Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Population genetics of sexual conflict in the genomic era

Key Points

  • Case studies on several loci with sexually antagonistic alleles, identified by genetic and genomic approaches, reveal that sexual conflict leads to balancing selection to maintain both female-benefit and male-benefit alleles.

  • The signature of balancing selection from population genetic data is increasingly useful in assessing the amount and distribution of sexual conflict within the genome.

  • The causes of sexual conflict remain unclear, and multiple population genetic tools must be combined to determine whether sexual conflict results primarily from reproductive success or survival.

  • Sexual conflict can be resolved through a variety of mechanisms. However, balancing selection is only relaxed when sexual conflict is fully resolved.


Sexual conflict occurs when selection acts in opposing directions on males and females. Case studies in both vertebrates and invertebrates indicate that sexual conflict maintains genetic diversity through balancing selection, which might explain why many populations show more genetic variation than expected. Recent population genomic approaches based on different measures of balancing selection have suggested that sexual conflict can arise over survival, not just reproductive fitness as previously thought. A fuller understanding of sexual conflict will provide insight into its contribution to adaptive evolution and will reveal the constraints it might impose on populations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Case studies of balancing selection and sexual conflict.
Figure 2: Population genomics measures of sexual conflict.
Figure 3: Differential effects of sexual conflict and sex-specific selection on FST for a two-allele locus.


  1. 1

    Arnqvist, G. & Rowe, L. Sexual conflict. (Princeton Univ. Press, 2005).

    Book  Google Scholar 

  2. 2

    Parker, G. A. in Sexual selection and reproductive competition in insects (eds Blum, M. S. & Blum, N. A.) 123–166 (Academic Press, 1979).

    Google Scholar 

  3. 3

    Schärer, L., Janicke, T. & Ramm, S. A. Sexual conflict in hermaphrodites. Cold Spring Harb. Perspect. Biol. 7, a017673 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. 4

    Heijmans, B. T. et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl Acad. Sci. USA 105, 17046–17049 (2008).

    Article  PubMed  Google Scholar 

  5. 5

    Wigby, S. et al. Seminal fluid protein allocation and male reproductive success. Curr. Biol. 19, 751–757 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Perry, J. C., Sirot, L. & Wigby, S. The seminal symphony: how to compose an ejaculate. Trends Ecol. Evol. 28, 414–422 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7

    Bonduriansky, R. & Chenoweth, S. F. Intralocus sexual conflict. Trends Ecol. Evol. 24, 280–288 (2009).

    Article  PubMed  Google Scholar 

  8. 8

    Chippindale, A. K., Gibson, J. R. & Rice, W. R. Negative genetic correlation for adult fitness between sexes reveals ontogenetic conflict in Drosophila. Proc. Natl Acad. Sci. USA 98, 1671–1675 (2001). This classic study demonstrates the potential for sexual conflict within the Drosophila genome.

    Article  CAS  PubMed  Google Scholar 

  9. 9

    Fairbairn, D. J. Odd couples: extraordinary differences between the sexes in the animal kingdom (Princeton Univ. Press, 2015).

    Google Scholar 

  10. 10

    Mank, J. E. The transcriptional architecture of phenotypic dimorphism. Nat. Ecol. Evol. 1, 0006 (2017).

    Article  Google Scholar 

  11. 11

    Blekhman, R., Marioni, J. C., Zumbo, P., Stephens, M. & Gilad, Y. Sex-specific and lineage-specific alternative splicing in primates. Genome Res. 20, 180–189 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Burtis, K. C. & Baker, B. S. Drosophila doublesex gene controls somatic sexual differentiation by producing alternatively spliced messenger RNAs encoding related sex-specific polypetptides. Cell 56, 997–1010 (1989).

    Article  CAS  PubMed  Google Scholar 

  13. 13

    van Dongen, J. et al. Genetic and environmental influences interact with age and sex in shaping the human methylome. Nat. Commun. 7, 11115 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Barson, N. J. et al. Sex-dependent dominance at a single locus maintains variation in age at maturity in salmon. Nature 528, 405–407 (2015). This study is the first demonstration that sexual conflict can be mitigated by dominance reversal between males and females.

    Article  CAS  PubMed  Google Scholar 

  15. 15

    Foerster, K. et al. Sexually antagonistic genetic variation for fitness in red deer. Nature 447, 1107–1109 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. 16

    Hawkes, M. F. et al. Intralocus sexual conflict and insecticide resistance. Proc. R. Soc. Lond. B Biol. Sci. 283, 20161429 (2016).

    Article  CAS  Google Scholar 

  17. 17

    Johnston, S. E. et al. Life history trade-offs at a single locus maintain sexually selected genetic variation. Nature 502, 93–95 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. 18

    Lucotte, E. A., Laurent, R., Heyer, E., Segurel, L. & Toupance, B. Detection of allelic frequency differences between the sexes in humans: a signature of sexually antagonistic selection. Genome Biol. Evol. 8, 1489–1500 (2016). This study presents the first use of F ST , or allelic differences between males and females, as a measure of sexual conflict over survival.

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19

    Lonn, E. et al. Balancing selection maintains polymorphisms at neurogenetic loci in field experiments. Proc. Natl Acad. Sci. USA 114, 3690–3695 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. 20

    Connallon, T. & Clark, A. G. Balancing selection in species with separate sexes: insights from Fisher's geometric model. Genetics 197, 991–1006 (2014). This important theory paper lays out expectations for balancing selection as a function of sexual conflict.

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21

    Chenoweth, S. F., Appleton, N. C., Allen, S. L. & Rundle, H. D. Genomic evidence that sexual selection impedes adaptation to a novel environment. Curr. Biol. 25, 1860–1866 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. 22

    Jacomb, F., Marsh, J. & Holman, L. Sexual selection expedites the evolution of pesticide resistance. Evolution 70, 2746–2751 (2016).

    Article  PubMed  Google Scholar 

  23. 23

    Candolin, U. & Heuschele, J. Is sexual selection beneficial during adaptation to environmental change? Trends Ecol. Evol. 23, 446–452 (2008).

    Article  PubMed  Google Scholar 

  24. 24

    Lumley, A. J. et al. Sexual selection protects against extinction. Nature 522, 470–472 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. 25

    Cheng, C. D. & Kirkpatrick, M. Sex-specific selection and sex-biased gene expression in humans and flies. PLoS Genet. 12, e1006170 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Harrison, P. W. et al. Sexual selection drives evolution and rapid turnover of male gene expression. Proc. Natl Acad. Sci. USA 112, 4393–4398 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. 27

    Wright, A. E. et al. Convergent recombination suppression suggests role of sexual selection in guppy sex chromosome formation. Nat. Commun. 8, 14251 (2017). This study is one of the first direct tests of a long-standing theory that sex chromosomes form in response to sexual conflict.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Dean, R. & Mank, J. E. Tissue specificity and sex-specific regulatory variation permit the evolution of sex-biased gene expression. Am. Nat. 188, E74–E84 (2016).

    Article  PubMed  Google Scholar 

  29. 29

    Hill, M. S. et al. Sexual antagonism exerts evolutionarily persistent genomic constraints on sexual differentiation in Drosophila melanogaster. BioRxiv (2017).

  30. 30

    Daborn, P. J. et al. A single P450 allele associated with insecticide resitance in Drosophila. Science 297, 2253–2256 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. 31

    Smith, D. T. et al. DDT resistance, epistasis and male fitness in flies. J. Evol. Biol. 24, 1351–1362 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. 32

    Donaldson, Z. R. & Young, L. J. Oxytocin, vasopressin, and the neurogenetics of sociality. Science 322, 900–904 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. 33

    Okhovat, M., Berrio, A., Wallace, G., Ophir, A. G. & Phelps, S. M. Sexual fidelity trade-offs promote regulatory variation in the prairie vole brain. Science 350, 1371–1374 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. 34

    Walum, H. et al. Genetic variation in the vasopressin receptor 1a gene (AVPR1A) associates with pair-bonding behavior in humans. Proc. Natl Acad. Sci. USA 105, 14153–14156 (2008).

    Article  PubMed  Google Scholar 

  35. 35

    Fleming, I. A. & Einum, S. Atlantic salmon ecology. (Wiley-Blackwell, 2011).

    Google Scholar 

  36. 36

    Stearns, S. C. Life history evolution: successes, limitations and prospects. Naturwissenschaften 87, 476–486 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. 37

    Slate, J. From Beavis to beak color: a simulation study to examine how much QTL mapping can reveal about the genetic architecture of quantitative traits. Evolution 67, 1251–1262 (2013).

    PubMed  Google Scholar 

  38. 38

    Ostrowski, E. A. et al. Genomic signatures of cooperation and conflict in the social amoeba. Curr. Biol. 25, 1661–1665 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Flowers, J. M. et al. Variation, sex and social cooperation: molecular population genetics of the sociat amoeba Dictyostllium dicoideum. PLoS Genet. 6, e1001013 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Qiu, S., Bergero, R. & Charlesworth, D. Testing for the footprint of sexually antagonistic polymorphisms in the pseudoautosomal region of a plant sex chromosome pair. Genetics 194, 663–672 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41

    Guirao-Rico, S., Sanchez-Gracia, A. & Charlesworth, D. Sequence diversity patterns suggesting balancing selection in partially sex-linked genes of the plant Silene latifolia are not generated by demographic history or gene flow. Mol. Ecol. 26, 1357–1370 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. 42

    Mobegi, V. A. et al. Genome-wide analysis of selection on the malaria parasite Plasmodium falciparum in west African populations of differing infection endemicity. Mol. Biol. Evol. 31, 1490–1499 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Slate, J. Molecular evolution of the sheep prion protein gene. Proc. R. Soc. Lond. B Biol. Sci. 272, 2371–2377 (2005).

    Article  CAS  Google Scholar 

  44. 44

    Huang, Y. H., Wright, S. I. & Agrawal, A. F. Genome-wide patterns of genetic variation within and among alternative selective regimes. PLoS Genet. 10, e1004527 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Innocenti, P. & Morrow, E. H. The sexually antagonistic genes of Drosophila melanogaster. PLoS Biol. 8, e1000335 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Karp, N. et al. Prevalence of sexual dimorphism in mammalian phenotypic traits. Nat. Commun. 8, 14251 (2017).

    Article  CAS  Google Scholar 

  47. 47

    Randall, J. C. et al. Sex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits. PLoS Genet. 9, e1003500 (2013). This study presents one of the first demonstrations of the extent to which genetic architecture differs between males and females for many somatic traits by using an extensive GWAS data set in humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Shungin, D. et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature 518, 187–196 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Dapper, A. L. & Wade, M. J. The evolution of sperm competition genes: the effect of mating system on levels of genetic variation within and between species. Evolution 70, 502–511 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Gershoni, M. & Pietrokovski, S. Reduced selection and accumulation of deleterious mutations in genes exclusively expressed in men. Nat. Commun. 5, 4438 (2014). This study provides clear evidence that genes with sex-specific effects accumulate moderately deleterious mutations more rapidly than genes expressed in both sexes, which suggests that selection is less effective in sex-specific genes and is counter to many assumptions that sexual selection would increase the strength of positive selection acting on this type of locus.

    Article  CAS  PubMed  Google Scholar 

  51. 51

    Gershoni, M. & Pietrokovski, S. The landscape of sex-differential transcriptome and its consequent selection in human adults. BMC Biol. 15, 7 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Mostafavi, H. et al. Identifying genetic variants that affect viability in large cohorts. PLoS Biol. 15, e2002458 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Prugnolle, F. & de Meeus, T. Inferring sex-biased dispersal from population genetic tools: a review. Heredity 88, 161–165 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. 54

    Wright, A. E. et al. Sex-biased gene expression resolves sexual conflict through the evolution of sex-specific genetic architecture. BioRxiv (2017).

  55. 55

    Mullon, C., Pomiankowski, A. & Reuter, M. The effects of selection and genetic drift on the genomic distribution of sexually antagonistic alleles. Evolution 66, 3743–3753 (2012).

    Article  PubMed  Google Scholar 

  56. 56

    Wade, M. J. & Brandvain, Y. Reversing mother's curse: selection on male mitochondrial fitness effects. Evolution 63, 1084–1089 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  57. 57

    Gemmell, N. J., Metcalf, V. J. & Allendorf, F. W. Mother's curse: the effect of mtDNA on individual fitness and population viability. Trends Ecol. Evol. 19, 238–244 (2004).

    Article  PubMed  Google Scholar 

  58. 58

    Camus, M. F., Clancy, D. J. & Dowling, D. K. Mitochondria, maternal inheritance, and male aging. Curr. Biol. 22, 1717–1721 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. 59

    Innocenti, P., Morrow, E. H. & Dowling, D. K. Experimental evidence supports a sex-specific selective sieve in mitochondrial genome evolution. Science 332, 845–848 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. 60

    Nakada, K. et al. Mitochondria-related male infertility. Proc. Natl Acad. Sci. USA 103, 15148–15153 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. 61

    Patel, M. R. et al. A mitochondrial DNA hypomorph of cytochrome oxidase specifically impairs male fertility in Drosophila melanogaster. eLife 5, e16923 (2016). This study is a tour de force, identifying both the locus and mechanism in a case of cytonuclear incompatibility.

    Article  PubMed  PubMed Central  Google Scholar 

  62. 62

    Bentolila, S., Alfonso, A. A. & Hanson, M. R. A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants. Proc. Natl Acad. Sci. USA 99, 10887–10892 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. 63

    Fishman, L. & Willis, J. H. A cytonuclear incompatability causes anther sterility in Mimulus hybrids. Evolution 60, 1372–1381 (2006).

    Article  PubMed  Google Scholar 

  64. 64

    Wang, Z. H. et al. Cytoplasmic male sterility of rice with Boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell 18, 676–687 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Wright, A. E., Dean, R., Zimmer, F. & Mank, J. E. How to make a sex chromosome. Nat. Commun. 7, 12087 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Kitano, J. et al. A role for a neo-sex chromosome in stickleback speciation. Nature 461, 1079–1083 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Leclercq, S. et al. Birth of a W sex chromoosme by horizontal transfer of Wolbachia bacterial symbiont genome. Proc. Natl Acad. Sci. USA 113, 15036–15041 (2016). This is a fantastic study documenting the origins of a W chromosome in pillbugs from a feminizing Wolbachia endosymbiont.

    Article  CAS  PubMed  Google Scholar 

  68. 68

    Roberts, R. B., Ser, J. R. & Kocher, T. D. Sexual conflict resolved by invasion of a novel sex determiner in Lake Malawi cichlid fishes. Science 326, 998–1001 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Beukeboon, L. W. & Perrin, N. The evolution of sex determination. (Oxford Univ. Press, 2014).

    Book  Google Scholar 

  70. 70

    Bull, J. J. Evolution of sex determining mechanisms. (Benjamin Cummings, 1983).

    Google Scholar 

  71. 71

    Fisher, R. A. The evolution of dominance. Biol. Rev. 6, 345–368 (1931).

    Article  Google Scholar 

  72. 72

    Rice, W. R. The accumulation of sexually antagonistic genes as a selective agent promoting the evolution of reduced recombination between primitive sex chromosomes. Evolution 41, 911–914 (1987).

    Article  PubMed  Google Scholar 

  73. 73

    Dean, R., Perry, J. C., Pizzari, T., Mank, J. E. & Wigby, S. Experimental evolution of a novel sexually antagonistic allele. PLoS Genet. 8, e1002917 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Fry, J. D. The genomic location of sexually antagonistic variation: some cautionary comments. Evolution 64, 1510–1016 (2010).

    PubMed  Google Scholar 

  75. 75

    Dean, R. & Mank, J. E. The role of sex chromosomes in sexual dimorphism: discordance between molecular and phenotypic data. J. Evol. Biol. 27, 1443–1453 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. 76

    Rice, W. R. Sex chromosomes and the evolution of sexual dimorphism. Evolution 38, 735–742 (1984).

    Article  PubMed  Google Scholar 

  77. 77

    Clark, A. G. The evolution of the Y chromosome with X-Y recombination. Genetics 119, 711–720 (1988). This is a classic paper laying out the theory for part of the feedback loop between emerging sex chromosomes and sexual conflict.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Jordan, C. Y. & Charlesworth, D. The potential for sexually antgonistic polymorphism in different genome regions. Evolution 66, 505–516 (2012).

    Article  PubMed  Google Scholar 

  79. 79

    Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. 80

    Jackson, J. B. C. Ecological extinction and evolution in the brave new ocean. Proc. Natl Acad. Sci. USA 105, 11458–11465 (2008).

    Article  PubMed  Google Scholar 

  81. 81

    Lewis, S. L. & Maslin, M. A. Defining the Anthropocene. Nature 519, 171–180 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. 82

    Harts, A. M. F., Schwanz, L. E. & Kokko, H. Demography can favour female-advantageous alleles. Proc. R. Soc. Lond. B Biol. Sci. 281, 20140005 (2014).

    Article  Google Scholar 

  83. 83

    Mitra, I. et al. Pleiotropic mechanisms indicated for sex differences in autism. PLoS Genet. 12, e1006425 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Rawlik, K., Canela-Xandri, O. & Tenesa, A. Evidence for sex-specific genetic architectures across a spectrum of human complex traits. Genome Biol. 17, 166 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Connallon, T. & Clark, A. G. Association between sex-biased gene expression and mutations with sex-specific phenotypic consequences in Drosophila. Genome Biol. Evol. 3, 151–155 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Khila, A., Abouheif, E. & Rowe, L. Function, developmental genetics, and fitness consequences of a sexually antagonistic trait. Science 336, 585–589 (2012). This is a beautifully executed study that combines functional genetics and measures of reproductive success to determine the mechanism of a sexually antagonistic trait in water striders.

    Article  CAS  PubMed  Google Scholar 

  87. 87

    Bell, L. R., Maine, E. M., Schedl, P. & Cline, T. W. Sex-lethal, a Drosophila sex determination switch gene, exhibits sex-specific RNA splicing and sequence similarity to RNA-binding proteins. Cell 55, 1037–1046 (1988).

    Article  CAS  PubMed  Google Scholar 

  88. 88

    Clyne, J. D. & Miesenbock, G. Sex-specific control and tuning of the pattern generator for courtship song in Drosophila. Cell 133, 354–363 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. 89

    Leffler, E. M. et al. Multiple instances of ancient balancing selection shared between humans and chimpanzees. Science 339, 1578–1582 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Andres, A. M. et al. Targets of balancing selection in the human genome. Mol. Biol. Evol. 26, 2755–2764 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92

    Connallon, T. & Clark, A. G. Antagonistic versus nonantagonistic models of balancing selection: characterizing the relative timescales and hitchhiking effects of partial selective sweeps. Evolution 67, 908–917 (2013).

    Article  PubMed  Google Scholar 

  93. 93

    Brosou, A. S. & Excoffier, L. The impact of population expansion and mutation rate heterogeneity on DNA sequence polymorphism. Mol. Biol. Evol. 13, 494–504 (1996).

    Article  Google Scholar 

  94. 94

    Ray, N., Currat, M. & Excoffier, L. Intra-deme molecular diversity in spatially expanding populations. Mol. Biol. Evol. 20, 76–86 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. 95

    Mank, J. E., Axelsson, E. & Ellegren, H. Fast-X on the Z: Rapid evolution of sex-linked genes in birds. Genome Res. 17, 618–624 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Darby, S. C. et al. Mortality rates, life expectancy, and causes of death in people with hemophilia A or B in the United Kingdom who were not infected with HIV. Blood 110, 815–825 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. 97

    Johnston, S. E., Beraldo, D., Mcae, A. F., Pemberton, J. M. & Slate, J. Horn type and horn length genes map to the same chromosomal region in Soay Sheep. Heredity 104, 196–205 (2009).

    Article  PubMed  Google Scholar 

Download references


The author is grateful for generous support from the European Research Council (grant agreements 260233 and 680951) and a Royal Society Wolfson Merit Award. The author thanks P. Almeida, M. Bentley, I. Darolti, J. Morris, V. Oostra, S. Sumner, B. Taylor and D. Taylor for helpful comments and suggestions on a previous draft of this manuscript, the referees for their helpful suggestions, A. Wright and M. Fumagalli for stimulating discussions, and N. Wedell and S. Johnston for their expertise.

Author information



Corresponding author

Correspondence to Judith E. Mank.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides


Inter-locus sexual conflict

The result of evolutionary antagonistic interactions between males and females for alleles at two or more loci. In this form of sexual conflict, adaptation at one locus that favours one sex at some cost to the other is followed by counter-adaptations at a different locus for the harmed sex. The cycle of adaptation and counter-adaptation can repeat many times, resulting in an arms race between males and females.

Intra-locus sexual conflict

The result of conflicting selection pressures for males and females over alleles at a single locus. In this form of sexual conflict, alleles at a single locus have opposing effects on male and female fitness.

Genetic architecture

The underlying genetic basis of a phenotypic trait and, in particular, the genetic basis for phenotypic variation in the trait.

Reproductive fitness

The reproductive success, such as the number of viable offspring, of a given genotype. It is typically measured by the average contribution of the genotype to the next generation of the population compared to other genotypes.

Positive selection

Selection to increase the frequency of a new advantageous mutation within a population.

Purifying selection

Removal of deleterious variation from a population by selection.

Balancing selection

The evolutionary process whereby more alleles are maintained in a population than would be expected from the mutation rate and population size. It results from fluctuating selection (that is, changes in the direction of selection) over time, space or, in this case, sex.


The proportion of embryos with a given genotype that survive development.

Candidate gene

A pre-specified gene of interest based on its known function.

Transcriptome analysis

A technique in which the RNA levels are compared between treatment and control groups for all coding genes in the genome.

Genome-wide association studies

(GWAS). Studies based on a statistical method to determine what regions of the genome are associated with a trait of interest.


A short nucleotide repeat at a particular region of a chromosome. Microsatellites often have many alleles within a population, each of which has a different number of repeats.

Heterozygote advantage

A phenomenon in which the presence of two different alleles at a given locus confers increased reproductive fitness compared to either homozygote. Also referred to as heterosis or overdominance.

Dominance reversal

A switch in the dominance–recessivity relationship of an allele between different groups, in this case between males and females.

Beavis effect

A phenomenon in quantitative genetic studies in which the effect sizes of significant quantitative trait loci are overestimated and those of nonsignificant quantitative trait loci are underestimated. Because significance is related to sample size, the Beavis effect implies that identifying small but significant effects on fitness will require very large samples that are often not feasible in laboratory or natural populations.

Tajima's D

A measure of the proportion of polymorphic sites within a given locus or of the percentage of segregating sites.

Fixation index

(FST). A measure of differences in allele frequency between two groups, typically owing to genetic structure. In the context of comparing males and females from a single population, FST can result from differences in survival or viability.

Hardy–Weinberg equilibrium

A fundamental principle of population genetics that predicts that allele and genotype frequencies at a given locus will remain constant in a population in the absence of other evolutionary influences.

Mortality load

The proportion of individuals in a cohort that die before reproduction.

Sex-biased genes

Genes that are more highly expressed in one sex than the other.

Selective sweep

The reduction or elimination of genetic variation near a beneficial allele that has recently been fixed in a population due to strong positive selection. Sweeps are the result of genetic linkage between the beneficial mutation and nearby variation.


The state of having only one copy of a chromosome in an otherwise diploid organism. Hemizygosity occurs most frequently on the sex chromosomes, where the heterogametic sex only has one functional copy of X-linked or Z-linked loci.

Pseudo-autosomal region

(PAR). The portion of the sex chromosome that still recombines in the heterogametic sex and is not inherited in a strictly sex-linked manner.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mank, J. Population genetics of sexual conflict in the genomic era. Nat Rev Genet 18, 721–730 (2017).

Download citation

Further reading


Quick links