 (2018).

    CAS  PubMed  Google Scholar 

  47. Meisel, R. P. & Wexler, J. R. The X chromosome of the German cockroach, Blattella germanica, is homologous to a fly X chromosome despite 400 million years divergence. Preprint at bioRxiv https://doi.org/10.1101/279737 (2018).

  48. Davis, R. J., Belikoff, E. J., Scholl, E. H., Li, F. & Scott, M. J. no blokes is essential for male viability and X chromosome gene expression in the Australian sheep blowfly. Cur. Biol. 28, 1987–1992.e3 (2018).

    CAS  Google Scholar 

  49. Herpin, A. & Schartl, M. Plasticity of gene-regulatory networks controlling sex determination: of masters, slaves, usual suspects, newcomers, and usurpators. EMBO Rep. 16, 1260–1274 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lubieniecki, K. P. et al. Genomic instability of the sex-determining locus in Atlantic salmon (Salmo salar). G3 (Bethesda) 5, 2513–2522 (2015).

    CAS  Google Scholar 

  51. Yano, A. et al. An immune-related gene evolved into the master sex-determining gene in rainbow trout, Oncorhynchus mykiss. Curr. Biol. 22, 1423–1428 (2012).

    CAS  PubMed  Google Scholar 

  52. Sharma, A. et al. Male sex in houseflies is determined by Mdmd, a paralog of the generic splice factor gene CWC22. Science 356, 642–645 (2017).

    CAS  PubMed  Google Scholar 

  53. Matsuda, M. et al. DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature 417, 559–563 (2002).

    CAS  PubMed  Google Scholar 

  54. Nanda, I. et al. A duplicated copy of DMRT1 in the sex-determining region of the Y chromosome of the medaka, Oryzias latipes. Proc. Natl Acad. Sci. USA 99, 11778–11783 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Li, M. et al. A Tandem duplicate of anti-Müllerian hormone with a missense SNP on the Y chromosome is essential for male sex determination in Nile tilapia, Oreochromis niloticus. PLoS Genet. 11, e1005678 (2015).

    PubMed  PubMed Central  Google Scholar 

  56. Hattori, R. S. et al. A Y-linked anti-Müllerian hormone duplication takes over a critical role in sex determination. Proc. Natl Acad. Sci. USA 109, 2955–2959 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kamiya, T. et al. A trans-species missense SNP in Amhr2 is associated with sex determination in the tiger pufferfish, Takifugu rubripes (Fugu). PLoS Genet. 8, e1002798 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Foster, J. W. & Graves, J. A. M. An SRY-related sequence on the marsupial X chromosome: implications for the evolution of the mammalian testis-determining gene. Proc. Natl Acad. Sci. USA 91, 1927–1931 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Takehana, Y. et al. Co-option of Sox3 as the male-determining factor on the Y chromosome in the fish Oryzias dancena. Nat. Commun. 5, 4157 (2014).

    CAS  PubMed  Google Scholar 

  60. Myosho, T. et al. Tracing the emergence of a novel sex-determining gene in medaka, Oryzias luzonensis. Genetics 191, 163–170 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Rondeau, E. B. et al. Genomics of sablefish (Anoplopoma fimbria): expressed genes, mitochondrial phylogeny, linkage map and identification of a putative sex gene. BMC Genom. 14, 452 (2013).

    CAS  Google Scholar 

  62. Hasselmann, M. et al. Evidence for the evolutionary nascence of a novel sex determination pathway in honeybees. Nature 454, 519–522 (2008).

    CAS  PubMed  Google Scholar 

  63. Hall, A. B. et al. Sex determination. A male-determining factor in the mosquito Aedes aegypti. Science 348, 1268–1270 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Yoshimoto, S. et al. A W-linked DM-domain gene, DM-W, participates in primary ovary development in Xenopus laevis. Proc. Natl Acad. Sci. USA 105, 2469–2474 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Yoshimoto, S. et al. Opposite roles of DMRT1 and its W-linked paralogue, DM-W, in sexual dimorphism of Xenopus laevis: implications of a ZZ/ZW-type sex-determining system. Development 137, 2519–2526 (2010).

    CAS  PubMed  Google Scholar 

  66. Bewick, A. J., Anderson, D. W. & Evans, B. J. Evolution of the closely related, sex-related genes DM-W and DMRT1 in African clawed frogs (Xenopus). Genome Biol. Evol. 65, 698–712 (2011).

    CAS  Google Scholar 

  67. Yoshimoto, S. & Ito, M. A ZZ/ZW-type sex determination in Xenopus laevis. FEBS J. 278, 1020–1026 (2011).

    CAS  PubMed  Google Scholar 

  68. Bull, J. J. & Charnov, E. L. Changes in the heterogametic mechanism of sex determination. Heredity 39, 1–14 (1977).

    CAS  PubMed  Google Scholar 

  69. Veller, C., Muralidhar, P., Constable, G. W. A. & Nowak, M. A. Drift-induced selection between male and female heterogamety. Genetics 207, 711–727 (2017).

    PubMed  PubMed Central  Google Scholar 

  70. Hamm, R. L., Meisel, R. P. & Scott, J. G. The evolving puzzle of autosomal versus Y-linked male determination in Musca domestica. G3 (Bethesda) 5, 371–384 (2014).

    Google Scholar 

  71. van Doorn, G. S. & Kirkpatrick, M. Turnover of sex chromosomes induced by sexual conflict. Nature 449, 909–912 (2007).

    PubMed  Google Scholar 

  72. van Doorn, G. S. & Kirkpatrick, M. Transitions between male and female heterogamety caused by sex-antagonistic selection. Genetics 186, 629–645 (2010).

    PubMed  PubMed Central  Google Scholar 

  73. Roberts, R. B., Ser, J. R. & Kocher, T. D. Sexual conflict resolved by invasion of a novel sex determiner in Lake Malawi cichlid fishes. Science 326, 998–1001 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Blaser, O., Grossen, C., Neuenschwander, S. & Perrin, N. Sex-chromosome turnovers induced by deleterious mutation load. Genome Biol. Evol. 67, 635–645 (2013).

    CAS  Google Scholar 

  75. Blaser, O., Neuenschwander, S. & Perrin, N. Sex-chromosome turnovers: the hot-potato model. Am. Nat. 183, 140–146 (2014).

    PubMed  Google Scholar 

  76. Saunders, P. A., Neuenschwander, S. & Perrin, N. Sex chromosome turnovers and genetic drift: a simulation study. J. Evol. Biol. 31, 1413–1419 (2018).

    CAS  PubMed  Google Scholar 

  77. Charlesworth, B. Fundamental concepts in genetics: effective population size and patterns of molecular evolution and variation. Nat. Rev. Genet. 10, 195–205 (2009).

    CAS  PubMed  Google Scholar 

  78. The Tree of Sex Consortium. Tree of Sex: a database of sexual systems. Sci. Data 1, 140015 (2014).

    Google Scholar 

  79. Martin, H. et al. Evolution of young sex chromosomes in two dioecious sister plant species with distinct sex determination systems. Genome Biol. Evol. 11, 350–361 (2019).

    PubMed  PubMed Central  Google Scholar 

  80. Pal, A. & Vicoso, B. The X chromosome of hemipteran insects: conservation, dosage compensation and sex-biased expression. Genome Biol. Evol. 7, 3259–3268 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Albritton, S. E. et al. Sex-biased gene expression and evolution of the X chromosome in nematodes. Genetics 197, 865–883 (2014).

    PubMed  PubMed Central  Google Scholar 

  82. Graves, J. A. M. Evolution of vertebrate sex chromosomes and dosage compensation. Nat. Rev. Genet. 17, 33–46 (2016).

    CAS  PubMed  Google Scholar 

  83. Myosho, T., Takehana, Y., Hamaguchi, S. & Sakaizumi, M. Turnover of sex chromosomes in Celebensis group medaka fishes. G3 (Bethesda) 5, 2685–2691 (2015).

    CAS  Google Scholar 

  84. Nei, M. Accumulation of nonfunctional genes on sheltered chromosomes. Am. Nat. 104, 311–322 (1970).

    Google Scholar 

  85. Peck, J. R. A ruby in the rubbish: beneficial mutations, deleterious mutations and the evolution of sex. Genetics 137, 597–606 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Charlesworth, B. & Charlesworth, D. Rapid fixation of deleterious alleles can be caused by Muller’s ratchet. Genet. Res. 70, 63–73 (1997).

    CAS  PubMed  Google Scholar 

  87. Gammerdinger, W. J., Conte, M. A., Acquah, E. A., Roberts, R. B. & Kocher, T. D. Structure and decay of a proto-Y region in Tilapia, Oreochromis niloticus. BMC Genom. 15, 975 (2014).

    Google Scholar 

  88. Fontaine, A. et al. Extensive genetic differentiation between homomorphic sex chromosomes in the mosquito vector, Aedes aegypti. Genome Biol. Evol. 9, 2322–2335 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Meirmans, P. G. & Hedrick, P. W. Assessing population structure: FST and related measures. Mol. Ecol. Resour. 11, 5–18 (2011).

    PubMed  Google Scholar 

  90. Vicoso, B., Kaiser, V. B. & Bachtrog, D. Sex-biased gene expression at homomorphic sex chromosomes in emus and its implication for sex chromosome evolution. Proc. Natl Acad. Sci. USA 110, 6453–6458 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Wright, A. E. et al. Convergent recombination suppression suggests role of sexual selection in guppy sex chromosome formation. Nat. Commun. 8, 14251 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Meisel, R. P., Gonzales, C. A. & Luu, H. The house fly Y chromosome is young and minimally differentiated from its ancient X chromosome partner. Genome Res. 27, 1417–1426 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Vicoso, B. & Bachtrog, D. Lack of global dosage compensation in Schistosoma mansoni, a female-heterogametic parasite. Genome Biol. Evol. 3, 230–235 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Huylmans, A. K., Toups, M. A., Macon, A., Gammerdinger, W. J. & Vicoso, B. Sex-biased gene expression and dosage compensation on the Artemia franciscana Z-chromosome. Genome Biol. Evol. 11, 1033–1044 (2019).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

B.V. thanks the members of the Vicoso lab for their comments and suggestions on the manuscript. This work was supported by the European Research Council under the European Union’s Horizon 2020 research and innovation program (grant agreement number 715257).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz Vicoso.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vicoso, B. Molecular and evolutionary dynamics of animal sex-chromosome turnover. Nat Ecol Evol 3, 1632–1641 (2019). https://doi.org/10.1038/s41559-019-1050-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-019-1050-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing