Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic sources of population epigenomic variation

Key Points

  • Computationally integrated chromatin state maps define 'epigenomes' and provide a snapshot of the functional state of the genome. Comparisons of reference epigenomes across different tissues, developmental stages, disease states and environmental treatments show that enhancer elements are the most variable, whereas transcription start sites (TSSs) and repressive regions vary the least.

  • Human population genetic studies of chromatin state maps involving up to five histone modifications show that the most variable regions correspond to enhancer states. A relatively small proportion of variable regions are associated with genetic variation, in which individual single-nucleotide polymorphisms (SNPs) can act as histone quantitative trait loci (hQTL) and affect multiple levels of local chromatin organization as well as expression levels of proximal or distal genes, most likely through a combination of differential transcription factor binding and chromatin looping.

  • In humans, DNA methylation variation within and between populations is depleted in CpG islands and enriched in active chromatin states such as enhancers (weak and active) and active TSSs. Variation in DNA methylation correlates, locally, with variability in other epigenetic marks.

  • In humans, array-based heritability estimates of DNA methylation variation at single CpG sites is about 0.2, and only a small proportion of CpGs can be associated with methylation QTL (meQTL). The majority of meQTL are strictly local and seem to involve mutations that impair DNA methylation itself or that disrupt transcription factor binding. The impact of genetic variation in DNA methylation is probably biased downward as current array technologies undersample distal enhancer elements.

  • In plants, many cis-meQTL seem to be due to SNPs tagging structural variants such as transposable element (TE) insertions that spread DNA methylation into flanking regions or facilitate siRNA silencing of downstream homologous sequences. Trans-acting meQTL are prevalent and often involve variants in chromatin control genes. As a result, trans-acting meQTL can affect methylation levels at the genome-wide scale, and some evidence indicates that such effects can be adaptive.

  • In plants, the interpretation of detected cis associations is complicated by the fact that alternative DNA methylation states (epialleles) can be inherited across generations, so that cis association may reflect linkage disequilibrium rather than active genetic regulation. Conversely, epialleles can also become disassociated from their underlying sequence haplotypes through high epimutation rates, and thus contribute to population epigenomic variation independently of DNA sequence variants.

  • Scaling up current studies to include more epigenetic marks, cell types and individuals promises to provide deeper insights into the heritable basis underlying population epigenomic variation and will clarify its implications for biomedical, agricultural and evolutionary research.

Abstract

The field of epigenomics has rapidly progressed from the study of individual reference epigenomes to surveying epigenomic variation in populations. Recent studies in a number of species, from yeast to humans, have begun to dissect the cis- and trans-regulatory genetic mechanisms that shape patterns of population epigenomic variation at the level of single epigenetic marks, as well as at the level of integrated chromatin state maps. We show that this information is paving the way towards a more complete understanding of the heritable basis underlying population epigenomic variation. We also highlight important conceptual challenges when interpreting results from these genetic studies, particularly in plants, in which epigenomic variation can be determined both by genetic and epigenetic inheritance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Main steps in population epigenomic analysis.
Figure 2: Single-nucleotide polymorphisms affecting chromatin states produce signatures of molecular pleiotropy.

Similar content being viewed by others

References

  1. Park, P. ChIP–seq: advantages and challenges of a maturing technology. Nat. Rev. Genet. 10, 669–680 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Laird, P. W. Principles and challenges of genome-wide DNA methylation analysis. Nat. Rev. Genet. 11, 191–203 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Adams, D. et al. BLUEPRINT to decode the epigenetic signature written in blood. Nat. Biotechnol. 30, 224–226 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Bernstein, B. E. et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat. Biotechnol. 28, 1045–1048 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ernst, J. & Kellis, M. Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat. Biotechnol. 28, 817–825 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kasowski, M. et al. Extensive variation in chromatin states across humans. Science 342, 750–752 (2013). This human population genetic study is the only study to date to use chromatin states as molecular units of analysis to assess epigenomic differences between individuals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rakyan, V. K., Down, T. A., Balding, D. J. & Beck, S. Epigenome-wide association studies for common human diseases. Nat. Rev. Genet. 12, 529–541 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mill, J. & Heijmans, B. T. From promises to practical strategies in epigenetic epidemiology. Nat. Rev. Genet. 14, 585–594 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Zhou, V. W., Goren, A. & Bernstein, B. E. Charting histone modifications and the functional organization of mammalian genomes. Nat. Rev. Genet. 12, 7–18 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Bernstein, B. E., Meissner, A. & Lander, E. S. The mammalian epigenome. Cell 128, 669–681 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Li, X. et al. High-resolution mapping of epigenetic modifications of the rice genome uncovers interplay between DNA methylation, histone methylation, and gene expression. Plant Cell 20, 259–276 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hon, G., Ren, B. & Wang, W. ChromaSig: a probabilistic approach to finding common chromatin signatures in the human genome. PLoS Comput. Biol. 4, e1000201 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Wang, Z. et al. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Genet. 40, 897–903 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hon, G., Wang, W. & Ren, B. Discovery and annotation of functional chromatin signatures in the human genome. PLoS Comput. Biol. 5, e1000566 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Roy, S. et al. Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science 330, 1787–1797 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kharchenko, P. V. et al. Comprehensive analysis of the chromatin landscape in Drosophila melanogaster. Nature 471, 480–485 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Riddle, N. C. et al. Plasticity in patterns of histone modifications and chromosomal proteins in Drosophila heterochromatin. Genome Res. 21, 147–163 (2010).

    Article  PubMed  CAS  Google Scholar 

  22. Gerstein, M. B. et al. Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science 330, 1775–1787 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Filion, G. J. et al. Systematic protein location mapping reveals five principal chromatin types in Drosophila cells. Cell 143, 212–224 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Roudier, F. et al. Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO J. 30, 1928–1938 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu, T. et al. Broad chromosomal domains of histone modification patterns in C. elegans. Genome Res. 21, 227–236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hoffman, M. M. et al. Unsupervised pattern discovery in human chromatin structure through genomic segmentation. Nat. Methods 9, 473–476 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lai, W. K. M. & Buck, M. J. An integrative approach to understanding the combinatorial histone code at functional elements. Bioinformatics 29, 2231–2237 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Luo, C. et al. Integrative analysis of chromatin states in Arabidopsis identified potential regulatory mechanisms for natural antisense transcript production. Plant J. 73, 77–90 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Sequeira-Mendes, J. et al. The functional topography of the Arabidopsis genome is organized in a reduced number of linear motifs of chromatin states. Plant Cell 26, 2351–2366 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Baker, K. et al. Chromatin state analysis of the barley epigenome reveals a higher-order structure defined by H3K27me1 and H3K27me3 abundance. Plant J. 84, 111–124 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Taudt, A. Nguyen, M. A., Heinig, M., Johannes, F. & Colome-Tatche, M. chromstaR: Tracking combinatorial chromatin state dynamics in space and time. bioRxiv http://dx.doi.org/10.1101/038612 (2016).

  32. Lara-Astiaso, D. et al. Chromatin state dynamics during blood formation. Science 55, 1–10 (2014).

    Google Scholar 

  33. Leung, D. et al. Integrative analysis of haplotype-resolved epigenomes across human tissues. Nature 518, 350–354 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Andersson, R. Promoter or enhancer, what's the difference? Deconstruction of established distinctions and presentation of a unifying model. Bioessays 37, 314–323 (2015).

    Article  PubMed  Google Scholar 

  35. Degner, J. F. et al. DNaseI sensitivity QTLs are a major determinant of human expression variation. Nature 482, 390–394 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kilpinen, H. et al. Coordinated effects of sequence variation on DNA binding, chromatin structure, and transcription. Science 342, 744–747 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McVicker, G. et al. Identification of genetic variants that affect histone modifications in human cells. Science 342, 747–749 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Waszak, S. et al. Population variation and genetic control of modular chromatin architecture in humans. Cell 162, 1039–1050 (2015). This human association mapping study analyses 3 histone modifications from 47 sequenced individuals and shows that cis -regulatory elements are preferentially found within the same chromosomal contact domain.

    Article  CAS  PubMed  Google Scholar 

  39. Grubert, F. et al. Genetic control of chromatin states in humans involves local and distal chromosomal interactions. Cell 162, 1051–1065 (2015). This human association mapping study integrates chromatin profiles of 3 histone modifications from 75 sequenced individuals with Hi-C and chromatin interaction analysis by paired-end sequencing (ChIA-PET)-based chromatin contact maps and finds that distal hQTL are enriched within topologically associated domains.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kimura, H. Histone modifications for human epigenome analysis. J. Hum. Genet. 58, 439–445 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Dixon, J. R. et al. Chromatin architecture reorganization during stem cell differentiation. Nature 518, 331–336 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Banovich, N. E. et al. Methylation QTLs are associated with coordinated changes in transcription factor binding, histone modifications, and gene expression levels. PLoS Genet. 10, e1004663 (2014). This human association mapping study is the only study to date to integrate methylation and histone modification data collected on the same individuals.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Stadler, M. B. et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480, 490–495 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Esteller, M. Cancer epigenomics: DNA methylomes and histone-modification maps. Nat. Rev. Genet. 8, 286–298 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Rintisch, C. et al. Natural variation of histone modification and its impact on gene expression in the rat genome. Genome Res. 24, 942–953 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wysocka, J. et al. WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell 121, 859–872 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Lee, K. et al. Genetic landscape of open chromatin in yeast. PLoS Genet. 9, e1003229 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chai, X., Nagarajan, S., Kim, K., Lee, K. & Choi, J. K. Regulation of the boundaries of accessible chromatin. PLoS Genet. 9, e1003778 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. McDaniell, R. et al. Heritable individual-specific and allele-specific chromatin signatures in humans. Science 328, 235–239 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Feng, S. et al. Conservation and divergence of methylation patterning in plants and animals. Proc. Natl Acad. Sci. USA 107, 8689–8694 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zemach, A., McDaniel, I. E., Silva, P. & Zilberman, D. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328, 916–919 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Law, J. A. & Jacobsen, S. E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 11, 204–220 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Smith, Z. D. & Meissner, A. DNA methylation: roles in mammalian development. Nat. Rev. Genet. 14, 204–220 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Ziller, M. J. et al. Charting a dynamic DNA methylation landscape of the human genome. Nature 500, 477–481 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gifford, C. A. et al. Transcriptional and epigenetic dynamics during specification of human embryonic stem cells. Cell 153, 1149–1163 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cedar, H. & Bergman, Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat. Rev. Genet. 10, 295–304 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Du, J., Johnson, L. M., Jacobsen, S. E. & Patel, D. J. DNA methylation pathways and their crosstalk with histone methylation. Nat. Rev. Mol. Cell. Biol. 16, 519–532 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Michels, K. B. et al. Recommendations for the design and analysis of epigenome-wide association studies. Nat. Methods 10, 949–955 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Dedeurwaerder, S. et al. Evaluation of the Infinium Methylation 450K technology. Epigenomics 3, 771–784 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. McRae, A. F. et al. Contribution of genetic variation to transgenerational inheritance of DNA methylation. Genome Biol. 15, R73 (2014). This human population study profiles DNA methylation in 614 individuals with the 450k array, and estimates that narrow-sense heritability of methylation levels at individual CpG sites is about 0.2 on average.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Bell, J. T. et al. Epigenome-wide scans identify differentially methylated regions for age and age-related phenotypes in a healthy ageing population. PLoS Genet. 8, e1002629 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gordon, L. et al. Neonatal DNA methylation profile in human twins is specified by a complex interplay between intrauterine environmental and genetic factors, subject to tissue-specific influence. Genome Res. 22, 1395–1406 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wright, F. A. et al. Heritability and genomics of gene expression in peripheral blood. Nat. Genet. 46, 430–437 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Carja, O. et al. Worldwide patterns of human epigenetic variation. bioRxiv http://dx.doi.org/10.1101/021931 (2015).

  65. Gibbs, J. R. et al. Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain. PLoS Genet. 6, e1000952 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Zhang, D. et al. Genetic control of individual differences in gene-specific methylation in human brain. Am. J. Hum. Genet. 86, 411–419 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bell, J. T. et al. DNA methylation patterns associate with genetic and gene expression variation in HapMap cell lines. Genome Biol. 12, R10 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fraser, H. B., Lam, L. L., Neumann, S. M. & Kobor, M. S. Population-specificity of human DNA methylation. Genome Biol. 13, R8 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. van Eijk, K. R. et al. Genetic analysis of DNA methylation and gene expression levels in whole blood of healthy human subjects. BMC Genomics 13, 636 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Moen, E. L. et al. Genome-wide variation of cytosine modifications between European and African populations and the implications for complex traits. Genetics 194, 987–996 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gutierrez-Arcelus, M. et al. Passive and active DNA methylation and the interplay with genetic variation in gene regulation. eLife 2, e00523 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Olsson, A. H. et al. Genome-wide associations between genetic and epigenetic variation influence mRNA expression and insulin secretion in human pancreatic islets. PLoS Genet. 10, e1004735 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Wagner, J. R. et al. The relationship between DNA methylation, genetic and expression inter-individual variation in untransformed human fibroblasts. Genome Biol. 15, R37 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zhang, X. et al. Linking the genetic architecture of cytosine modifications with human complex traits. Hum. Mol. Genet. 23, 5893–5905 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. McClay, J. L. et al. High density methylation QTL analysis in human blood via next-generation sequencing of the methylated genomic DNA fraction. Genome Biol. 16, 291 (2015). This is the largest, and arguably least biased, human association mapping study to date. The study used MBD-seq to determine the blood methylomes of 697 individuals and identified many cis associations in enhancer and heterochromatic regions that are poorly covered by current array platforms.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Busche, S. et al. Population whole-genome bisulfite sequencing across two tissues highlights the environment as the principal source of human methylome variation. Genome Biol. 16, 290 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Morris, T. J. & Beck, S. Analysis pipelines and packages for Infinium HumanMethylation450 BeadChip (450k) data. Methods 72, 3–8 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Moran, S., Arribas, C. & Esteller, M. Validation of a DNA methylation microarray for 850,000 CpG sites of the human genome enriched in enhancer sequences. Epigenomics (2015).

  79. Shoemaker, R., Deng, J., Wang, W. & Zhang, K. Allele-specific methylation is prevalent and is contributed by CpG-SNPs in the human genome. Genome Res. 20, 883–889 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Domcke, S. et al. Competition between DNA methylation and transcription factors determines binding of NRF1. Nature 528, 575–579 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Schmitz, R. J. et al. Patterns of population epigenomic diversity. Nature 495, 193–198 (2013). This plant association mapping study integrates base-resolution methylomes with fully sequenced genomes of 152 A. thaliana accessions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dubin, M. J. et al. DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation. eLife 4, e05255 (2015). This plant association mapping study of base-resolution methylomes provides evidence that selection on trans -acting meQTL for gene body methylation contribute to local adaptation.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Eichten, S. R. et al. Epigenetic and genetic influences on DNA methylation variation in maize populations. Plant Cell 25, 2783–2797 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Schmitz, R. J. et al. Epigenome-wide inheritance of cytosine methylation variants in a recombinant inbred population. Genome Res. 23, 1663–1674 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Alonso, C., Perez, R., Bazaga, P. & Herrera, C. M. Global DNA cytosine methylation as an evolving trait: phylogenetic signal and correlated evolution with genome size in angiosperms. Front. Genet. 6, 4 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Seymour, D. K., Koenig, D., Hagmann, J., Becker, C. & Weigel, D. Evolution of DNA methylation patterns in the Brassicaceae is driven by differences in genome organization. PLoS Genet. 10, e1004785 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Regulski, M. et al. The maize methylome influences mRNA splice sites and reveals widespread paramutation-like switches guided by small RNA. Genome Res. 23, 1651–1662 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Vaughn, M. W. et al. Epigenetic natural variation in Arabidopsis thaliana. PLoS Biol. 5, 1617–1629 (2007).

    Article  CAS  Google Scholar 

  89. Shen, H. et al. Genome-wide analysis of DNA methylation and gene expression changes in two Arabidopsis ecotypes and their reciprocal hybrids. Plant Cell 24, 875–892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hagmann, J. et al. Century-scale methylome stability in a recently diverged Arabidopsis thaliana lineage. PLoS Genet. 11, e1004920 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Schmitz, R. J. & Ecker, J. R. Epigenetic and epigenomic variation in Arabidopsis thaliana. Trends Plant Sci. 17, 149–154 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Becker, C. & Weigel, D. Epigenetic variation: origin and transgenerational inheritance. Curr. Opin. Plant Biol. 15, 562–567 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. van der Graaf, A. et al. Rate, spectrum, and evolutionary dynamics of spontaneous epimutations. Proc. Natl Acad. Sci. USA 6676–6681 (2015). This study analyses multi-generational base-resolution methylomes of A. thaliana mutation accumulation lines and provides the first estimates of forward and backward epimutation rates.

  94. Pecinka, A., Abdelsamad, A. & Vu, G. T. H. Hidden genetic nature of epigenetic natural variation in plants. Trends Plant Sci. 18, 625–632 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Fujimoto, R. et al. Molecular mechanisms of epigenetic variation in plants. Int. J. Mol. Sci. 13, 9900–9922 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hollister, J. D. & Gaut, B. S. Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res. 19, 1419–1428 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bennetzen, J. L. & Wang, H. The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annu. Rev. Plant Biol. 65, 505–530 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Stroud, H., Greenberg, M. V. C., Feng, S., Bernatavichute, Y. V. & Jacobsen, S. E. Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell 152, 352–364 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Li, Q. et al. Genetic perturbation of the maize methylome. Plant Cell 26, 4602–4616 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Shen, X. et al. Natural CMT2 variation is associated with genome-wide methylation changes and temperature seasonality. PLoS Genet. 10, e1004842 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Lindroth, A. M. et al. Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science 292, 2077–2080 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Takuno, S. & Gaut, B. S. Body-methylated genes in Arabidopsis thaliana are functionally important and evolve slowly. Mol. Biol. Evol. 29, 219–227 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Takuno, S. & Gaut, B. S. Gene body methylation is conserved between plant orthologs and is of evolutionary consequence. Proc. Natl Acad. Sci. USA 110, 1797–1802 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Takuno, S., Ran, J.-H. & Gaut, B. S. Evolutionary patterns of genic DNA methylation vary across land plants. Nat. Plants 2, 15222 (2016).

    Article  CAS  PubMed  Google Scholar 

  105. Long, Q. et al. Massive genomic variation and strong selection in Arabidopsis thaliana lines from Sweden. Nat. Genet. 45, 884–890 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Johannes, F., Colot, V. & Jansen, R. C. Epigenome dynamics: a quantitative genetics perspective. Nat. Rev. Genet. 9, 883–890 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Becker, C. et al. Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature 480, 245–249 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. Schmitz, R. J. et al. Transgenerational epigenetic instability is a source of novel methylation variants. Science 334, 369–373 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jiang, C. et al. Environmentally responsive genome-wide accumulation of de novo Arabidopsis thaliana mutations and epimutations. Genome Res. 24, 1821–1829 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ossowski, S. et al. The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327, 92–94 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Virdi, K. S. et al. Arabidopsis MSH1 mutation alters the epigenome and produces heritable changes in plant growth. Nat. Commun. 6, 6386 (2015).

    Article  CAS  PubMed  Google Scholar 

  112. Eichten, S. R. et al. Heritable epigenetic variation among maize inbreds. PLoS Genet. 7, e1002372 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Amoah, S. et al. A hypomethylated population of Brassica rapa for forward and reverse epi-genetics. BMC Plant Biol. 12, 193 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hauben, M. et al. Energy use efficiency is characterized by an epigenetic component that can be directed through artificial selection to increase yield. Proc. Natl Acad. Sci. USA 106, 20109–20114 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bossdorf, O., Arcuri, D., Richards, C. L. & Pigliucci, M. Experimental alteration of DNA methylation affects the phenotypic plasticity of ecologically relevant traits in Arabidopsis thaliana. Evol. Ecol. 24, 541–553 (2010).

    Article  Google Scholar 

  116. Li, Q., Eichten, S. R., Hermanson, P. J. & Springer, N. M. Inheritance patterns and stability of DNA methylation variation in maize near-isogenic lines. Genetics 196, 667–676 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Cortijo, S. et al. Mapping the epigenetic basis of complex traits. Science 343, 1145–1148 (2014). This study in A. thaliana demonstrates that experimentally-induced epimutations can segregate for many generations and contribute to the heritability of plant complex traits.

    Article  CAS  PubMed  Google Scholar 

  118. Verhoeven, K. J. F., Jansen, J. J., van Dijk, P. J. & Biere, A. Stress-induced DNA methylation changes and their heritability in asexual dandelions. New Phytol. 185, 1108–1118 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Reinders, J. et al. Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genes Dev. 23, 939–950 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Johannes, F. et al. Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet. 5, e1000530 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Roux, F. et al. Genome-wide epigenetic perturbation jump-starts patterns of heritable variation found in nature. Genetics 188, 1015–1017 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhang, Y.-Y., Fischer, M., Colot, V. & Bossdorf, O. Epigenetic variation creates potential for evolution of plant phenotypic plasticity. New Phytol. 197, 314–322 (2013).

    Article  CAS  PubMed  Google Scholar 

  123. Slatkin, M. Epigenetic inheritance and the missing heritability problem. Genetics 182, 845–850 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Johannes, F. & Colome-Tatche, M. Quantitative epigenetics through epigenomic perturbation of isogenic lines. Genetics 188, 215–227 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Day, T. & Bonduriansky, R. A unified approach to the evolutionary consequences of genetic and nongenetic inheritance. Am. Nat. 178, E18–E36 (2011).

    Article  PubMed  Google Scholar 

  126. Geoghegan, J. L. & Spencer, H. G. Population-epigenetic models of selection. Theor. Popul. Biol. 81, 232–242 (2012).

    Article  PubMed  Google Scholar 

  127. Klironomos, F. D., Berg, J. & Collins, S. How epigenetic mutations can affect genetic evolution: model and mechanism. Bioessays 35, 571–578 (2013).

    Article  PubMed  Google Scholar 

  128. Furrow, R. E. Epigenetic inheritance, epimutation, and the response to selection. PLoS ONE 9, e101559 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Furrow, R. E. & Feldman, M. W. Genetic variation and the evolution of epigenetic regulation. Evolution 68, 673–683 (2014).

    Article  PubMed  Google Scholar 

  130. Charlesworth, B. & Jain, K. Purifying selection, drift, and reversible mutation with arbitrarily high mutation rates. Genetics 198, 1587–1602 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Kronholm, I. & Collins, S. Epigenetic mutations can both help and hinder adaptive evolution. Mol. Ecol. 25, 1856–1868 (2015).

    Article  PubMed  CAS  Google Scholar 

  132. Wang, J. & Fan, C. A neutrality test for detecting selection on DNA methylation using single methylation polymorphism frequency spectrum. Genome Biol. Evol. 7, 154–171 (2015).

    Article  CAS  Google Scholar 

  133. Zilberman, D., Coleman-Derr, D., Ballinger, T. & Henikoff, S. Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks. Nature 456, 125–129 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Jackson, J. P. et al. Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana. Chromosoma 112, 308–315 (2004).

    Article  CAS  PubMed  Google Scholar 

  135. Bernatavichute, Y. V., Zhang, X., Cokus, S., Pellegrini, M. & Jacobsen, S. E. Genomewide association of histone H3 lysine nine methylation with CHG DNA methylation in Arabidopsis thaliana. PLoS ONE 3, e3156 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Lane, A. K., Niederhuth, C. E., Ji, L. & Schmitz, R. J. pENCODE: a plant encyclopedia of DNA elements. Annu. Rev. Genet. 48, 49–70 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zeng, X. et al. jMOSAiCS: joint analysis of multiple ChIP–seq datasets. Genome Biol. 14, R38 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Won, K.-J. et al. Comparative annotation of functional regions in the human genome using epigenomic data. Nucleic Acids Res. 41, 4423–4432 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Fraga, M. F. et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc. Natl Acad. Sci. USA 102, 10604–10609 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Schwartzman, O. & Tanay, A. Single-cell epigenomics: techniques and emerging applications. Nat. Rev. Genet. 16, 716–726 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

F.J. acknowledges support from the Technical University of Munich–Institute for Advanced Study, funded by the German Excellence Initiative and the European Union Seventh Framework Programme under grant agreement #291763. M.C-T. was supported by the Netherlands Organization for Scientific Research and by a University of Groningen Rosalind Franklin Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Johannes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

Overview of studies that have generated integrated chromatin state maps. (PDF 131 kb)

Supplementary information S2 (figure)

Heatmap showing the fold enrichment of the Illumina 450k array probes with chromatin states from an 18-state model determined by ChromHMM (y-axis) in different cell types from the Roadmap Epigenomics [18] project (x-axis). (PDF 131 kb)

Supplementary information S3 (table)

Supplementary information (XLSX 144 kb)

Glossary

Chromatin state maps

Computationally integrated genome-wide measurements of different epigenetic marks.

Epigenome

The complete set of epigenetic marks at every genomic position in a given cell at a given time.

Histone quantitative trait loci

(hQTL). Genetic loci that contribute to variation in histone modification states and/or levels in cis or trans.

Expression quantitative trait loci

(eQTL). Genetic loci that contribute to variation in expression levels of mRNA in cis or trans.

CpG islands

Genomic regions with a high percentage of CpGs and a large observed-to-expected CG ratio.

Differentially methylated regions

(DMRs). Regions of DNA that have different methylation patterns between samples or individuals.

Epialleles

Alternative chromatin states at a given locus. Typically, they refer to alternative DNA methylation states, although in principle they could also refer to changes in other epigenetic marks.

Gene body methylation

(GBM). Average CG methylation levels over the body of genes.

Epimutation

Heritable stochastic change in chromatin state at a given position or region. In the context of cytosine methylation, epimutations are defined as heritable stochastic changes in the methylation status of a single cytosine or of a region or cluster of cytosines. Such changes do not necessarily imply changes in gene expression.

Genotype–phenotype map

A map that describes the functional connections between genotype and phenotype. The concept of a genotype–phenotype map is widely used as a metaphor for the many ways in which genotypic information influences the phenotype of an organism.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taudt, A., Colomé-Tatché, M. & Johannes, F. Genetic sources of population epigenomic variation. Nat Rev Genet 17, 319–332 (2016). https://doi.org/10.1038/nrg.2016.45

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg.2016.45

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing