Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

How culture shaped the human genome: bringing genetics and the human sciences together

Key Points

  • A variety of researchers are converging on the view that human evolution has been shaped by gene–culture interactions. Theoretical biologists use models to demonstrate that cultural processes can affect human evolution, anthropologists are investigating cultural practices that modify current selection, and geneticists are uncovering alleles that have been subject to recent selection because of human activities.

  • Theoretical population genetics models are used to explore how genes and culture interact over evolutionary time, including how and why culture can affect evolutionary rates.

  • Niche-construction theory is a branch of evolutionary biology that emphasizes the capacity of organisms to modify natural selection and thereby act as co-directors of their own, and other species', evolution. Humans are the ultimate niche-constructing species. We specify how variation in buffering through cultural niche construction could explain geographical variation in human genes.

  • A further source of evidence for gene–culture co-evolution comes from anthropological studies of contemporary human populations, which demonstrate gene–culture co-evolution in action. Examples include Kwa-speaking yam cultivators in West Africa whose agriculture favoured the haemoglobin S (HbS) 'sickle-cell' allele, and Polynesian voyages that led to positive selection for thrifty metabolism, leading to type 2 diabetes susceptibility.

  • Geneticists have recently developed methods to identify alleles that have been favoured by recent selection, many of which seem to have been favoured because of cultural activities. Overrepresented categories of genes that have been subject to positive selection include those related to recent changes in human diet and human-induced disease.

  • The well-researched example of co-evolution of dairy farming and the lactase gene shows the range of methods used to investigate gene–culture co-evolution.

  • We end by asking how prevalent gene–culture co-evolution is, and how researchers can differentiate between a molecular signature of selection generated by gene–culture co-evolution and one generated from a non-cultural aspect of the environment.

Abstract

Researchers from diverse backgrounds are converging on the view that human evolution has been shaped by gene–culture interactions. Theoretical biologists have used population genetic models to demonstrate that cultural processes can have a profound effect on human evolution, and anthropologists are investigating cultural practices that modify current selection. These findings are supported by recent analyses of human genetic variation, which reveal that hundreds of genes have been subject to recent positive selection, often in response to human activities. Here, we collate these data, highlighting the considerable potential for cross-disciplinary exchange to provide novel insights into how culture has shaped the human genome.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Klein, R. G. The Human Career: Human Biological and Cultural Origins (Univ. of Chicago Press, 1999).

    Google Scholar 

  2. Wheeler, P. E. The thermoregulatory advantages of hominid bipedalism in open equatorial environments: the contribution of increased convective heat loss and cutaneous evaporative cooling. J. Hum. Evol. 21, 107–115 (1991).

    Google Scholar 

  3. Boyd, R. & Silk, J. How Humans Evolved 3rd edn (Norton & Co., New York, 2003).

    Google Scholar 

  4. Kingdon, J. Lowly Origins (Princeton Univ. Press, 2003).

    Google Scholar 

  5. Kingsolver, J. G. et al. The strength of phenotypic selection in natural populations. Am. Nat. 157, 245–261 (2001).

    CAS  PubMed  Google Scholar 

  6. Voight, B. F., Kudaravalli, S., Wen, X. & Pritchard, J. K. A map of recent positive selection in the human genome. PLoS. Biol. 4, e72 (2006).

    PubMed  PubMed Central  Google Scholar 

  7. Wang, E. T., Kodama, G., Baldi, P. & Moyzis, R. K. Global landscape of recent inferred Darwinian selection for Homo sapiens. Proc. Natl Acad. Sci. USA 103, 135–140 (2006). References 6 and 7 describe alleles that have been subject to recent rapid selection and posit a role for cultural practices.

    CAS  PubMed  Google Scholar 

  8. Sabeti, P. C. et al. Positive natural selection in the human lineage. Science 312, 1614–1620 (2006).

    CAS  PubMed  Google Scholar 

  9. Sabeti, P. C. et al. Genome-wide detection and characterization of positive selection in human populations. Nature 449, 913–918 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Nielsen, R., Hellmann, I., Hubisz, M., Bustamante, C. & Clark, A. G. Recent and ongoing selection in the human genome. Nature Rev. Genet. 8, 857–868 (2007).

    CAS  PubMed  Google Scholar 

  11. Tang, K., Thornton, K. R. & Stoneking, M. A new approach for using genome scans to detect recent positive selection in the human genome. PLoS. Biol. 5, e171 (2007).

    PubMed  PubMed Central  Google Scholar 

  12. Durham, W. H. Co-evolution: Genes, Culture and Human Diversity (Stanford Univ. Press, 1991). A classic anthropological text that investigates the relationship between genes and culture.

    Google Scholar 

  13. Holden, C. & Mace, R. Phylogenetic analysis of the evolution of lactose digestion in adults. Hum. Biol. 69, 605–628 (1997). A comparative statistical model that was used to test hypotheses about the evolution of lactose absorption in humans.

    CAS  PubMed  Google Scholar 

  14. Williamson, S. H. et al. Localizing recent adaptive evolution in the human genome. PLoS. Genet. 3, e90 (2007).

    PubMed  PubMed Central  Google Scholar 

  15. Burger, J., Kirchner, M., Bramanti, B., Haak, W. & Thomas, M. G. Absence of the lactase-persistence-associated allele in early Neolithic Europeans. Proc. Natl Acad. Sci. USA 104, 3736–3741 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Tishkoff, S. A. et al. Convergent adaptation of human lactase persistence in Africa and Europe. Nature Genet. 39, 31–40 (2007).

    CAS  PubMed  Google Scholar 

  17. Hawks, J., Wang, E. T., Cochran, G. M., Harpending, H. C. & Moyzis, R. K. Recent acceleration of human adaptive evolution. Proc. Natl Acad. Sci. USA 104, 20753–20758 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Varki, A., Geschwind, D. H. & Eichler, E. E. Explaining human uniqueness: genome interactions with environment, behaviour and culture. Nature Rev. Genet. 9, 749–763 (2008).

    CAS  PubMed  Google Scholar 

  19. Feldman, M. W. & Cavalli-Sforza, L. L. Cultural and biological evolutionary processes, selection for a trait under complex transmission. Theor. Popul. Biol. 9, 238–259 (1976).

    CAS  PubMed  Google Scholar 

  20. Cavalli-Sforza, L.L. & Feldman, M. W. Cultural Transmission and Evolution: A Quantitative Approach (Princeton Univ. Press, 1981). A classic book that describes the mathematical modelling of human culture and its co-evolution with genes using theoretical population genetics.

    Google Scholar 

  21. Boyd, R. & Richerson, P. J. Culture and the Evolutionary Process (Univ. of Chicago Press, 1985). Another classic book on the mathematical modelling of human culture and its co-evolution with genes, but with a more anthropological perspective.

    Google Scholar 

  22. Feldman, M. W. & Laland, K. N. Gene–culture co-evolutionary theory. Trends Ecol. Evol. 11, 453–457 (1996).

    CAS  PubMed  Google Scholar 

  23. Enquist, M., Eriksson, K. & Ghirlanda, S. Critical social learning: a solution to Roger's paradox of nonadaptive culture. Am. Anthropol. 109, 727–734 (2007).

    Google Scholar 

  24. Odling-Smee, F. J., Laland, K. N. & Feldman, M. W. Niche Construction: The Neglected Process in Evolution. Monographs in Population Biology 37 (Princeton Univ. Press, 2003). The major book on niche-construction theory.

    Google Scholar 

  25. Kylafis, G. & Loreau, M. Ecological and evolutionary consequences of niche construction for its agent. Ecol. Lett. 11, 1072–1081 (2008).

    PubMed  Google Scholar 

  26. Laland, K. N., Odling-Smee, F. J. & Feldman, M. W. On the evolutionary consequences of niche construction. J. Evol. Biol. 9, 293–316 (1996).

    Google Scholar 

  27. Laland, K. N., Odling-Smee, F. J. & Feldman, M. W. Evolutionary consequences of niche construction and their implications for ecology. Proc. Natl Acad. Sci. USA 96, 10242–10247 (1999). A key paper on niche-construction theory.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Boni, M. F. & Feldman, M. W. Evolution of antibiotic resistance by human and bacterial niche construction. Evolution 59, 477–491 (2005).

    CAS  PubMed  Google Scholar 

  29. Lehmann, L. The adaptive dynamics of niche constructing traits in spatially subdivided populations: evolving posthumous extended phenotypes. Evolution 62, 549–566 (2008).

    PubMed  Google Scholar 

  30. Silver, M. & Di Paolo, E. Spatial effects favour the evolution of niche construction. Theor. Popul. Biol. 20, 387–400 (2006).

    Google Scholar 

  31. Feldman, M. W. & Cavalli-Sforza, L. L. in Mathematical Evolutionary Theory (ed. Feldman, M. W.) 145–173 (Princeton Univ. Press, 1989).

    Google Scholar 

  32. Ehrlich, P. R. Human Natures: Genes, Cultures, and the Human Prospect (Island Press, Washington DC, 2000).

    Google Scholar 

  33. Richerson, P. J. & Boyd, R. Not By Genes Alone: How Culture Transformed Human Evolution (Univ. of Chicago Press, 2005).

    Google Scholar 

  34. Laland, K. N. Exploring gene–culture interactions: insights from handedness, sexual selection and niche-construction case studies. Phil. Trans. R. Soc. Lond. B 363, 3577–3589 (2008).

    Google Scholar 

  35. Laland, K. N. & Brown, G. R. Sense and Nonsense: Evolutionary Perspectives on Human Behaviour (Oxford Univ. Press, 2002).

    Google Scholar 

  36. Rogers, A. Does biology constrain culture? Am. Anthropol. 90, 819–813 (1988).

    Google Scholar 

  37. Laland, K. N., Kumm, J., Van Horn, J. D. & Feldman, M. W. A gene–culture model of handedness. Behav. Genet. 25, 433–445 (1995).

    CAS  PubMed  Google Scholar 

  38. Cavalli-Sforza, L. L. & Feldman, M. W. Models for cultural inheritance I: group mean and within-group variation. Theor. Popul. Biol. 4, 42–55 (1973).

    CAS  PubMed  Google Scholar 

  39. Otto, S. P., Christiansen, F. B. & Feldman, M. W. Genetic and Cultural Inheritance of Continuous Traits. Morrison Institute for Population and Resource Studies Paper Number 0064 (Stanford Univ. Press, 1995).

    Google Scholar 

  40. Bersaglieri, T. et al. Genetic signatures of strong recent positive selection at the lactase gene. Am. J. Hum. Genet. 74, 1111–1120 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Laland, K. N. Sexual selection with a culturally transmitted mating preference. Theor. Popul. Biol. 45, 1–15 (1994).

    CAS  PubMed  Google Scholar 

  42. Laland, K. N., Kumm, J. & Feldman, M. W. Gene–culture co-evolutionary theory: a test case. Curr. Anthropol. 36, 131–156 (1995).

    Google Scholar 

  43. Cochran, G. & Harpending, H. The 10,000 Year Explosion. How Civilization Accelerated Human Evolution (Basic Books, New York, 2009).

    Google Scholar 

  44. Coop, G. et al. 2009. The role of geography in human adaptation. PLoS Genet. 5, e1000500 (2009). This group studied the geographical distribution of recently selected genes and found that strong sustained selection is rare and partial sweeps are common.

    PubMed  PubMed Central  Google Scholar 

  45. Lewontin, R. C. in Evolution From Molecules to Men (ed. Bendall, D. S.) 273–285 (Cambridge Univ. Press, 1983).

    Google Scholar 

  46. Laland, K. N., Odling-Smee, F. J. & Feldman, M. W. Cultural niche construction and human evolution. J. Evol. Biol. 14, 22–33 (2001). A theoretical analysis of human niche construction and its effects on human evolution.

    CAS  PubMed  Google Scholar 

  47. Borenstein, E., Kendal, J. & Feldman, M. W. Cultural niche construction in a metapopulation. Theor. Popul. Biol. 70, 92–104 (2006).

    PubMed  Google Scholar 

  48. Smith, B. Niche construction and the behavioral context of plant and animal domestication. Evol. Anthropol. 16, 188–199 (2007).

    Google Scholar 

  49. Stringer, C. & Andrews, P. The Complete World of Human Evolution (Thames & Hudson, London, 2005).

    Google Scholar 

  50. Guglielmino, C. R., Viganotti, C., Hewlett, B. & Cavalli-Sforza, L. L. Cultural variation in Africa: role of mechanism of transmission and adaptation. Proc. Natl Acad. Sci. USA 92, 7585–7589 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Perry, G. H. & Dominy, N. J. Evolution of the human pygmy phenotype. Trends Ecol. Evol. 24, 218–225 (2009).

    PubMed  Google Scholar 

  52. Fortunato, L. in Early Human Kinship: From Sex To Social Reproduction (eds Allen, N. J., Callan, H., Dunbar, R. & James, W.) 189–199 (Blackwell Publishing, Oxford, 2008).

    Google Scholar 

  53. Mace, R., Holden, C. J. & Shennan, S. (eds) The Evolution Of Cultural Diversity. A Phylogenetic Approach (Left Coast, Walnut Creek, California, 2005).

    Google Scholar 

  54. Balter, M. Are humans still evolving? Science 309, 234–237 (2005).

    CAS  PubMed  Google Scholar 

  55. Hawkes, K., O'Connell, J. F., Blurton-Jones, N. G., Alvarez, H. & Charnov, E. L. Grandmothering, menopause, and the evolution of human life histories. Proc. Natl Acad. Sci. USA 95, 1336–1339 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Aiello, L. C. & Wheeler, P. The expensive-tissue hypothesis. Curr. Anthropol. 36, 199–221 (1995).

    Google Scholar 

  57. Wrangham, R. W., Jones, J. H., Laden, G., Pilbeam, D. & Conklin-Brittain, N. The raw and the stolen: cooking and the ecology of human origins. Curr. Anthropol. 40, 567–594 (1999).

    CAS  PubMed  Google Scholar 

  58. Sabeti, P. C. et al. Detecting recent positive selection in the human genome from haplotype structure. Nature 419, 832–837 (2002).

    CAS  PubMed  Google Scholar 

  59. Akey, J. M. Constructing genomic maps of positive selection in humans: where do we go from here? Genome Res. 19, 711–722 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Berglund, J., Pollard, K. S. & Webster, M. T. Hotspots of biased nucleotide substitutions in human genes. PLoS. Biol. 7, e1000026 (2009).

    PubMed Central  Google Scholar 

  61. Galtier, N., Duret, L., Glémin, S. & Ranwez, V. GC-biased gene conversion promotes the fixation of deleterious amino acid changes in primates. Trends Genet. 25, 1–5 (2009).

    CAS  PubMed  Google Scholar 

  62. Pickrell, J. K. et al. Signals of recent positive selection in a worldwide sample of human populations. Genome Res. 19, 826–837 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. López Herráez, D. et al. Genetic variation and recent positive selection in worldwide human populations: evidence from nearly 1 million SNPs. PLoS ONE 4, e7888 (2009).

    PubMed  PubMed Central  Google Scholar 

  64. Stefansson, H. et al. A common inversion under selection in Europeans. Nature Genet. 37, 129–137 (2005).

    CAS  PubMed  Google Scholar 

  65. Nguyen, D-Q., Webber, C. & Ponting, C. P. Bias of selection on human copy-number variants. PLoS Genet. 2, e20 (2006).

    PubMed  PubMed Central  Google Scholar 

  66. Prabhakar, S. et al. Human-specific gain of function in a developmental enhancer. Science 321, 1346–1350 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Quach, H. et al. Signatures of purifying and local positive selection in human miRNAs. Am. J. Hum. Genet. 84, 316–327 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Evans, P. D. et al. Microcephalin, a gene regulating brain size, continues to evolve adaptively in humans. Science 309, 1717–1720 (2005).

    CAS  PubMed  Google Scholar 

  69. Mekel-Bobrov, et al. Ongoing adaptive evolution of ASPM, a brain size determinant in Homo sapiens. Science 309, 1720–1722 (2005).

    CAS  PubMed  Google Scholar 

  70. Dediu, D. & Ladd, D. R. Linguistic tone is related to the population frequency of the adaptive haplogroups of two brain size genes, ASPM and Microcephalin. Proc. Natl Acad. Sci. USA 104, 10944–10949 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Aoki, K. A stochastic model of gene–culture co-evolution suggested by the 'culture historical hypothesis' for the evolution of adult lactose absorption in humans. Proc. Natl Acad. Sci. USA 83, 2929–2933 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Itan, Y., Powell, A., Beaumont, M. A., Burger, J. & Thomas, M. G. The origins of lactase persistence in Europe. PLoS Comput. Biol. 5, e1000491 (2009).

    PubMed  PubMed Central  Google Scholar 

  73. Nasidze, I., Quinque, D., Rahmani, M., Alemohamad, S. A. & Stoneking, M. Concomitant replacement of language and mtDNA in South Caspian populations of Iran. Curr. Biol. 16, 668–673 (2006).

    CAS  PubMed  Google Scholar 

  74. Kayser, M. et al. Melanesian and Asian origins of Polynesians: mtDNA and Y chromosome gradients across the Pacific. Mol. Biol. Evol. 23, 2234–2244 (2006).

    CAS  PubMed  Google Scholar 

  75. Oota, H., Settheetham-Ishida, W., Tiwawech, D., Ishida, T. & Stoneking, M. Human mtDNA and Y-chromosome variation is correlated with matrilocal versus patrilocal residence. Nature Genet. 29, 20–21 (2001). This article shows how cultural boundaries can shape gene flow.

    CAS  PubMed  Google Scholar 

  76. Cordaux, R. et al. Independent origins of Indian caste and tribal paternal lineages. Curr. Biol. 14, 231–235 (2004).

    CAS  PubMed  Google Scholar 

  77. Fisher, S. E., Vargha-Khadem, F., Watkins, K. E., Monaco, A. P. & Pembrey, M. E. Localisation of a gene implicated in a severe speech and language disorder. Nature Genet. 18, 168–170 (1998).

    CAS  PubMed  Google Scholar 

  78. Enard, W. et al. Molecular evolution of FOXP2, a gene involved in speech and language. Nature 418, 869–872 (2002).

    CAS  PubMed  Google Scholar 

  79. Enard, W. et al. A humanized version of Foxp2 affects cortico-basal ganglia circuits in mice. Cell 137, 961–971 (2009).

    CAS  PubMed  Google Scholar 

  80. Stedman, H. H. et al. Myosin gene mutation correlates with anatomical changes in the human lineage. Nature 428, 415–418 (2004).

    CAS  PubMed  Google Scholar 

  81. Liao, B. Y. & Zhang, J. Null mutations in human and mouse orthologs frequently result in different phenotypes. Proc. Natl Acad. Sci. USA 105, 6987–6992 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Caspari, R. & Lee, S. H. Older age becomes common late in human evolution. Proc. Natl Acad. Sci. USA 101, 10895–10900 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Scrimshaw, N. & Murray, E. The acceptability of milk and milk products in populations with a high prevalence of lactose intolerance. Am. J. Clin. Nutr. 48, 1079–1159 (1988).

    CAS  PubMed  Google Scholar 

  84. Hollox, E. J. et al. Lactase haplotype diversity in the old world. Am. J. Hum. Genet. 68, 160–172 (2001).

    CAS  PubMed  Google Scholar 

  85. Swallow, D. M. Genetics of lactase persistence and lactose intolerance. Annu. Rev. Genet. 37, 197–219 (2003).

    CAS  PubMed  Google Scholar 

  86. Enattah, N. S. et al. Identification of a variant associated with adult-type hypolactasia. Nature Genet. 30, 233–237 (2002).

    CAS  PubMed  Google Scholar 

  87. Lewinsky, R. H. et al. T-13910 DNA variant associated with lactase persistence interacts with Oct-1 and stimulates lactase promoter activity in vitro. Hum. Mol. Genet. 14, 3945–3953 (2005).

    CAS  PubMed  Google Scholar 

  88. Enattah, N. S. et al. Independent introduction of two lactase-persistence alleles into human populations reflects different history of adaptation to milk culture. Am. J. Hum. Genet. 82, 57–72 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Ulijaszek, S. J. & Strickland, S. S. Nutritional Anthropology: Prospects and Perspectives (Smith-Gordon, London, 1993).

    Google Scholar 

  90. Myles, S. et al. Genetic evidence in support of a shared Eurasian–North African dairying origin. Hum. Genet. 117, 34–42 (2005).

    PubMed  Google Scholar 

  91. Simoons, F. Primary adult lactose intolerance and the milking habit: a problem in biological and cultural interrelations. II. A culture historical hypothesis. Dig. Dis. Sci. 15, 695–710 (1970).

    CAS  Google Scholar 

  92. Beja-Pereira, A. et al. Gene–culture co-evolution between cattle milk protein genes and human lactase genes. Nature Genet. 35, 311–313 (2003).

    CAS  PubMed  Google Scholar 

  93. Laland, K. N. & Galef B. G. Jr (eds) The Question of Animal Culture (Harvard Univ. Press, 2009).

    Google Scholar 

  94. Lachlan, R. F. & Slater, P. J. B. The maintenance of vocal learning by gene–culture interaction: the cultural trap hypothesis. Proc. R. Soc. Lond. B 266, 701–706 (1999).

    Google Scholar 

  95. Beltman, J.B., Haccou, P. & ten Cate, C. The impact of learning foster species' song on the evolution of specialist avian brood parasitism. Behav. Ecol. 14, 917–923 (2003).

    Google Scholar 

  96. Beltman, J. B., Haccou, P. & ten Cate, C. Learning and colonization of new niches: a first step towards speciation. Evolution 58, 35–46 (2004).

    PubMed  Google Scholar 

  97. Bryk, J. et al. Positive selection in East Asians for an EDAR allele that enhances NF-κB activation. PLoS ONE 3, e2209 (2008).

    PubMed  PubMed Central  Google Scholar 

  98. Chang, S. H. et al. Enhanced Edar signalling has pleiotropic effects on craniofacial and cutaneous glands. PLoS ONE 4, e7591 (2009).

    PubMed  PubMed Central  Google Scholar 

  99. Izagirre, N., Garcia, I., Junquera, C., de la Rua, C. & Alonso, S. A scan for signatures of positive selection in candidate loci for skin pigmentation in humans. Mol. Biol. Evol. 23, 1697–1706 (2006).

    CAS  PubMed  Google Scholar 

  100. Lao, O., de Gruijter, J. M., van Duijn, K., Navarro, A. & Kayser, M. Signatures of positive selection in genes associated with human skin pigmentation as revealed from analyses of single nucleotide polymorphisms. Ann. Hum. Genet. 71, 354–369 (2007).

    CAS  PubMed  Google Scholar 

  101. Myles, S., Somel, M., Tang, K., Kelso, J. & Stoneking, M. Identifying genes underlying skin pigmentation differences among human populations. Hum. Genet. 120, 613–621 (2007).

    CAS  PubMed  Google Scholar 

  102. Myles, S. et al. Identification and analysis of high Fst regions from genome-wide SNP data from three human populations. Ann. Hum. Genet. 72, 99–110 (2008).

    CAS  PubMed  Google Scholar 

  103. Ihara, Y., Aoki, K. & Feldman, M. W. Runaway sexual selection with paternal transmission of the male trait and gene–culture determination of the female preference. Theor. Popul. Biol. 63, 53–62 (2003).

    PubMed  Google Scholar 

  104. Livingstone, F. B. Anthropological implications of sickle-cell distribution in West Africa. Am. Anthropol. 60, 533–562 (1958).

    Google Scholar 

  105. Hawley, W. A., Reiter, P., Copeland, R. S., Pumpuni, C. B. & Craig, G. B. Aedes albopictus in North America: probable introduction in used tires from Northern Asia. Science 236, 1114–1116 (1987).

    CAS  PubMed  Google Scholar 

  106. Bindon, J. R. & Baker, P. T. Bergmann's rule and the thrifty genotype. Am. J. Phys. Anthropol. 104, 201–210 (1997).

    CAS  PubMed  Google Scholar 

  107. Houghton, P. The adaptive significance of Polynesian body form. Ann. Hum. Biol. 17, 19–32 (1990).

    CAS  PubMed  Google Scholar 

  108. Myles, S. et al. Identification of a candidate genetic variant for the high prevalence of type II diabetes in Polynesians. Eur. J. Hum. Genet. 15, 584–589 (2007).

    CAS  PubMed  Google Scholar 

  109. Neel, J. V. Diabetes mellitus: a 'thrifty' genotype rendered detrimental by 'progress'? Bull. World Health Organ. 77, 694–703 (1962).

    Google Scholar 

  110. Gleibermann, L. Blood pressure and dietary salt in human populations. Ecol. Food Nutr. 2, 143–156 (1973).

    Google Scholar 

  111. Young, J. H. et al. Differential susceptibility to hypertension is due to selection during the out-of-Africa expansion. PLoS Genet. 1, e82 (2005).

    PubMed  PubMed Central  Google Scholar 

  112. Perry, G. H. et al. Diet and the evolution of human amylase gene copy number variation Nature Genet. 39, 1256–1260 (2007). A good example of gene–culture co-evolution in which changes in human diet favour copies of a gene.

    CAS  PubMed  Google Scholar 

  113. Richards, M. P., Schulting, R. J. & Hedges, R. E. M. Archaeology: sharp shift in diet at onset of Neolithic. Nature 425, 366 (2003).

    CAS  PubMed  Google Scholar 

  114. Kelley, J. L. & Swanson, W. J. Dietary change and adaptive evolution of enamelin in humans and among primates. Genetics 178, 1595–1603 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Soranzo, N. et al. Positive selection on a high-sensitivity allele of the human bitter-taste receptor TAS2R16. Curr. Biol. 15, 1257–1265 (2005).

    CAS  PubMed  Google Scholar 

  116. Haygood, R., Fedrigo, O., Hanson, B., Yokoyama, K. D. & Wray, G. A. Promoter regions of many neural- and nutrition-related genes have experienced positive selection during human evolution. Nature Genet. 39, 1140–1144 (2007).

    CAS  PubMed  Google Scholar 

  117. Chen, C. et al. Interaction between the functional polymorphisms of the alcohol-metabolism genes in protection against alcoholism. Am. J. Hum. Genet. 65, 795–807 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Han, Y. et al. Evidence of positive selection on a class I ADH locus. Am. J. Hum. Genet. 80, 441–456 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Boyd, R. & Richerson, P. Why does culture increase human adaptability? Ethol. Sociobiol. 16, 125–143 (1995).

    Google Scholar 

  120. Feldman, M. W. & Zhivotovsky, L. A. Gene–culture co-evolution: towards a general theory of vertical transmission. Proc. Natl Acad. Sci. USA 89, 11935–11938 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Feldman, M., Aoki, K. & Kumm, J. Individual versus social learning: evolutionary analysis in a fluctuating environment. Anthropol. Sci. 104, 209–231 (1996).

    Google Scholar 

  122. Henrich, J. & Boyd, R. The evolution of conformist transmission and the emergence of between-group differences. Evol. Hum. Behav. 19, 215–241 (1998).

    Google Scholar 

  123. Henrich, J. & McElreath, R. The evolution of cultural evolution. Evol. Anthropol. 12, 123–135 (2003).

    Google Scholar 

  124. Efferson, C., Lalive, R., Richerson, P., McElreath, R. & Lubell, M. Conformists and mavericks: the empirics of frequency-dependent cultural transmission. Evol. Hum. Behav. 29, 56–64 (2008).

    Google Scholar 

  125. Aoki, K. & Feldman, M. W. Toward a theory for the evolution of cultural communication: co-evolution of signal transmission and reception. Proc. Natl Acad. Sci. USA 84, 7164–7168 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Aoki, K. & Feldman, M. W. Pleiotrophy and preadaptation in the evolution of human language capacity. Theor. Popul. Biol. 35, 181–194 (1989).

    CAS  PubMed  Google Scholar 

  127. Aoki, K. & Feldman, M. W. Recessive hereditary deafness, assortative mating, and persistence of a sign language. Theor. Popul. Biol. 39, 358–372 (1991).

    CAS  PubMed  Google Scholar 

  128. Lachlan, R. F. & Feldman, M. W. Evolution of cultural communication systems: the co-evolution of cultural signals and genes encoding learning preferences J. Evol. Biol. 16, 1084–1095 (2003).

    CAS  PubMed  Google Scholar 

  129. Feldman, M. W. & Otto, S. P. Twin studies, heritability, and intelligence. Science 278, 1383–1384 (1997).

    CAS  PubMed  Google Scholar 

  130. Cochran, G., Hardy, J. & Harpending, H. Natural history of Ashkenazi intelligence. J. Biosoc. Sci. 38, 659–693 (2005).

    Google Scholar 

  131. Boyd, R. & Richerson, P. J. Cultural transmission and the evolution of cooperative behavior. Hum. Ecol. 10, 325–351 (1982).

    Google Scholar 

  132. Boyd, R. & Richerson, P. J. The evolution of reciprocity in sizeable groups. J. Theor. Biol. 132, 337–356 (1988).

    CAS  PubMed  Google Scholar 

  133. Boyd, R., Gintis, H., Bowles, S. & Richerson, P. J. The evolution of altruistic punishment. Proc. Natl Acad. Sci. USA 100, 3531–3535 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Henrich, J. et al. Costly punishment across human societies. Science 312, 1767–1770 (2006).

    CAS  PubMed  Google Scholar 

  135. Gintis, H. The hitchhiker's guide to altruism: gene–culture co-evolution, and the internalization of norms. J. Theor. Biol. 220, 407–418 (2003).

    PubMed  Google Scholar 

  136. Gintis, H. The genetic side of gene–culture co-evolution: internalization of norms and prosocial emotions. J. Econ. Behav. Organ. 53, 57–67 (2004).

    Google Scholar 

  137. Fehr, E. & Fischbacher, U. The nature of human altruism. Nature 425, 785–791 (2003).

    CAS  PubMed  Google Scholar 

  138. McElreath, R., Boyd, R. & Richerson, P. J. Shared norms and the evolution of ethnic markers. Curr. Anthropol. 44, 122–129 (2003).

    Google Scholar 

  139. Lumsden, C. J. & Wilson, E. O. Genes, Mind and Culture (Harvard Univ. Press, 1981).

    Google Scholar 

  140. Aoki, K. & Feldman, M. W. A gene–culture co-evolutionary model for brother–sister mating. Proc. Natl Acad. Sci. USA 94, 13046–13050 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Mesoudi, A. & Laland, K. N. Culturally transmitted paternity beliefs and the evolution of human mating behaviour. Proc. R. Soc. Lond. B 274, 1273–1278 (2007).

    Google Scholar 

  142. Kumm, J., Laland, K. N. & Feldman, M. W. Gene–culture co-evolution and sex ratios: the effects of infanticide, sex-selective abortion, and sex-biased parental investment on the evolution of sex ratios. Theor. Popul. Biol. 46, 249–278 (1994).

    CAS  PubMed  Google Scholar 

  143. Kumm, J. & Feldman, M. W. Gene–culture co-evolution and sex ratios: II. Sex-chromosomal distorters and cultural preferences for offspring sex. Theor. Popul. Biol. 52, 1–15 (1997).

    CAS  PubMed  Google Scholar 

  144. Osier, M. V. et al. A global perspective on genetic variation at the ADH genes reveals unusual patterns of linkage disequilibrium and diversity. Am. J. Hum. Genet. 71, 84–99 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Elbers, C. C. et al. Variants in neuropeptide Y receptor 1 and 5 are associated with nutrient-specific food intake and are under recent selection in Europeans. PLoS ONE 4, e7070 (2009).

    PubMed  PubMed Central  Google Scholar 

  146. Thompson, E. E. et al. CYP3A variation and the evolution of salt-sensitivity variants. Am. J. Hum. Genet. 75, 1059–1069 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Wooding, S. P. et al. DNA sequence variation in a 3.7-kb noncoding sequence 5′ of the CYP1A2 gene: implications for human population history and natural selection. Am. J. Hum. Genet. 71, 528–542 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Saunders, M. A., Hammer, M. F. & Nachman, M. W. Nucleotide variability at G6pd and the signature of malarial selection in humans. Genetics 162, 1849–1861 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Nielsen, R., Hellmann, I., Hubisz, M., Bustamante, C. & Clark, A. G. Recent and ongoing selection in the human genome. Nature Rev. Genet. 8, 857–868 (2007).

    CAS  PubMed  Google Scholar 

  150. Hancock, A. M. et al. Adaptations to climate in candidate genes for common metabolic disorders. PLoS Genet. 4, e32 (2008).

    PubMed  PubMed Central  Google Scholar 

  151. Sulem, P. et al. Genetic determinants of hair, eye and skin pigmentation in Europeans. Nature Genet. 39, 1443–1452 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' research was supported in part by grants from the Biotechnology and Biological Sciences Research Council (BB/C005430/1) and the European Union (NESTPathfinder, CULTAPTATION) to K.N.L. S.M. is supported by the US Department of Agriculture. We are grateful to M. Feldman, L. Fortunato, P. Sabeti and M. Stoneking for helpful comments on earlier drafts of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin N. Laland.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Kevin N. Laland's homepage

Sean Myles' homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laland, K., Odling-Smee, J. & Myles, S. How culture shaped the human genome: bringing genetics and the human sciences together. Nat Rev Genet 11, 137–148 (2010). https://doi.org/10.1038/nrg2734

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2734

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing