Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

When sugars guide axons: insights from heparan sulphate proteoglycan mutants

Key Points

  • Growing axons find their targets in the developing brain by sensing and integrating a large number of extracellular cues. Although several main families of ligands and their receptors are now known, it is clear that their signalling is modulated in complex ways. Heparan sulphate proteoglycans (HSPGs) are good candidates to be involved in this modulation.

  • HSPGs are a large class of molecules, comprising several proteins that are each post-translationally modified by the addition of one or more heparan-sulphate side chains. Extensive and variable modifications of the side chains lead to the extreme molecular diversity of HSPGs.

  • Previous biochemical evidence has shown that HSPGs can bind several known axon-guidance ligands, especially Slit. Functional experiments have shown that HSPGs are important for X. laevis retinal-axon guidance in vivo, and for Slit–Robo function in cultured neurons.

  • A set of recent genetic experiments in fly, worm, mouse and zebrafish have converged to show that HSPGs indeed have crucial roles in in vivo axon guidance.

  • Genetic interaction experiments show that HSPGs act with several known axon-guidance pathways, especially Kal-1 signalling and Slit–Robo signalling. Furthermore, analysis of heparan-sulphate modification mutants in Caenorhabditis elegans shows that specific modifications of heparan sulphate are important for particular axon-guidance decisions.

  • In the case of Slit–Robo signalling in the fly ventral nerve cord, the HSPG Syndecan has a role in controlling the distribution of Slit protein and probably binds directly to both Slit and Robo.

  • Future genetic analyses will help to elucidate the specific forms of HSPGs that are important for axon guidance; the mechanisms by which they act; and the other pathways with which they interact.

Abstract

Although there have previously been hints that heparan sulphate proteoglycans (HSPGs) are important for axon guidance, as they are for many other biological processes, there has been little in vivo evidence for interaction with known axon-guidance pathways. Genetic analyses of fly, mouse, nematode and zebrafish mutants now confirm the role of HSPGs in axon guidance and are beginning to show that they might have a key role in modulating the action of axon-guidance ligands and receptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three principal families of axon-guidance ligands and receptors that interact directly with heparan sulphate proteoglycans.
Figure 2: Synthesis of heparan-sulphate chains and known mutants in different model systems.
Figure 3: Models for guidance of axons by heparan sulphate proteoglycans.
Figure 4: Axon-guidance phenotypes of heparan sulphate proteoglycan mutants and genetic interactions with known guidance pathways.

Similar content being viewed by others

References

  1. Tessier-Lavigne, M. & Goodman, C. S. The molecular biology of axon guidance. Science 274, 1123–1133 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Dickson, B. J. Molecular mechanisms of axon guidance. Science 298, 1959–1964 (2002).

    CAS  PubMed  Google Scholar 

  3. Song, H. J. & Poo, M. M. Signal transduction underlying growth cone guidance by diffusible factors. Curr. Opin. Neurobiol. 9, 355–363 (1999).

    CAS  PubMed  Google Scholar 

  4. Yu, T. W. & Bargmann, C. I. Dynamic regulation of axon guidance. Nature Neurosci. 4, S1169–S1176 (2001).

    Google Scholar 

  5. Guan, K. L. & Rao, Y. Signalling mechanisms mediating neuronal responses to guidance cues. Nature Rev. Neurosci. 4, 941–956 (2003). References 1–5 and 15 are recent reviews about the principal families of axon-guidance ligands and receptors, and their downstream pathways.

    CAS  Google Scholar 

  6. Hiramoto, M., Hiromi, Y., Giniger, E. & Hotta, Y. The Drosophila Netrin receptor Frazzled guides axons by controlling Netrin distribution. Nature 406, 886–889 (2000).

    CAS  PubMed  Google Scholar 

  7. Johnson, K. G. et al. Axonal heparan sulfate proteoglycans regulate the distribution and efficiency of the repellent slit during midline axon guidance. Curr. Biol. 14, 499–504 (2004). References 7 and 90 are the first genetic evidence in D. melanogaster that an HSPG, Syndecan, has a role in axon guidance, controlling midline crossing by interacting with Slit–Robo signalling. Reference 7 also shows that sdc mutants have aberrant Slit protein distribution and that Sdc binds Robo and Slit directly.

    CAS  PubMed  Google Scholar 

  8. Stein, E. & Tessier-Lavigne, M. Hierarchical organization of guidance receptors: silencing of netrin attraction by slit through a Robo/DCC receptor complex. Science 291, 1928–1938 (2001).

    CAS  PubMed  Google Scholar 

  9. Sabatier, C. et al. The divergent Robo family protein rig-1/Robo3 is a negative regulator of slit responsiveness required for midline crossing by commissural axons. Cell 117, 157–169 (2004).

    CAS  PubMed  Google Scholar 

  10. Campbell, D. S. & Holt, C. E. Chemotropic responses of retinal growth cones mediated by rapid local protein synthesis and degradation. Neuron 32, 1013–1026 (2001).

    CAS  PubMed  Google Scholar 

  11. Brittis, P. A., Lu, Q. & Flanagan, J. G. Axonal protein synthesis provides a mechanism for localized regulation at an intermediate target. Cell 110, 223–235 (2002).

    CAS  PubMed  Google Scholar 

  12. Giuditta, A., Kaplan, B. B., van Minnen, J., Alvarez, J. & Koenig, E. Axonal and presynaptic protein synthesis: new insights into the biology of the neuron. Trends Neurosci. 25, 400–404 (2002).

    CAS  PubMed  Google Scholar 

  13. Keleman, K. et al. Comm sorts robo to control axon guidance at the Drosophila midline. Cell 110, 415–427 (2002).

    CAS  PubMed  Google Scholar 

  14. Bernfield, M. et al. Functions of cell surface heparan sulfate proteoglycans. Annu. Rev. Biochem. 68, 729–777 (1999).

    CAS  PubMed  Google Scholar 

  15. Kramer, K. L. & Yost, H. J. Heparan sulfate core proteins in cell–cell signaling. Annu. Rev. Genet. 37, 461–484 (2003).

    CAS  PubMed  Google Scholar 

  16. Esko, J. D. & Selleck, S. B. Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu. Rev. Biochem. 71, 435–471 (2002). References 14–16 are comprehensive reviews on the structure, synthetic pathways and function of HSPGs, providing much more detail than is included in this paper.

    CAS  PubMed  Google Scholar 

  17. Chisholm, A. & Tessier-Lavigne, M. Conservation and divergence of axon guidance mechanisms. Curr. Opin. Neurobiol. 9, 603–615 (1999).

    CAS  PubMed  Google Scholar 

  18. Brose, K. et al. Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell 96, 795–806 (1999).

    CAS  PubMed  Google Scholar 

  19. Kidd, T., Bland, K. S. & Goodman, C. S. Slit is the midline repellent for the robo receptor in Drosophila. Cell 96, 785–794 (1999). References 18 and 19 describe the identification of Slits as the ligands for Robo receptors (the original isolation of which is described in references 27 and 28).

    CAS  PubMed  Google Scholar 

  20. Hao, J. C. et al. C. elegans slit acts in midline, dorsal-ventral, and anterior-posterior guidance via the SAX-3/Robo receptor. Neuron 32, 25–38 (2001).

    CAS  PubMed  Google Scholar 

  21. Nguyen Ba-Charvet, K. T. et al. Slit2-Mediated chemorepulsion and collapse of developing forebrain axons. Neuron 22, 463–473 (1999).

    CAS  PubMed  Google Scholar 

  22. Kramer, S. G., Kidd, T., Simpson, J. H. & Goodman, C. S. Switching repulsion to attraction: changing responses to slit during transition in mesoderm migration. Science 292, 737–740 (2001).

    CAS  PubMed  Google Scholar 

  23. Englund, C., Steneberg, P., Falileeva, L., Xylourgidis, N. & Samakovlis, C. Attractive and repulsive functions of Slit are mediated by different receptors in the Drosophila trachea. Development 129, 4941–4951 (2002).

    CAS  PubMed  Google Scholar 

  24. Wang, K. H. et al. Biochemical purification of a mammalian slit protein as a positive regulator of sensory axon elongation and branching. Cell 96, 771–784 (1999).

    CAS  PubMed  Google Scholar 

  25. Ozdinler, P. H. & Erzurumlu, R. S. Slit2, a branching-arborization factor for sensory axons in the Mammalian CNS. J. Neurosci. 22, 4540–4549 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Yeo, S. Y. et al. Involvement of Islet-2 in the Slit signaling for axonal branching and defasciculation of the sensory neurons in embryonic zebrafish. Mech. Dev. 121, 315–324 (2004).

    CAS  PubMed  Google Scholar 

  27. Seeger, M., Tear, G., Ferres-Marco, D. & Goodman, C. S. Mutations affecting growth cone guidance in Drosophila: genes necessary for guidance toward or away from the midline. Neuron 10, 409–426 (1993).

    CAS  PubMed  Google Scholar 

  28. Kidd, T. et al. Roundabout controls axon crossing of the CNS midline and defines a novel subfamily of evolutionarily conserved guidance receptors. Cell 92, 205–215 (1998).

    CAS  PubMed  Google Scholar 

  29. Zallen, J. A., Yi, B. A. & Bargmann, C. I. The conserved immunoglobulin superfamily member SAX-3/Robo directs multiple aspects of axon guidance in C. elegans. Cell 92, 217–227 (1998).

    CAS  PubMed  Google Scholar 

  30. Karlstrom, R. O. et al. Zebrafish mutations affecting retinotectal axon pathfinding. Development 123, 427–438 (1996).

    CAS  PubMed  Google Scholar 

  31. Fricke, C., Lee, J. S., Geiger-Rudolph, S., Bonhoeffer, F. & Chien, C. B. astray, a zebrafish roundabout homolog required for retinal axon guidance. Science 292, 507–510 (2001). References 30 and 31 described the isolation and cloning of the astray (robo2 ) zebrafish mutant, which has pronounced defects in retinal axon guidance.

    CAS  PubMed  Google Scholar 

  32. Zou, Y., Stoeckli, E., Chen, H. & Tessier-Lavigne, M. Squeezing axons out of the gray matter: a role for slit and semaphorin proteins from midline and ventral spinal cord. Cell 102, 363–375 (2000).

    CAS  PubMed  Google Scholar 

  33. Long, H. et al. Conserved roles for Slit and Robo proteins in midline commissural axon guidance. Neuron 42, 213–223 (2004).

    CAS  PubMed  Google Scholar 

  34. Hedgecock, E. M., Culotti, J. G. & Hall, D. H. The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron 4, 61–85 (1990).

    CAS  PubMed  Google Scholar 

  35. Ishii, N., Wadsworth, W. G., Stern, B. D., Culotti, J. G. & Hedgecock, E. M. UNC-6, a laminin-related protein, guides cell and pioneer axon migrations in C. elegans. Neuron 9, 873–881 (1992).

    CAS  PubMed  Google Scholar 

  36. Leung-Hagesteijn, C. et al. UNC-5, a transmembrane protein with immunoglobulin and thrombospondin type 1 domains, guides cell and pioneer axon migrations in C. elegans. Cell 71, 289–299 (1992).

    CAS  PubMed  Google Scholar 

  37. Chan, S. S. et al. UNC-40, a C. elegans homolog of DCC (Deleted in Colorectal Cancer), is required in motile cells responding to UNC-6 netrin cues. Cell 87, 187–195 (1996). References 34–37 describe the isolation and cloning of the unc-5, unc-6 and unc-40 axon-guidance mutants in C. elegans.

    CAS  PubMed  Google Scholar 

  38. Kennedy, T. E., Serafini, T., de la Torre, J. R. & Tessier-Lavigne, M. Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell 78, 425–435 (1994).

    CAS  PubMed  Google Scholar 

  39. Serafini, T. et al. The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell 78, 409–424 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Keino-Masu, K. et al. Deleted in Colorectal Cancer (DCC) encodes a netrin receptor. Cell 87, 175–185 (1996). References 38–40 describe the identification of Netrin and DCC, the vertebrate UNC-6 and UNC-40 homologues.

    CAS  PubMed  Google Scholar 

  41. Hong, K. et al. A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion. Cell 97, 927–941 (1999).

    CAS  PubMed  Google Scholar 

  42. Keleman, K. & Dickson, B. J. Short- and long-range repulsion by the Drosophila Unc5 netrin receptor. Neuron 32, 605–617 (2001).

    CAS  PubMed  Google Scholar 

  43. Cheng, H. J. & Flanagan, J. G. Identification and cloning of ELF-1, a developmentally expressed ligand for the Mek4 and Sek receptor tyrosine kinases. Cell 79, 157–168 (1994).

    CAS  PubMed  Google Scholar 

  44. Drescher, U. et al. In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal protein related to ligands for Eph receptor tyrosine kinases. Cell 82, 359–370 (1995).

    CAS  PubMed  Google Scholar 

  45. Kullander, K. & Klein, R. Mechanisms and functions of Eph and ephrin signalling. Nature Rev. Mol. Cell Biol. 3, 475–486 (2002).

    CAS  Google Scholar 

  46. McLaughlin, T., Hindges, R. & O'Leary, D. D. Regulation of axial patterning of the retina and its topographic mapping in the brain. Curr. Opin. Neurobiol. 13, 57–69 (2003).

    CAS  PubMed  Google Scholar 

  47. Hansen, M. J., Dallal, G. E. & Flanagan, J. G. Retinal axon response to ephrin-As shows a graded, concentration-dependent transition from growth promotion to inhibition. Neuron 42, 717–730 (2004).

    CAS  PubMed  Google Scholar 

  48. Hindges, R., McLaughlin, T., Genoud, N., Henkemeyer, M. & O'Leary, D. D. EphB forward signaling controls directional branch extension and arborization required for dorsal-ventral retinotopic mapping. Neuron 35, 475–487 (2002).

    CAS  PubMed  Google Scholar 

  49. Mann, F., Ray, S., Harris, W. & Holt, C. Topographic mapping in dorsoventral axis of the Xenopus retinotectal system depends on signaling through ephrin-B ligands. Neuron 35, 461–473 (2002).

    CAS  PubMed  Google Scholar 

  50. McLaughlin, T., Hindges, R., Yates, P. A. & O'Leary, D. D. Bifunctional action of ephrin-B1 as a repellent and attractant to control bidirectional branch extension in dorsal-ventral retinotopic mapping. Development 130, 2407–2418 (2003).

    CAS  PubMed  Google Scholar 

  51. Nybakken, K. & Perrimon, N. Heparan sulfate proteoglycan modulation of developmental signaling in Drosophila. Biochim. Biophys. Acta 1573, 280–291 (2002).

    CAS  PubMed  Google Scholar 

  52. Bornemann, D. J., Duncan, J. E., Staatz, W., Selleck, S. & Warrior, R. Abrogation of heparan sulfate synthesis in Drosophila disrupts the Wingless, Hedgehog and Decapentaplegic signaling pathways. Development 131, 1927–1938 (2004).

    CAS  PubMed  Google Scholar 

  53. Han, C., Belenkaya, T. Y., Khodoun, M., Tauchi, M. & Lin, X. Distinct and collaborative roles of Drosophila EXT family proteins in morphogen signalling and gradient formation. Development 131, 1563–1575 (2004).

    CAS  PubMed  Google Scholar 

  54. Takei, Y., Ozawa, Y., Sato, M., Watanabe, A. & Tabata, T. Three Drosophila EXT genes shape morphogen gradients through synthesis of heparan sulfate proteoglycans. Development 131, 73–82 (2004). References 52–54 are back-to-back papers that identified sotv and botv, Drosophila mutants for Ext2 and Extl3 . Similar to ttv , these mutants are defective in heparan sulphate synthesis and affect the HH, DPP, and FGF signalling pathways.

    CAS  PubMed  Google Scholar 

  55. Duncan, G., McCormick, C. & Tufaro, F. The link between heparan sulfate and hereditary bone disease: finding a function for the EXT family of putative tumor suppressor proteins. J. Clin. Invest. 108, 511–516 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. McCormick, C., Duncan, G., Goutsos, K. T. & Tufaro, F. The putative tumor suppressors EXT1 and EXT2 form a stable complex that accumulates in the Golgi apparatus and catalyzes the synthesis of heparan sulfate. Proc. Natl Acad. Sci. USA 97, 668–673 (2000). This study shows that Ext1 and Ext2 form a functional complex in the Golgi apparatus required for maximal activity for heparan sulphate synthesis. This shows that human HME diseases can be caused by mutations in either gene.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Busse, M. & Kusche-Gullberg, M. In vitro polymerization of heparan sulfate backbone by the EXT proteins. J. Biol. Chem. 278, 41333–41337 (2003).

    CAS  PubMed  Google Scholar 

  58. Kim, B. T., Kitagawa, H., Tanaka, J., Tamura, J. & Sugahara, K. In vitro heparan sulfate polymerization: crucial roles of core protein moieties of primer substrates in addition to the EXT1–EXT2 interaction. J. Biol. Chem. 278, 41618–41623 (2003).

    CAS  PubMed  Google Scholar 

  59. Lind, T., Tufaro, F., McCormick, C., Lindahl, U. & Lidholt, K. The putative tumor suppressors EXT1 and EXT2 are glycosyltransferases required for the biosynthesis of heparan sulfate. J. Biol. Chem. 273, 26265–26268 (1998).

    CAS  PubMed  Google Scholar 

  60. Lin, X. et al. Disruption of gastrulation and heparan sulfate biosynthesis in EXT1-deficient mice. Dev. Biol. 224, 299–311 (2000).

    CAS  PubMed  Google Scholar 

  61. Lee, J. S. et al. Axon sorting in the optic tract requires HSPG synthesis by Ext2/dackel and Extl3/boxer. Neuron (in the press). This study identifies dackel and boxer as zebrafish mutants in Ext2 and Extl3 genes, showing that heparan sulphate is required for optic-tract sorting, which occurs independent of Robo function. Analysis of double mutants indicates that tract sorting requires a high threshold of heparan sulphate, whereas Slit–Robo2 signalling requires a lower threshold.

  62. Kim, B. T. et al. Human tumor suppressor EXT gene family members EXTL1 and EXTL3 encode α 1, 4-N-acetylglucosaminyltransferases that likely are involved in heparan sulfate/heparin biosynthesis. Proc. Natl Acad. Sci. USA 98, 7176–7181 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kitagawa, H., Shimakawa, H. & Sugahara, K. The tumor suppressor EXT-like gene EXTL2 encodes an α1, 4-N-acetylhexosaminyltransferase that transfers N-acetylgalactosamine and N-acetylglucosamine to the common glycosaminoglycan-protein linkage region. The key enzyme for the chain initiation of heparan sulfate. J. Biol. Chem. 274, 13933–13937 (1999).

    CAS  PubMed  Google Scholar 

  64. Prydz, K. & Dalen, K. T. Synthesis and sorting of proteoglycans. J. Cell Sci. 113, 193–205 (2000).

    CAS  PubMed  Google Scholar 

  65. Topczewski, J. et al. The zebrafish glypican knypek controls cell polarity during gastrulation movements of convergent extension. Dev. Cell 1, 251–264 (2001).

    CAS  PubMed  Google Scholar 

  66. Bulik, D. A. & Robbins, P. W. The Caenorhabditis elegans sqv genes and functions of proteoglycans in development. Biochim. Biophys. Acta 1573, 247–257 (2002).

    CAS  PubMed  Google Scholar 

  67. Koziel, L., Kunath, M., Kelly, O. G. & Vortkamp, A. Ext1-dependent heparan sulfate regulates the range of Ihh signaling during endochondral ossification. Dev. Cell 6, 801–813 (2004). By generating hypomorphic Ext1 mutant mice, this study shows that heparan sulphate that is synthesized by Ext1 is required for restricting, rather than promoting, the diffusion of Indian Hedgehog during bone development. This indicates a new model for how exostoses develop in HME.

    CAS  PubMed  Google Scholar 

  68. Sasisekharan, R., Shriver, Z., Venkataraman, G. & Narayanasami, U. Roles of heparan-sulphate glycosaminoglycans in cancer. Nature Rev. Cancer 2, 521–528 (2002).

    CAS  Google Scholar 

  69. Inatani, M., Irie, F., Plump, A. S., Tessier-Lavigne, M. & Yamaguchi, Y. Mammalian brain morphogenesis and midline axon guidance require heparan sulfate. Science 302, 1044–1046 (2003). A neural-specific conditional ext1 knockout shows that heparan sulphate is required for normal brain patterning and axon scaffold formation in the forebrain. Genetic interactions with slit mutants indicate that Slit signalling in vivo requires heparan sulphate.

    CAS  PubMed  Google Scholar 

  70. Bandtlow, C. E. & Zimmermann, D. R. Proteoglycans in the developing brain: new conceptual insights for old proteins. Physiol. Rev. 80, 1267–1290 (2000). A review on the roles of proteoglycans in nervous system development.

    CAS  PubMed  Google Scholar 

  71. Bellaiche, Y., The, I. & Perrimon, N. Tout-velu is a Drosophila homologue of the putative tumour suppressor EXT-1 and is needed for Hh diffusion. Nature 394, 85–88 (1998). This study identified ttv as a mutation in D. melanogaster Ext1 , revealing the role of heparan sulphate in controlling HH diffusion.

    CAS  PubMed  Google Scholar 

  72. Han, C., Belenkaya, T. Y., Wang, B. & Lin, X. Drosophila glypicans control the cell-to-cell movement of Hedgehog by a dynamin-independent process. Development 131, 601–611 (2004).

    CAS  PubMed  Google Scholar 

  73. Ornitz, D. M. FGFs, heparan sulfate and FGFRs: complex interactions essential for development. Bioessays 22, 108–112 (2000).

    CAS  PubMed  Google Scholar 

  74. Schlessinger, J. et al. Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol. Cell 6, 743–50 (2000).

    CAS  PubMed  Google Scholar 

  75. Lin, X., Buff, E. M., Perrimon, N. & Michelson, A. M. Heparan sulfate proteoglycans are essential for FGF receptor signaling during Drosophila embryonic development. Development 126, 3715–3723 (1999).

    CAS  PubMed  Google Scholar 

  76. Tkachenko, E. & Simons, M. Clustering induces redistribution of syndecan-4 core protein into raft membrane domains. J. Biol. Chem. 277, 19946–19951 (2002).

    CAS  PubMed  Google Scholar 

  77. Chu, C. L., Buczek-Thomas, J. A. & Nugent, M. A. Heparan sulphate proteoglycans modulate fibroblast growth factor-2 binding through a lipid raft-mediated mechanism. Biochem. J. 379, 331–341 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Guirland, C., Suzuki, S., Kojima, M., Lu, B. & Zheng, J. Q. Lipid rafts mediate chemotropic guidance of nerve growth cones. Neuron 42, 51–62 (2004).

    CAS  PubMed  Google Scholar 

  79. Aricescu, A. R., McKinnell, I. W., Halfter, W. & Stoker, A. W. Heparan sulfate proteoglycans are ligands for receptor protein tyrosine phosphatase-σ. Mol. Cell. Biol. 22, 1881–1892 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Ethell, I. M. & Yamaguchi, Y. Cell surface heparan sulfate proteoglycan syndecan-2 induces the maturation of dendritic spines in rat hippocampal neurons. J. Cell Biol. 144, 575–586 (1999). References 80 and 85 show that Syndecan 2 is involved in dendrite formation and that it is activated by tyrosine phosphorylation by EphB2. This is the clearest example of interactions between Eph/ephrin signalling and HSPGs.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Liang, Y. et al. Mammalian homologues of the Drosophila slit protein are ligands of the heparan sulfate proteoglycan glypican-1 in brain. J. Biol. Chem. 274, 17885–17892 (1999).

    CAS  PubMed  Google Scholar 

  82. Ronca, F., Andersen, J. S., Paech, V. & Margolis, R. U. Characterization of Slit protein interactions with glypican-1. J. Biol. Chem. 276, 29141–29147 (2001).

    CAS  PubMed  Google Scholar 

  83. Hu, H. Cell-surface heparan sulfate is involved in the repulsive guidance activities of Slit2 protein. Nature Neurosci. 4, 695–701 (2001).

    CAS  PubMed  Google Scholar 

  84. Bennett, K. L. et al. Deleted in colorectal carcinoma (DCC) binds heparin via its fifth fibronectin type III domain. J. Biol. Chem. 272, 26940–26946 (1997).

    CAS  PubMed  Google Scholar 

  85. Ethell, I. M. et al. EphB/syndecan-2 signaling in dendritic spine morphogenesis. Neuron 31, 1001–1013 (2001).

    CAS  PubMed  Google Scholar 

  86. Walz, A. et al. Essential role of heparan sulfates in axon navigation and targeting in the developing visual system. Development 124, 2421–2430 (1997).

    CAS  PubMed  Google Scholar 

  87. Irie, A., Yates, E. A., Turnbull, J. E. & Holt, C. E. Specific heparan sulfate structures involved in retinal axon targeting. Development 129, 61–70 (2002).

    CAS  PubMed  Google Scholar 

  88. McFarlane, S., McNeill, L. & Holt, C. E. FGF signaling and target recognition in the developing Xenopus visual system. Neuron 15, 1017–1028 (1995).

    CAS  PubMed  Google Scholar 

  89. McFarlane, S., Cornel, E., Amaya, E. & Holt, C. E. Inhibition of FGF receptor activity in retinal ganglion cell axons causes errors in target recognition. Neuron 17, 245–254 (1996). Using a X. laevis whole-brain explant system, references 86 and 87 implicate specific sulphation forms of heparan sulphate in controlling the entry of retinal axons onto the optic tectum. Together with references 88 and 89, these studies also implicate Fgf2 in this process.

    CAS  PubMed  Google Scholar 

  90. Steigemann, P., Molitor, A., Fellert, S., Jackle, H. & Vorbruggen, G. Heparan sulfate proteoglycan syndecan promotes axonal and myotube guidance by slit/robo signaling. Curr. Biol. 14, 225–230 (2004).

    CAS  PubMed  Google Scholar 

  91. Bulow, H. E., Berry, K. L., Topper, L. H., Peles, E. & Hobert, O. Heparan sulfate proteoglycan-dependent induction of axon branching and axon misrouting by the Kallmann syndrome gene kal-1. Proc. Natl Acad. Sci. USA 99, 6346–6351 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Bulow, H. E. & Hobert, O. Differential sulfations and epimerization define heparan sulfate specificity in nervous system development. Neuron 41, 723–736 (2004). References 91 and 92 provide genetic evidence that specific heparan sulphate modifications are important for several aspects of axon guidance by different sets of neurons in C. elegans and that HSPG function interacts with the Kal-1 and Slit pathways.

    PubMed  Google Scholar 

  93. Morio, H. et al. EXT gene family member rib-2 is essential for embryonic development and heparan sulfate biosynthesis in Caenorhabditis elegans. Biochem. Biophys. Res. Commun. 301, 317–323 (2003).

    CAS  PubMed  Google Scholar 

  94. Meyers, E. N., Lewandoski, M. & Martin, G. R. An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. Nature Genet. 18, 136–141 (1998).

    CAS  PubMed  Google Scholar 

  95. Serafini, T. et al. Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell 87, 1001–1014 (1996).

    CAS  PubMed  Google Scholar 

  96. Plump, A. S. et al. Slit1 and Slit2 cooperate to prevent premature midline crossing of retinal axons in the mouse visual system. Neuron 33, 219–232 (2002).

    CAS  PubMed  Google Scholar 

  97. Niclou, S. P., Jia, L. & Raper, J. A. Slit2 is a repellent for retinal ganglion cell axons. J. Neurosci. 20, 4962–4974 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Hutson, L. D. & Chien, C. B. Pathfinding and error correction by retinal axons: the role of astray/robo2. Neuron 33, 205–217 (2002).

    CAS  PubMed  Google Scholar 

  99. Rasband, K., Hardy, M. & Chien, C. B. Generating X: formation of the optic chiasm. Neuron 39, 885–888 (2003).

    CAS  PubMed  Google Scholar 

  100. Yamada, S. et al. Embryonic fibroblasts with a gene trap mutation in Ext1 produce short heparan sulfate chains. J. Biol. Chem. 279, 32134–32141 (2004).

    CAS  PubMed  Google Scholar 

  101. Trowe, T. et al. Mutations disrupting the ordering and topographic mapping of axons in the retinotectal projection of the zebrafish, Danio rerio. Development 123, 439–450 (1996).

    CAS  PubMed  Google Scholar 

  102. Kidd, T., Russell, C., Goodman, C. S. & Tear, G. Dosage-sensitive and complementary functions of roundabout and commissureless control axon crossing of the CNS midline. Neuron 20, 25–33 (1998).

    CAS  PubMed  Google Scholar 

  103. Simpson, J. H., Bland, K. S., Fetter, R. D. & Goodman, C. S. Short-range and long-range guidance by Slit and its Robo receptors: a combinatorial code of Robo receptors controls lateral position. Cell 103, 1019–1032 (2000).

    CAS  PubMed  Google Scholar 

  104. Rajagopalan, S., Vivancos, V., Nicolas, E. & Dickson, B. J. Selecting a longitudinal pathway: Robo receptors specify the lateral position of axons in the Drosophila CNS. Cell 103, 1033–1045 (2000).

    CAS  PubMed  Google Scholar 

  105. Rugarli, E. I. et al. The Kallmann syndrome gene homolog in C. elegans is involved in epidermal morphogenesis and neurite branching. Development 129, 1283–1294 (2002).

    CAS  PubMed  Google Scholar 

  106. Augsburger, A., Schuchardt, A., Hoskins, S., Dodd, J. & Butler, S. BMPs as mediators of roof plate repulsion of commissural neurons. Neuron 24, 127–141 (1999).

    CAS  PubMed  Google Scholar 

  107. Lyuksyutova, A. I. et al. Anterior-posterior guidance of commissural axons by Wnt-frizzled signaling. Science 302, 1984–1988 (2003).

    CAS  PubMed  Google Scholar 

  108. Charron, F., Stein, E., Jeong, J., McMahon, A. P. & Tessier-Lavigne, M. The morphogen sonic hedgehog is an axonal chemoattractant that collaborates with netrin-1 in midline axon guidance. Cell 113, 11–23 (2003).

    CAS  PubMed  Google Scholar 

  109. Zako, M. et al. Syndecan-1 and-4 synthesized simultaneously by mouse mammary gland epithelial cells bear heparan sulfate chains that are apparently structurally indistinguishable. J. Biol. Chem. 278, 13561–13569 (2003).

    CAS  PubMed  Google Scholar 

  110. Tumova, S., Woods, A. & Couchman, J. R. Heparan sulfate chains from glypican and syndecans bind the Hep II domain of fibronectin similarly despite minor structural differences. J. Biol. Chem. 275, 9410–9417 (2000).

    CAS  PubMed  Google Scholar 

  111. Lin, X. & Perrimon, N. Dally cooperates with Drosophila Frizzled 2 to transduce Wingless signalling. Nature 400, 281–284 (1999).

    CAS  PubMed  Google Scholar 

  112. Fan, G. et al. Targeted disruption of NDST-1 gene leads to pulmonary hypoplasia and neonatal respiratory distress in mice. FEBS Lett. 467, 7–11 (2000).

    CAS  PubMed  Google Scholar 

  113. Ringvall, M. et al. Defective heparan sulfate biosynthesis and neonatal lethality in mice lacking N-deacetylase/N-sulfotransferase-1. J. Biol. Chem. 275, 25926–25930 (2000).

    CAS  PubMed  Google Scholar 

  114. Forsberg, E. et al. Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme. Nature 400, 773–776 (1999).

    CAS  PubMed  Google Scholar 

  115. Humphries, D. E. et al. Heparin is essential for the storage of specific granule proteases in mast cells. Nature 400, 769–772 (1999).

    CAS  PubMed  Google Scholar 

  116. Bullock, S. L., Fletcher, J. M., Beddington, R. S. & Wilson, V. A. Renal agenesis in mice homozygous for a gene trap mutation in the gene encoding heparan sulfate 2-sulfotransferase. Genes Dev. 12, 1894–1906 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Shworak, N. W., HajMohammadi, S., de Agostini, A. I. & Rosenberg, R. D. Mice deficient in heparan sulfate 3-O-sulfotransferase-1: normal hemostasis with unexpected perinatal phenotypes. Glycoconj. J. 19, 355–361 (2002).

    CAS  PubMed  Google Scholar 

  118. HajMohammadi, S. et al. Normal levels of anticoagulant heparan sulfate are not essential for normal hemostasis. J. Clin. Invest. 111, 989–999 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Li, J. P. et al. Targeted disruption of a murine glucuronyl C5-epimerase gene results in heparan sulfate lacking L-iduronic acid and in neonatal lethality. J. Biol. Chem. 278, 28363–28366 (2003).

    CAS  PubMed  Google Scholar 

  120. Nakato, H., Futch, T. A. & Selleck, S. B. The division abnormally delayed (dally) gene: a putative integral membrane proteoglycan required for cell division patterning during postembryonic development of the nervous system in Drosophila. Development 121, 3687–3702 (1995).

    CAS  PubMed  Google Scholar 

  121. Jackson, S. M. et al. dally, a Drosophila glypican, controls cellular responses to the TGF-β-related morphogen, Dpp. Development 124, 4113–4120 (1997).

    CAS  PubMed  Google Scholar 

  122. Tsuda, M. et al. The cell-surface proteoglycan Dally regulates Wingless signalling in Drosophila. Nature 400, 276–280 (1999).

    CAS  PubMed  Google Scholar 

  123. Baeg, G. H., Lin, X., Khare, N., Baumgartner, S. & Perrimon, N. Heparan sulfate proteoglycans are critical for the organization of the extracellular distribution of Wingless. Development 128, 87–94 (2001).

    CAS  PubMed  Google Scholar 

  124. Cano-Gauci, D. F. et al. Glypican-3-deficient mice exhibit developmental overgrowth and some of the abnormalities typical of Simpson-Golabi-Behmel syndrome. J. Cell Biol. 146, 255–264 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Paine-Saunders, S., Viviano, B. L., Zupicich, J., Skarnes, W. C. & Saunders, S. glypican-3 controls cellular responses to Bmp4 in limb patterning and skeletal development. Dev. Biol. 225, 179–187 (2000).

    CAS  PubMed  Google Scholar 

  126. Alexander, C. M. et al. Syndecan-1 is required for Wnt-1-induced mammary tumorigenesis in mice. Nature Genet. 25, 329–332 (2000).

    CAS  PubMed  Google Scholar 

  127. Stepp, M. A. et al. Defects in keratinocyte activation during wound healing in the syndecan-1-deficient mouse. J. Cell Sci. 115, 4517–4531 (2002).

    CAS  PubMed  Google Scholar 

  128. Kaksonen, M. et al. Syndecan-3-deficient mice exhibit enhanced LTP and impaired hippocampus-dependent memory. Mol. Cell. Neurosci. 21, 158–172 (2002).

    CAS  PubMed  Google Scholar 

  129. Ishiguro, K. et al. Syndecan-4 deficiency impairs the fetal vessels in the placental labyrinth. Dev. Dyn. 219, 539–544 (2000).

    CAS  PubMed  Google Scholar 

  130. Merz, D. C., Alves, G., Kawano, T., Zheng, H. & Culotti, J. G. UNC-52/perlecan affects gonadal leader cell migrations in C. elegans hermaphrodites through alterations in growth factor signaling. Dev. Biol. 256, 173–186 (2003).

    CAS  PubMed  Google Scholar 

  131. Rogalski, T. M., Williams, B. D., Mullen, G. P. & Moerman, D. G. Products of the unc-52 gene in Caenorhabditis elegans are homologous to the core protein of the mammalian basement membrane heparan sulfate proteoglycan. Genes Dev. 7, 1471–1484 (1993).

    CAS  PubMed  Google Scholar 

  132. Arikawa-Hirasawa, E., Watanabe, H., Takami, H., Hassell, J. R. & Yamada, Y. Perlecan is essential for cartilage and cephalic development. Nature Genet. 23, 354–358 (1999).

    CAS  PubMed  Google Scholar 

  133. Arikawa-Hirasawa, E. et al. Dyssegmental dysplasia, Silverman-Handmaker type, is caused by functional null mutations of the perlecan gene. Nature Genet. 27, 431–434 (2001).

    CAS  PubMed  Google Scholar 

  134. Arikawa-Hirasawa, E. et al. Structural and functional mutations of the perlecan gene cause Schwartz-Jampel syndrome, with myotonic myopathy and chondrodysplasia. Am. J. Hum. Genet. 70, 1368–1375 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Costell, M. et al. Perlecan maintains the integrity of cartilage and some basement membranes. J. Cell Biol. 147, 1109–1122 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Rossi, M. et al. Heparan sulfate chains of perlecan are indispensable in the lens capsule but not in the kidney. EMBO J. 22, 236–245 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Gautam, M. et al. Defective neuromuscular synaptogenesis in agrin-deficient mutant mice. Cell 85, 525–535 (1996).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for their helpful suggestions and Scott Selleck for reading the manuscript. Work in our laboratory is supported by grants from the US National Science Foundation and National Institutes of Health to C.-B.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Bin Chien.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

EXT1

EXT2

ttv

botv

rib-1

rib-2

FURTHER INFORMATION

Chien's web page

Glossary

GROWTH CONE

A specialized structure at the tip of a growing axon that senses guidance cues in the environment and steers the axon. Guidance receptors are often localized to the highly motile, actin-based filopodia and lamellipodia of the growth cone.

MIDLINE CROSSING

When axons cross the midline of the nervous system, passing from the left side to the right side, or vice versa. Midline crossing is one of the most fundamental, evolutionarily conserved axon-guidance decisions.

RETINAL GANGLION CELLS

The projection neurons that carry visual information from the eye to the brain.

CIRCUMFERENTIAL GUIDANCE

Guidance in a dorsal or ventral direction around the outside of the C. elegans body.

PIONEER AXONS

The earliest-growing axons in a nervous system that often help to guide later-growing axons.

COMMISSURAL AXONS

Axons that cross the midline and project to the other side of the nervous system.

OPTIC TECTUM

The primary brain target innervated by retinal axons in fish, frogs and chicks; homologous to the mammalian superior colliculus.

RETINOTECTAL TOPOGRAPHY

A map between the retina and tectum that preserves spatial information, which is crucial for visual processing.

SYNAPTIC PLASTICITY

Changes in synaptic strength — either increases or decreases — that are usually brought about in response to activity of a neuronal circuit. Plasticity is thought to be crucial for learning and memory.

EPIMERIZATION

An isomerization reaction that switches the position of two groups at a chiral carbon. For instance, C5-epimerization converts glucuronic acid to its diastereomer iduronic acid.

SULPHATION

Addition of a sulphate group to uronic acid residues (2-O-sulphation) or glucosamine residues (N-, 3- and 6-O-sulphation) of heparan-sulphate side chains.

HEREDITARY MULTIPLE EXOSTOSES

A dominant human disease in which bony spurs, or exostoses, develop at the end of long bones.

WING DISC

A sac-like primordial structure in a D. melanogaster embryo that gives rise to the adult wing.

LIPID RAFTS

Specialized cholesterol- and sphingolipid-rich microdomain structures in the cell membrane that are enriched in certain membrane proteins and are important for cellular signalling.

DENDRITIC SPINES

Mushroom-shaped structures on neuronal dendrites that receive synaptic input and bear postsynaptic densities. Changes in spine shape are thought to be important for modulating synaptic strength.

OLFACTORY BULB

Region in the rostral forebrain innervated by olfactory-receptor axons.

CRE

Cre is a site-specific recombinase that recognizes and binds to specific sites called loxP. Two loxP sites recombine at nearly 100% efficiency in the presence of Cre, allowing DNA cloned between two such sites to be removed by Cre-mediated recombination.

CEREBRAL CORTEX

The highly laminated gray matter of the cerebral hemisphere that mediates and integrates many higher-level brain functions.

FOREBRAIN COMMISSURES

Bundles of axons connecting the left and right halves of the forebrain, including the corpus callosum, hippocampal commissure and anterior commissure.

OPTIC CHIASM

An X-shaped structure in the ventral diencephalon where retinal axons from both eyes meet and partially cross. In mammals, most retinal axons project contralaterally at the chiasm, whereas a minority project ipsilaterally.

IPSILATERAL AXONS

Axons that do not cross the midline, instead projecting on the same side as the neuron's cell body.

LONGITUDINAL FASCICLES

Three bundles of axons that grow on each side of the fly nerve cord, parallel to the midline.

FASCICULATION

The aggregation of axons to form a bundle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JS., Chien, CB. When sugars guide axons: insights from heparan sulphate proteoglycan mutants. Nat Rev Genet 5, 923–935 (2004). https://doi.org/10.1038/nrg1490

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1490

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing